首页 > 最新文献

Journal of Manufacturing Science and Engineering-transactions of The Asme最新文献

英文 中文
A Desirability-Based Solution Search Method for Sequential Optimization of the Hot Rolling Process 基于可取性的热轧过程序贯优化解搜索方法
IF 4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-06-21 DOI: 10.1115/1.4062787
F. Çavdar, E. Kanca
Although it is an old technique, research on the hot rolling process maintains its importance because of its widespread usage in steel production and its requirement for a vast amount of resources, especially energy. The roll pass design of the hot rolling process considerably affects many operational parameters such as energy requirement, wear of the rolls, working forces, and torques. Furthermore, due to the sequential nature of the rolling process, a design of any number of passes is strictly interrelated with all other passes in the process. This makes it very involved to find optimum design solutions that allow for the compromise between conflicting goals and restrictions. In this paper, a new optimized solution search strategy based on a desirability function is offered to deal with the sequential characteristics of the roll pass design. A novel optimization method utilizing response surfaces and the proposed solution search strategy is presented to reduce the shaping energy of the overall process while minimizing turning moments and radial forces on rolls during the rough rolling process. The method and solution search strategy developed are illustrated and validated via a case study. Comparing the case study's findings to three distinct pass designs used in industrial power plants, it was discovered that significant energy savings, low turning moments, and reduced radial forces had been made compared to the reference designs.
尽管热轧工艺是一项古老的技术,但由于其在钢铁生产中的广泛应用以及对大量资源,特别是能源的需求,热轧工艺的研究仍然具有重要意义。热轧过程的孔型设计对许多操作参数有很大影响,如能量需求、轧辊磨损、工作力和扭矩。此外,由于轧制过程的顺序性,任何道次的设计都与该过程中的所有其他道次严格相关。这使得它非常需要找到最佳设计解决方案,以便在相互冲突的目标和限制之间达成妥协。针对孔型设计的时序性特点,提出了一种基于期望函数的优化求解策略。提出了一种利用响应曲面和所提出的求解搜索策略的新优化方法,以减少整个过程的成形能量,同时最大限度地减少粗轧过程中对轧辊的转动力矩和径向力。通过案例研究,对所开发的方法和解决方案搜索策略进行了说明和验证。将案例研究的结果与工业发电厂中使用的三种不同的孔型设计进行比较,发现与参考设计相比,显著节省了能源,降低了转动力矩,并减少了径向力。
{"title":"A Desirability-Based Solution Search Method for Sequential Optimization of the Hot Rolling Process","authors":"F. Çavdar, E. Kanca","doi":"10.1115/1.4062787","DOIUrl":"https://doi.org/10.1115/1.4062787","url":null,"abstract":"\u0000 Although it is an old technique, research on the hot rolling process maintains its importance because of its widespread usage in steel production and its requirement for a vast amount of resources, especially energy. The roll pass design of the hot rolling process considerably affects many operational parameters such as energy requirement, wear of the rolls, working forces, and torques. Furthermore, due to the sequential nature of the rolling process, a design of any number of passes is strictly interrelated with all other passes in the process. This makes it very involved to find optimum design solutions that allow for the compromise between conflicting goals and restrictions. In this paper, a new optimized solution search strategy based on a desirability function is offered to deal with the sequential characteristics of the roll pass design. A novel optimization method utilizing response surfaces and the proposed solution search strategy is presented to reduce the shaping energy of the overall process while minimizing turning moments and radial forces on rolls during the rough rolling process. The method and solution search strategy developed are illustrated and validated via a case study. Comparing the case study's findings to three distinct pass designs used in industrial power plants, it was discovered that significant energy savings, low turning moments, and reduced radial forces had been made compared to the reference designs.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42507900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data-Driven Approaches for Bead Geometry Prediction via Melt Pool Monitoring 基于熔池监测的熔头几何形状预测数据驱动方法
IF 4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-06-21 DOI: 10.1115/1.4062800
Zoe Alexander, T. Feldhausen, K. Saleeby, Thomas Kurfess, Katherine Fu, Christopher Saldaña
In additive manufacturing, choosing process parameters to prevent over and under deposition is a time and resource intensive trial-and-error process. Due to the uniqueness of each part geometry, further development of real-time process monitoring and control is needed for reliable part dimensional accuracy. This research shows that support vector regression (SVR) and convolutional neural network (CNN) models offer a promising solution for real-time process control due to the models' abilities to recognize complex, nonlinear patterns with high accuracy. A novel experiment was designed to compare the performance of SVR and CNN models to indirectly detect bead height from a coaxial image of a melt pool from a single layer, single bead build. The study showed that both SVR and CNN models trained on melt pool data collected from a coaxial optical camera can accurately predict the bead height with a mean absolute percentage error of 3.67% and 3.68%, respectively.
