首页 > 最新文献

Journal of Manufacturing Science and Engineering-transactions of The Asme最新文献

英文 中文
Smart Control of Springback in Stretch Bending of a Rectangular Tube by an Artificial Neural Network 基于人工神经网络的矩形管拉伸弯曲回弹智能控制
3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-10-11 DOI: 10.1115/1.4063737
Taekwang Ha, Torgeir Welo, Geir Ringen, Jyhwen Wang
Abstract Springback is one of the factors that causes decreased product quality in metal forming. Advanced 2D and 3D stretch bending process can be used to manufacture a complex geometry a profile with springback reduction. For a non-linear springback problem, an artificial neural network (ANN) is an attractive data-driven approach to achieving springback prediction and control. The main objective of the present work is to control springback and improve geometrical quality with an ANN in 2D and 3D stretch bending. In general, an ANN is trained with collected data sets from a large number of experiments, causing expensive costs and time-consuming work. In the present work, the training data sets for the proposed ANN are obtained from both experiments and an analytical springback model. As the analytical model can adopt different bending angles, material properties, and geometries, supplementary data by the analytical model significantly reduced the number of experiments needed for ANN training. Contrary to the typical springback predictions, the proposed ANN synthesizes the machine settings based on the desired dimensions as the inputs. It is shown that springback can be controlled by specifying the bend angles provided by the ANN prediction. The proposed ANN method was validated in 2D and 3D stretch bending, and its prediction and control performance is favorably compared to an ANN trained with only experimental data sets.
摘要回弹是导致金属成形产品质量下降的因素之一。先进的2D和3D拉伸弯曲工艺可用于制造具有回弹减少的复杂几何形状的轮廓。对于非线性回弹问题,人工神经网络(ANN)是实现回弹预测和控制的一种有吸引力的数据驱动方法。本工作的主要目的是利用人工神经网络控制二维和三维拉伸弯曲的回弹和提高几何质量。一般来说,人工神经网络是用从大量实验中收集的数据集来训练的,这造成了昂贵的成本和耗时的工作。在目前的工作中,所提出的人工神经网络的训练数据集是从实验和分析回弹模型中获得的。由于解析模型可以采用不同的弯曲角度、材料性质和几何形状,因此通过解析模型补充数据大大减少了人工神经网络训练所需的实验次数。与典型的回弹预测相反,所提出的人工神经网络基于所需的尺寸作为输入来综合机器设置。结果表明,通过确定人工神经网络预测提供的弯曲角度,可以控制回弹。该方法在二维和三维拉伸弯曲中进行了验证,与仅使用实验数据集训练的人工神经网络相比,其预测和控制性能优越。
{"title":"Smart Control of Springback in Stretch Bending of a Rectangular Tube by an Artificial Neural Network","authors":"Taekwang Ha, Torgeir Welo, Geir Ringen, Jyhwen Wang","doi":"10.1115/1.4063737","DOIUrl":"https://doi.org/10.1115/1.4063737","url":null,"abstract":"Abstract Springback is one of the factors that causes decreased product quality in metal forming. Advanced 2D and 3D stretch bending process can be used to manufacture a complex geometry a profile with springback reduction. For a non-linear springback problem, an artificial neural network (ANN) is an attractive data-driven approach to achieving springback prediction and control. The main objective of the present work is to control springback and improve geometrical quality with an ANN in 2D and 3D stretch bending. In general, an ANN is trained with collected data sets from a large number of experiments, causing expensive costs and time-consuming work. In the present work, the training data sets for the proposed ANN are obtained from both experiments and an analytical springback model. As the analytical model can adopt different bending angles, material properties, and geometries, supplementary data by the analytical model significantly reduced the number of experiments needed for ANN training. Contrary to the typical springback predictions, the proposed ANN synthesizes the machine settings based on the desired dimensions as the inputs. It is shown that springback can be controlled by specifying the bend angles provided by the ANN prediction. The proposed ANN method was validated in 2D and 3D stretch bending, and its prediction and control performance is favorably compared to an ANN trained with only experimental data sets.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":"56 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136210186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of Tool Surface Properties Generated by Directed Energy Deposition and Subsequent Ball Burnishing 定向能沉积和后续球抛光产生的刀具表面特性的表征
3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-10-11 DOI: 10.1115/1.4063736
Anna Komodromos, Joshua Grodotzki, Felix Kolpak, A. Erman Tekkaya
Abstract By Directed Energy Deposition (DED) a flexible design of cooling channels in forming tools, e.g. hot stamping, with a variety of sizes and a high positioning flexibility compared to machining processes is possible. The subsequent ball burnishing of the tool surfaces in combination with a variation of the DED process parameters enables a control of the tool surface properties and the friction behavior. Parameters such as the ball burnishing pressure or the path overlapping in the DED process are investigated to quantify their effects on roughness, hardness, friction, residual stresses and heat transfer coefficient of generic tool surfaces. The friction coefficient at elevated temperatures depends strongly on the surface roughness of the tool steel surfaces generated by DED and ball burnishing. The latter process improves the surface integrity: the roughness peaks are leveled by up to 75 %, the hardness and the residual stresses are enhanced by up to 20 % and 70 %, respectively. However, the roughness of the tool surfaces is determined mainly by the path overlapping of the welded beads in the DED process. Despite the higher surface roughness, the heat transfer coefficient is in the range of conventionally manufactured tool surfaces of up to 2,700 W/m2K for contact pressures up to 40 MPa. First hot stamping experiments demonstrate that the tools manufactured by the novel process combination are able to manufacture 22MnB5 hat profiles with an increased and more homogenous hardness as well as more homogeneous thickness distribution compared to conventionally manufactured tools.
通过定向能量沉积(DED),可以灵活地设计成形工具(如热冲压)的冷却通道,具有各种尺寸和与机械加工工艺相比的高定位灵活性。随后对刀具表面进行球磨,结合DED工艺参数的变化,可以控制刀具表面特性和摩擦行为。研究了球面抛光压力或路径重叠等参数对通用刀具表面粗糙度、硬度、摩擦、残余应力和传热系数的影响。高温下的摩擦系数很大程度上取决于由DED和球抛光产生的工具钢表面的表面粗糙度。后一种工艺提高了表面的完整性:粗糙度峰值提高了75%,硬度和残余应力分别提高了20%和70%。然而,工具表面的粗糙度主要是由焊珠在DED过程中的路径重叠决定的。尽管表面粗糙度更高,但在接触压力高达40 MPa的情况下,传统制造的刀具表面传热系数可达2,700 W/m2K。首先,热冲压实验表明,与传统制造的刀具相比,采用新工艺组合制造的刀具能够制造出硬度更高、厚度分布更均匀的22MnB5帽型。
{"title":"Characterization of Tool Surface Properties Generated by Directed Energy Deposition and Subsequent Ball Burnishing","authors":"Anna Komodromos, Joshua Grodotzki, Felix Kolpak, A. Erman Tekkaya","doi":"10.1115/1.4063736","DOIUrl":"https://doi.org/10.1115/1.4063736","url":null,"abstract":"Abstract By Directed Energy Deposition (DED) a flexible design of cooling channels in forming tools, e.g. hot stamping, with a variety of sizes and a high positioning flexibility compared to machining processes is possible. The subsequent ball burnishing of the tool surfaces in combination with a variation of the DED process parameters enables a control of the tool surface properties and the friction behavior. Parameters such as the ball burnishing pressure or the path overlapping in the DED process are investigated to quantify their effects on roughness, hardness, friction, residual stresses and heat transfer coefficient of generic tool surfaces. The friction coefficient at elevated temperatures depends strongly on the surface roughness of the tool steel surfaces generated by DED and ball burnishing. The latter process improves the surface integrity: the roughness peaks are leveled by up to 75 %, the hardness and the residual stresses are enhanced by up to 20 % and 70 %, respectively. However, the roughness of the tool surfaces is determined mainly by the path overlapping of the welded beads in the DED process. Despite the higher surface roughness, the heat transfer coefficient is in the range of conventionally manufactured tool surfaces of up to 2,700 W/m2K for contact pressures up to 40 MPa. First hot stamping experiments demonstrate that the tools manufactured by the novel process combination are able to manufacture 22MnB5 hat profiles with an increased and more homogenous hardness as well as more homogeneous thickness distribution compared to conventionally manufactured tools.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":"195 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136209942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chatter Avoidance by Spindle Speed and Orientation Planning in Five-Axis Ball-End Milling of Thin-Walled Blades 薄壁叶片五轴球端铣削中主轴转速和方向规划避免颤振
3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-10-04 DOI: 10.1115/1.4063654
Behnam Karimi, Yusuf Altintas
Abstract Selecting suitable cutting conditions is crucial in maintaining chatter stability and achieving acceptable surface quality. However, the selection of a constant set of cutting parameters is not feasible due to the time-varying dynamics of highly flexible thin-walled blades. This paper presents an optimal selection of tool orientation and spindle speed along the tool path as the metal is removed during the ball end milling of blades. The effects of tool orientation and speed on the mechanics and dynamics of the ball-end milling process are formulated. Test case simulations are used to demonstrate the impact of tool orientation and speed on chatter stability and forced vibrations. The proposed algorithm identifies the optimal spindle speed and tool orientation by continuously updating the workpiece dynamics as a function of time and tool position to achieve improved stability and surface quality. Stability simulations are conducted to assess the optimization approach's performance, and the results are compared with experiments by machining a series of thin-walled twisted fan blades.