在增材制造中,选择工艺参数以防止过度沉积和沉积不足是一个耗时和资源密集的试错过程。由于每个零件几何形状的独特性,需要进一步发展实时过程监测和控制,以获得可靠的零件尺寸精度。该研究表明,由于支持向量回归(SVR)和卷积神经网络(CNN)模型能够以高精度识别复杂的非线性模式,因此为实时过程控制提供了一个很有前途的解决方案。设计了一个新的实验,比较了SVR模型和CNN模型的性能,从单层单熔头构建的熔池同轴图像中间接检测熔头高度。研究表明,基于同轴光学相机采集的熔池数据训练的SVR和CNN模型均能准确预测熔池高度,平均绝对百分比误差分别为3.67%和3.68%。
{"title":"Data-Driven Approaches for Bead Geometry Prediction via Melt Pool Monitoring","authors":"Zoe Alexander, T. Feldhausen, K. Saleeby, Thomas Kurfess, Katherine Fu, Christopher Saldaña","doi":"10.1115/1.4062800","DOIUrl":"https://doi.org/10.1115/1.4062800","url":null,"abstract":"\u0000 In additive manufacturing, choosing process parameters to prevent over and under deposition is a time and resource intensive trial-and-error process. Due to the uniqueness of each part geometry, further development of real-time process monitoring and control is needed for reliable part dimensional accuracy. This research shows that support vector regression (SVR) and convolutional neural network (CNN) models offer a promising solution for real-time process control due to the models' abilities to recognize complex, nonlinear patterns with high accuracy. A novel experiment was designed to compare the performance of SVR and CNN models to indirectly detect bead height from a coaxial image of a melt pool from a single layer, single bead build. The study showed that both SVR and CNN models trained on melt pool data collected from a coaxial optical camera can accurately predict the bead height with a mean absolute percentage error of 3.67% and 3.68%, respectively.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42842089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resilience potentials for health and safety management in cobot applications using the Resilience Analysis Grid 使用弹性分析网格的cobot应用程序中健康和安全管理的弹性潜力
IF 4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-06-21 DOI: 10.1115/1.4062786
A. Adriaensen, Margherita Bernabei, F. Costantino, Andrea Falegnami, Sara Stabile, R. Patriarca
The increasing usage of cobot applications reshapes work environments and working conditions, requiring specific advancements in organizational practices for health and safety. Enterprises should shift from a technocentric risk management approach to considering cobots application as socio-technical systems, where resilience engineering is beneficial. This study presents an instantiation of the Resilience Analysis Grid (RAG) in cobot applications with the aim of measuring resilience potentials in terms of the four cornerstones of resilience engineering (respond, learn, monitor, anticipate). The assessment has been provided via a questionnaire to fifteen companies that make use of cobot applications. Results revealed that companies mainly focus on the risk assessment of cobot applications with a traditional view of machine-centric safety, paying less attention to assessing contexts and process variables. This observation seems to arise mainly due to the lack of formally available safety methods or limited guidance from technical standards. Additionally, traditional industrial approaches to risk management lack monitoring of several risks that are essential for managing resilience, defined as the adaptive capacity of people, organizations, and human-machine systems. In addition, companies strongly rely on data from the cobot manufacturer for their safety assessment. The Resilience Analysis Grid was confirmed as a valuable assessment tool for the participating companies to identify improvement areas and assess health and safety from a resilience engineering perspective.