选择合适的切削条件是保持颤振稳定性和获得满意表面质量的关键。然而,由于高柔性薄壁叶片的时变动力学特性,选择一组恒定的切削参数是不可行的。介绍了刀具球头铣削过程中刀具方向和主轴转速沿刀具轨迹的最佳选择。阐述了刀具方向和速度对球头铣削过程力学和动力学的影响。测试用例模拟用于演示刀具方向和速度对颤振稳定性和强制振动的影响。该算法通过不断更新工件动态作为时间和刀具位置的函数来识别最佳主轴转速和刀具方向,从而提高稳定性和表面质量。通过稳定性仿真来评估优化方法的性能,并与一系列薄壁扭曲风扇叶片的加工实验结果进行了比较。
{"title":"Chatter Avoidance by Spindle Speed and Orientation Planning in Five-Axis Ball-End Milling of Thin-Walled Blades","authors":"Behnam Karimi, Yusuf Altintas","doi":"10.1115/1.4063654","DOIUrl":"https://doi.org/10.1115/1.4063654","url":null,"abstract":"Abstract Selecting suitable cutting conditions is crucial in maintaining chatter stability and achieving acceptable surface quality. However, the selection of a constant set of cutting parameters is not feasible due to the time-varying dynamics of highly flexible thin-walled blades. This paper presents an optimal selection of tool orientation and spindle speed along the tool path as the metal is removed during the ball end milling of blades. The effects of tool orientation and speed on the mechanics and dynamics of the ball-end milling process are formulated. Test case simulations are used to demonstrate the impact of tool orientation and speed on chatter stability and forced vibrations. The proposed algorithm identifies the optimal spindle speed and tool orientation by continuously updating the workpiece dynamics as a function of time and tool position to achieve improved stability and surface quality. Stability simulations are conducted to assess the optimization approach's performance, and the results are compared with experiments by machining a series of thin-walled twisted fan blades.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135590871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AUDIT: Functional Qualification in Additive Manufacturing via Physical and Digital Twins 审计:通过物理和数字孪生在增材制造中的功能资格
3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-10-04 DOI: 10.1115/1.4063655
Michael Biehler, Reinaldo Mock, Shriyanshu Kode, Maham Mehmood, Palin Bhardwaj, Jianjun Shi
Abstract Additive manufacturing (AM) has revolutionized the way we design, prototype, and produce complex parts with unprecedented geometries. However, the lack of understanding of the functional properties of 3D printed parts has hindered their adoption in critical applications where reliability and durability are paramount. This paper proposes a novel approach to the functional qualification of 3D-printed parts via physical and digital twins. Physical twins are parts that are printed under the same process conditions as the functional parts and undergo a wide range of (destructive) tests to determine their mechanical, thermal, and chemical properties. Digital twins are virtual replicas of the physical twins that are generated using finite element analysis (FEA) simulations based on the 3D shape of the part of interest. We propose a novel approach to transfer learning, specifically designed for the fusion of diverse, unstructured 3D shape data and process inputs from multiple sources. The proposed approach has demonstrated remarkable results in predicting the functional properties of 3D-printed lattice structures. From an engineering standpoint, this paper introduces a comprehensive and innovative methodology for the functional qualification of 3D-printed parts. By combining the strengths of physical and digital twins with transfer learning, our approach opens up possibilities for the widespread adoption of 3D printing in safety-critical applications. Methodologically, this work presents a significant advancement in transfer learning techniques, specifically addressing the challenges of multi-source (e.g., digital and physical twins) and multi-input (e.g., 3D shapes and process variables) transfer learning.
增材制造(AM)已经彻底改变了我们设计、原型和生产具有前所未有几何形状的复杂零件的方式。然而,缺乏对3D打印部件功能特性的了解阻碍了它们在可靠性和耐用性至关重要的关键应用中的应用。本文提出了一种通过物理和数字孪生对3d打印部件进行功能鉴定的新方法。物理双胞胎是在与功能部件相同的工艺条件下打印的部件,并经过广泛的(破坏性)测试以确定其机械,热和化学性能。数字双胞胎是物理双胞胎的虚拟复制品,使用基于感兴趣部分的3D形状的有限元分析(FEA)模拟生成。我们提出了一种新的迁移学习方法,专门用于融合来自多个来源的各种非结构化3D形状数据和过程输入。该方法在预测3d打印晶格结构的功能特性方面取得了显著的效果。从工程角度出发,本文介绍了一种全面创新的3d打印部件功能鉴定方法。通过将物理和数字双胞胎的优势与迁移学习相结合,我们的方法为在安全关键应用中广泛采用3D打印开辟了可能性。在方法上,这项工作提出了迁移学习技术的重大进步,特别是解决了多源(例如,数字和物理双胞胎)和多输入(例如,3D形状和过程变量)迁移学习的挑战。
{"title":"AUDIT: Function<u>a</u>l Q<u>u</u>alification in A<u>d</u>ditive Manufacturing via Physical and Dig<u>i</u>tal <u>T</u>wins","authors":"Michael Biehler, Reinaldo Mock, Shriyanshu Kode, Maham Mehmood, Palin Bhardwaj, Jianjun Shi","doi":"10.1115/1.4063655","DOIUrl":"https://doi.org/10.1115/1.4063655","url":null,"abstract":"Abstract Additive manufacturing (AM) has revolutionized the way we design, prototype, and produce complex parts with unprecedented geometries. However, the lack of understanding of the functional properties of 3D printed parts has hindered their adoption in critical applications where reliability and durability are paramount. This paper proposes a novel approach to the functional qualification of 3D-printed parts via physical and digital twins. Physical twins are parts that are printed under the same process conditions as the functional parts and undergo a wide range of (destructive) tests to determine their mechanical, thermal, and chemical properties. Digital twins are virtual replicas of the physical twins that are generated using finite element analysis (FEA) simulations based on the 3D shape of the part of interest. We propose a novel approach to transfer learning, specifically designed for the fusion of diverse, unstructured 3D shape data and process inputs from multiple sources. The proposed approach has demonstrated remarkable results in predicting the functional properties of 3D-printed lattice structures. From an engineering standpoint, this paper introduces a comprehensive and innovative methodology for the functional qualification of 3D-printed parts. By combining the strengths of physical and digital twins with transfer learning, our approach opens up possibilities for the widespread adoption of 3D printing in safety-critical applications. Methodologically, this work presents a significant advancement in transfer learning techniques, specifically addressing the challenges of multi-source (e.g., digital and physical twins) and multi-input (e.g., 3D shapes and process variables) transfer learning.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135591937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radius of Contact During Friction Surfacing of Stainless Steel 304L: Effect of Spindle Speed and Rod Diameter 304L不锈钢摩擦堆焊接触半径:主轴转速和杆径的影响
3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-10-04 DOI: 10.1115/1.4063653
Hemant Agiwal, Hwasung Yeom, Kumar Sridharan, Shiva Rudraraju, Frank E. Pfefferkorn
Abstract The ‘radius of contact’ or the ‘real-rotational contact plane’, has been increasingly mentioned terminology in friction surfacing. However, the fundamental understanding of the flow dynamics behind this phenomenon is still very limited. The goal of this study was to understand the influence of spindle speed and consumable rod diameter on the flow dynamics and radius of contact during friction surfacing of 304L stainless steel over a substrate of the same material. Friction surfacing was performed using consumable rods with diameters of 4.76 mm, 9.52 mm, and 12.7 mm while using spindle speeds from 1,500 RPM to 20,000 RPM. The impact of spindle speed on deposition morphology, including the radius of contact, was studied. The radius of contact was calculated empirically and was found to be inversely proportional to the tangential velocity of the rod. The coupling between flow stresses and localized forces is hypothesized to be the key factor behind the variation of the radius of contact with processing conditions.
“接触半径”或“实旋转接触面”是摩擦表面加工中越来越多地被提及的术语。然而,对这种现象背后的流动动力学的基本理解仍然非常有限。本研究的目的是了解主轴转速和耗材杆直径对304L不锈钢摩擦表面在相同材料基体上的流动动力学和接触半径的影响。采用直径为4.76 mm、9.52 mm和12.7 mm的耗材进行摩擦堆焊,主轴转速为1,500 RPM至20,000 RPM。研究了主轴转速对接触半径等沉积形貌的影响。根据经验计算接触半径,发现接触半径与杆的切向速度成反比。假设流动应力和局部力之间的耦合是接触半径随加工条件变化的关键因素。
{"title":"Radius of Contact During Friction Surfacing of Stainless Steel 304L: Effect of Spindle Speed and Rod Diameter","authors":"Hemant Agiwal, Hwasung Yeom, Kumar Sridharan, Shiva Rudraraju, Frank E. Pfefferkorn","doi":"10.1115/1.4063653","DOIUrl":"https://doi.org/10.1115/1.4063653","url":null,"abstract":"Abstract The ‘radius of contact’ or the ‘real-rotational contact plane’, has been increasingly mentioned terminology in friction surfacing. However, the fundamental understanding of the flow dynamics behind this phenomenon is still very limited. The goal of this study was to understand the influence of spindle speed and consumable rod diameter on the flow dynamics and radius of contact during friction surfacing of 304L stainless steel over a substrate of the same material. Friction surfacing was performed using consumable rods with diameters of 4.76 mm, 9.52 mm, and 12.7 mm while using spindle speeds from 1,500 RPM to 20,000 RPM. The impact of spindle speed on deposition morphology, including the radius of contact, was studied. The radius of contact was calculated empirically and was found to be inversely proportional to the tangential velocity of the rod. The coupling between flow stresses and localized forces is hypothesized to be the key factor behind the variation of the radius of contact with processing conditions.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":"127 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135549270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of layer addition on residual stresses of wire arc additive manufactured stainless steel specimens 添加层对焊丝电弧添加剂制备不锈钢试样残余应力的影响
3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-09-15 DOI: 10.1115/1.4063446
Sebastien Rouquette, Camille Cambon, Issam Bendaoud, Sandra Cabeza, Fabien Soulié
Abstract Residual stresses have been characterized in four Wire Arc Additive Manufacturing specimens with neutron diffraction technique. Firstly, two methods are investigated for obtaining the reference diffracted angle θ0 that is required for the computation of micro-strains and, thus, the stresses. θ0 was obtained using two approaches. The first one required a strain-free specimen in order to get directly the reference diffracted angles θ0 in three directions. The second one is based on the plane stress assumption to get θ0 indirectly by imposing that the normal stress was equal to zero. Both methods led to similar residual stress profiles for the 1-layer specimen what validated this approach for all specimens that did not have a strain-free specimen available. The second part of this work focused on the effect of addition of a new layer on residual stresses. The measurements showed that the longitudinal stress was tensile in the Heat Affected Zone (HAZ) and Fusion Zone (FZ) with a maximum value located at the parent material - layers interface where the thermal loadings were applied. A decrease of this maximum value from 257 MPa to 199 MPa appeared after deposition of a new layer which is due to some stress relaxation effect. Inside the parent material, a large zone presents compressive longitudinal stress up to -170 MPa. The bottom part of the parent material is under tensile stress likely due to its upward bending following the thermal contraction of the deposited layers during cooling to ambient temperature.
摘要利用中子衍射技术对四线电弧增材制造试样的残余应力进行了表征。首先,研究了两种方法来获得计算微应变所需的参考衍射角θ0,从而得到应力。θ0采用两种方法求得。第一种方法需要一个无应变的试样,以便在三个方向上直接得到参考衍射角θ0。第二个是基于平面应力假设,通过施加法向应力等于零来间接得到θ0。两种方法都得到了类似的1层试样的残余应力分布,这证实了这种方法适用于所有没有无应变试样的试样。本工作的第二部分重点研究了添加新层对残余应力的影响。测量结果表明,纵向应力在热影响区(HAZ)和熔合区(FZ)是拉伸的,最大应力位于施加热载荷的母材层界面处。新层沉积后,由于应力松弛效应,该最大值从257 MPa下降到199 MPa。母材内部存在较大的纵向压应力区,最大可达-170 MPa。母材的底部承受着拉应力,这可能是由于在冷却到环境温度时沉积层的热收缩导致其向上弯曲。
{"title":"Effect of layer addition on residual stresses of wire arc additive manufactured stainless steel specimens","authors":"Sebastien Rouquette, Camille Cambon, Issam Bendaoud, Sandra Cabeza, Fabien Soulié","doi":"10.1115/1.4063446","DOIUrl":"https://doi.org/10.1115/1.4063446","url":null,"abstract":"Abstract Residual stresses have been characterized in four Wire Arc Additive Manufacturing specimens with neutron diffraction technique. Firstly, two methods are investigated for obtaining the reference diffracted angle θ0 that is required for the computation of micro-strains and, thus, the stresses. θ0 was obtained using two approaches. The first one required a strain-free specimen in order to get directly the reference diffracted angles θ0 in three directions. The second one is based on the plane stress assumption to get θ0 indirectly by imposing that the normal stress was equal to zero. Both methods led to similar residual stress profiles for the 1-layer specimen what validated this approach for all specimens that did not have a strain-free specimen available. The second part of this work focused on the effect of addition of a new layer on residual stresses. The measurements showed that the longitudinal stress was tensile in the Heat Affected Zone (HAZ) and Fusion Zone (FZ) with a maximum value located at the parent material - layers interface where the thermal loadings were applied. A decrease of this maximum value from 257 MPa to 199 MPa appeared after deposition of a new layer which is due to some stress relaxation effect. Inside the parent material, a large zone presents compressive longitudinal stress up to -170 MPa. The bottom part of the parent material is under tensile stress likely due to its upward bending following the thermal contraction of the deposited layers during cooling to ambient temperature.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135436438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Microstructural, Textural, and Mechanical Properties of Al-Ti Dissimilar Joints via Static Shoulder Friction Stir Welding 静肩搅拌摩擦焊提高Al-Ti异种接头的组织、组织和力学性能
IF 4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-09-07 DOI: 10.1115/1.4063358
Saravana Sundar A, Krishna Kishore Mugada, Adepu Kumar
The present study explores the application of static shoulder friction stir welding (SSFSW) to address the challenges of poor mechanical properties in conventional Al-Ti dissimilar friction stir joints, which arise due to significant material mixing and the formation of thick intermetallic layers. The results show that SSFSW inhibited material mixing and the mutual diffusion of Al and Ti were suppressed due to lower heat input. Mutual interdiffusion of Al and Ti was directed by an exothermic chemical reaction, forming an Al5Ti2 – Al3Ti sequence due to sluggish diffusion of Al in Ti at a temperature of 512°C achieved in this study. The microstructure at stir zone (SZ) comprised equiaxed grains with Ti particles acting as dispersoids for nucleation, whereas the presence of large Ti blocks at SZ of Conventional FSW (CFSW) resisted plastic deformation, resulting in non-homogeneous concentration of dislocations near its interface. A significant decrease in grain size at all the critical zones of weldment was due to rearrangement of dislocations through slip-and-climb mechanism, as evidenced by the occurrence of dynamic recrystallization. Emergence of γ-fiber and basal fiber texture increased the tensile strength of SSFSW to 289 MPa, which is about 11.2% higher than CFSW, with joint efficiency of about 88%. The study also analysed the contribution of various strengthening mechanisms to the yield strength improvement of SSFSW weldments in detail of SSFSW weldments in detail, and the results showed that grain boundary strengthening contributed the most to strength improvement in SSFSW.
本研究探讨了静态肩部搅拌摩擦焊(SSFSW)的应用,以解决传统Al-Ti异种搅拌摩擦接头机械性能差的挑战,这些挑战是由于大量的材料混合和厚金属间层的形成而引起的。结果表明,SSFSW抑制了材料的混合,并且由于较低的热输入而抑制了Al和Ti的相互扩散。Al和Ti的相互扩散是由放热化学反应引导的,由于在512°C的温度下Al在Ti中缓慢扩散,形成了Al5Ti2–Al3Ti序列。搅拌区(SZ)的微观结构由等轴晶粒组成,Ti颗粒作为成核的分散体,而传统FSW(CFSW)的SZ处存在的大Ti块体阻止了塑性变形,导致界面附近位错的不均匀集中。焊件所有临界区的晶粒尺寸显著减小是由于位错通过滑移和爬升机制重新排列,动态再结晶的发生证明了这一点。γ纤维和基底纤维织构的出现使SSFSW的抗拉强度提高到289MPa,比CFSW高11.2%,接头效率约为88%。研究还详细分析了各种强化机制对SSFSW焊件屈服强度提高的贡献——详细分析了SSFSW焊接件的屈服强度提高,结果表明,晶界强化对提高SSFSW强度的贡献最大。
{"title":"Enhancing Microstructural, Textural, and Mechanical Properties of Al-Ti Dissimilar Joints via Static Shoulder Friction Stir Welding","authors":"Saravana Sundar A, Krishna Kishore Mugada, Adepu Kumar","doi":"10.1115/1.4063358","DOIUrl":"https://doi.org/10.1115/1.4063358","url":null,"abstract":"\u0000 The present study explores the application of static shoulder friction stir welding (SSFSW) to address the challenges of poor mechanical properties in conventional Al-Ti dissimilar friction stir joints, which arise due to significant material mixing and the formation of thick intermetallic layers. The results show that SSFSW inhibited material mixing and the mutual diffusion of Al and Ti were suppressed due to lower heat input. Mutual interdiffusion of Al and Ti was directed by an exothermic chemical reaction, forming an Al5Ti2 – Al3Ti sequence due to sluggish diffusion of Al in Ti at a temperature of 512°C achieved in this study. The microstructure at stir zone (SZ) comprised equiaxed grains with Ti particles acting as dispersoids for nucleation, whereas the presence of large Ti blocks at SZ of Conventional FSW (CFSW) resisted plastic deformation, resulting in non-homogeneous concentration of dislocations near its interface. A significant decrease in grain size at all the critical zones of weldment was due to rearrangement of dislocations through slip-and-climb mechanism, as evidenced by the occurrence of dynamic recrystallization. Emergence of γ-fiber and basal fiber texture increased the tensile strength of SSFSW to 289 MPa, which is about 11.2% higher than CFSW, with joint efficiency of about 88%. The study also analysed the contribution of various strengthening mechanisms to the yield strength improvement of SSFSW weldments in detail of SSFSW weldments in detail, and the results showed that grain boundary strengthening contributed the most to strength improvement in SSFSW.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42067640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-Metric Neural Network with Attention Guidance for Surface Defect Few-Shot Detection in Smart Manufacturing 基于注意力引导的双度量神经网络智能制造表面缺陷少弹检测
IF 4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-09-07 DOI: 10.1115/1.4063356
Pengjie Gao, Junliang Wang, Min Xia, Zijin Qin, Jie Zhang
As an important application of human-robot collaboration, intelligent detection of surface defects is crucial for production quality control, which also helps in relieving the workload of technical staff in human-centric smart manufacturing. To accurately detect defects with limited samples in industrial practice, a dual-metric neural network with attention guided is proposed. First, an attention-guided recognition network with channel attention and position attention module is designed to efficiently learn representative defect features with limited samples. Second, aiming to detect defects with confusing surface images, a dual-metric function is presented to learn the classification boundary by controlling the distance of samples in feature space from intra-class and inter-class. The experiment results on the fabric defect dataset demonstrate that the proposed approach outperforms state-of-the-art methods in accuracy, recall, precision, F1-score, and few-shot accuracy. Further comparative experiments reveal that the dual-metric function is superior in improving the few-shot detection accuracy for the defect patterns of fabric.
作为人机协同的重要应用,表面缺陷的智能检测对生产质量控制至关重要,这也有助于减轻以人为中心的智能制造中技术人员的工作量。为了在工业实践中用有限的样本准确地检测缺陷,提出了一种注意力引导的双度量神经网络。首先,设计了一个具有通道注意力和位置注意力模块的注意力引导识别网络,以有效地学习有限样本的代表性缺陷特征。其次,为了检测具有混淆表面图像的缺陷,提出了一种对偶度量函数,通过控制特征空间中样本从类内和类间的距离来学习分类边界。在织物缺陷数据集上的实验结果表明,所提出的方法在准确性、召回率、精度、F1分数和少镜头精度方面优于最先进的方法。进一步的对比实验表明,对偶度量函数在提高织物缺陷图案的少镜头检测精度方面具有优越性。
{"title":"Dual-Metric Neural Network with Attention Guidance for Surface Defect Few-Shot Detection in Smart Manufacturing","authors":"Pengjie Gao, Junliang Wang, Min Xia, Zijin Qin, Jie Zhang","doi":"10.1115/1.4063356","DOIUrl":"https://doi.org/10.1115/1.4063356","url":null,"abstract":"\u0000 As an important application of human-robot collaboration, intelligent detection of surface defects is crucial for production quality control, which also helps in relieving the workload of technical staff in human-centric smart manufacturing. To accurately detect defects with limited samples in industrial practice, a dual-metric neural network with attention guided is proposed. First, an attention-guided recognition network with channel attention and position attention module is designed to efficiently learn representative defect features with limited samples. Second, aiming to detect defects with confusing surface images, a dual-metric function is presented to learn the classification boundary by controlling the distance of samples in feature space from intra-class and inter-class. The experiment results on the fabric defect dataset demonstrate that the proposed approach outperforms state-of-the-art methods in accuracy, recall, precision, F1-score, and few-shot accuracy. Further comparative experiments reveal that the dual-metric function is superior in improving the few-shot detection accuracy for the defect patterns of fabric.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46460502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Virtual Dynamics Model for 5-axis Machining of Thin-Walled Blades 薄壁叶片五轴加工的虚拟动力学模型
IF 4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-08-30 DOI: 10.1115/1.4063286
B. Karimi, Y. Altintas
The five-axis ball-end milling dynamics of thin-walled blades is presented. The cutting forces are predicted from the ball end mill–blade geometry engagement maps along the tool path. The Frequency Response Function (FRF) of the thin-walled blade is predicted using Finite Element shell elements, and it is updated along the toolpath as the metal is removed. The predicted cutting forces are applied on both the workpiece and tool FRFs to predict the forced vibrations and chatter stability at each tool location. A simplified method to update the cutter–workpiece engagement (CWE) is used to obtain the three-dimensional stability lobe diagram at each desired point on the blade. The integrated model is used to simulate the 5-axis machining of thin-walled blades in the digital environment. The proposed digital model is experimentally validated by machining a series of thin-walled rectangular plates and a twisted fan blade.
介绍了薄壁叶片的五轴球头铣削动力学。切削力是根据沿刀具路径的球头立铣刀-刀片几何啮合图预测的。薄壁叶片的频率响应函数(FRF)使用有限元壳体单元进行预测,并随着金属的去除而沿着刀具路径进行更新。预测的切削力施加在工件和刀具FRF上,以预测每个刀具位置的强迫振动和颤振稳定性。使用一种更新刀具-工件接合(CWE)的简化方法来获得叶片上每个所需点的三维稳定凸角图。该集成模型用于在数字环境中模拟薄壁叶片的五轴加工。通过加工一系列薄壁矩形板和一个扭曲的风扇叶片,对所提出的数字模型进行了实验验证。
{"title":"Virtual Dynamics Model for 5-axis Machining of Thin-Walled Blades","authors":"B. Karimi, Y. Altintas","doi":"10.1115/1.4063286","DOIUrl":"https://doi.org/10.1115/1.4063286","url":null,"abstract":"\u0000 The five-axis ball-end milling dynamics of thin-walled blades is presented. The cutting forces are predicted from the ball end mill–blade geometry engagement maps along the tool path. The Frequency Response Function (FRF) of the thin-walled blade is predicted using Finite Element shell elements, and it is updated along the toolpath as the metal is removed. The predicted cutting forces are applied on both the workpiece and tool FRFs to predict the forced vibrations and chatter stability at each tool location. A simplified method to update the cutter–workpiece engagement (CWE) is used to obtain the three-dimensional stability lobe diagram at each desired point on the blade. The integrated model is used to simulate the 5-axis machining of thin-walled blades in the digital environment. The proposed digital model is experimentally validated by machining a series of thin-walled rectangular plates and a twisted fan blade.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41382106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Diagnostic Tool for Human-Centric Quality Monitoring in Human-Robot Collaboration Manufacturing 人机协作制造中以人为中心的质量监测诊断工具
IF 4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-08-29 DOI: 10.1115/1.4063284
E. Verna, Stefano Puttero, G. Genta, M. Galetto
The manufacturing industry is currently facing an increasing demand for customized products, leading to a shift from mass production to mass customization. As a result, operators are required to produce multiple product variants with varying complexity levels while maintaining high-quality standards. Further, in line with the human-centered paradigm of Industry 5.0, ensuring the well-being of workers is equally important as production quality. This paper proposes a novel tool, the “Human-Robot Collaboration Quality and Well-Being Assessment Tool” (HRC-QWAT), which combines the analysis of overall defects generated during product variant manufacturing with the evaluation of human well-being in terms of stress response. The HRC-QWAT enables the evaluation and monitoring of human-robot collaboration systems during product variant production from a broader standpoint. A case study of collaborative human-robot assembly is used to demonstrate the applicability of the proposed approach. The results suggest that the HRC-QWAT can evaluate both production quality and human well-being, providing a useful tool for companies to monitor and improve their manufacturing processes. Overall, this paper contributes to developing a human-centric approach to quality monitoring in the context of human-robot collaborative manufacturing.
制造业目前面临着对定制产品日益增长的需求,导致从大规模生产转向大规模定制。因此,运营商需要生产多种复杂程度不同的产品变体,同时保持高质量的标准。此外,根据以人为中心的Industry 5.0范式,确保工人的福祉与生产质量同等重要。本文提出了一种新的工具,即“人机协作质量和幸福感评估工具”(HRC-QWAT),该工具将对产品变体制造过程中产生的整体缺陷的分析与对人类幸福感的压力反应评估相结合。HRC-QWAT能够从更广泛的角度评估和监控产品变体生产过程中的人机协作系统。以人机协同装配为例,验证了该方法的适用性。研究结果表明,HRC-QWAT可以评估生产质量和人类福祉,为企业监控和改进生产流程提供了有用的工具。总之,本文有助于在人机协同制造的背景下开发一种以人为中心的质量监控方法。
{"title":"A Novel Diagnostic Tool for Human-Centric Quality Monitoring in Human-Robot Collaboration Manufacturing","authors":"E. Verna, Stefano Puttero, G. Genta, M. Galetto","doi":"10.1115/1.4063284","DOIUrl":"https://doi.org/10.1115/1.4063284","url":null,"abstract":"\u0000 The manufacturing industry is currently facing an increasing demand for customized products, leading to a shift from mass production to mass customization. As a result, operators are required to produce multiple product variants with varying complexity levels while maintaining high-quality standards. Further, in line with the human-centered paradigm of Industry 5.0, ensuring the well-being of workers is equally important as production quality. This paper proposes a novel tool, the “Human-Robot Collaboration Quality and Well-Being Assessment Tool” (HRC-QWAT), which combines the analysis of overall defects generated during product variant manufacturing with the evaluation of human well-being in terms of stress response. The HRC-QWAT enables the evaluation and monitoring of human-robot collaboration systems during product variant production from a broader standpoint. A case study of collaborative human-robot assembly is used to demonstrate the applicability of the proposed approach. The results suggest that the HRC-QWAT can evaluate both production quality and human well-being, providing a useful tool for companies to monitor and improve their manufacturing processes. Overall, this paper contributes to developing a human-centric approach to quality monitoring in the context of human-robot collaborative manufacturing.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49147762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Manufacturing Science and Engineering-transactions of The Asme
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1