cobot应用程序的日益使用重塑了工作环境和工作条件,需要在健康和安全方面的组织实践中取得具体进步。企业应该从以技术为中心的风险管理方法转向将cobot应用视为社会技术系统,在社会技术系统中,弹性工程是有益的。本研究提供了cobot应用中弹性分析网格(RAG)的实例,目的是根据弹性工程的四个基石(响应、学习、监控、预测)来衡量弹性潜力。该评估已通过问卷向15家使用cobot应用程序的公司提供。结果显示,公司主要关注cobot应用程序的风险评估,而传统的观点是以机器为中心的安全,较少关注评估上下文和过程变量。这种观察似乎主要是由于缺乏正式可用的安全方法或技术标准的有限指导。此外,传统的行业风险管理方法缺乏对几种风险的监测,这些风险对管理弹性至关重要,弹性被定义为人、组织和人机系统的适应能力。此外,各公司的安全评估主要依赖cobot制造商的数据。韧性分析网格被确认为参与公司的一个有价值的评估工具,可以从韧性工程的角度确定改进领域并评估健康和安全。
{"title":"Resilience potentials for health and safety management in cobot applications using the Resilience Analysis Grid","authors":"A. Adriaensen, Margherita Bernabei, F. Costantino, Andrea Falegnami, Sara Stabile, R. Patriarca","doi":"10.1115/1.4062786","DOIUrl":"https://doi.org/10.1115/1.4062786","url":null,"abstract":"\u0000 The increasing usage of cobot applications reshapes work environments and working conditions, requiring specific advancements in organizational practices for health and safety. Enterprises should shift from a technocentric risk management approach to considering cobots application as socio-technical systems, where resilience engineering is beneficial. This study presents an instantiation of the Resilience Analysis Grid (RAG) in cobot applications with the aim of measuring resilience potentials in terms of the four cornerstones of resilience engineering (respond, learn, monitor, anticipate). The assessment has been provided via a questionnaire to fifteen companies that make use of cobot applications. Results revealed that companies mainly focus on the risk assessment of cobot applications with a traditional view of machine-centric safety, paying less attention to assessing contexts and process variables. This observation seems to arise mainly due to the lack of formally available safety methods or limited guidance from technical standards. Additionally, traditional industrial approaches to risk management lack monitoring of several risks that are essential for managing resilience, defined as the adaptive capacity of people, organizations, and human-machine systems. In addition, companies strongly rely on data from the cobot manufacturer for their safety assessment. The Resilience Analysis Grid was confirmed as a valuable assessment tool for the participating companies to identify improvement areas and assess health and safety from a resilience engineering perspective.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47092696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Time-Varying Tool-Chip Contact in the Cutting Mechanics of Shear Localization 剪切局部化切削力学中的时变刀屑接触
IF 4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-06-16 DOI: 10.1115/1.4062749
M. Fazlali, Xiaoliang Jin
Shear localization is the dominant chip formation mechanism in machining of high performance metallic components, such as those made of titanium and nickel-based alloys. This paper presents an analytical thermo-mechanical model considering a new tool-chip contact mechanism due to shear localization. First, it is experimentally shown that the sticking and sliding contact lengths fluctuate with the frequency of shear localization. Second, a cutting mechanics model is developed considering the shear band formation, its rolling on the tool’s rake face, and the time-varying tool-chip contact length with experimental validation. Finally, the transient temperature at the tool-chip interface is predicted by taking the rolling phenomenon and the time-varying heat sources at the tool-chip interface into account. The proposed model shows that at the beginning of each segmentation cycle, the entire tool-chip contact length is dominated by sliding condition with negligible sticking length. When the tool advances, new workpiece material piles up in its front with an increase in the sticking length. Meanwhile, the sliding length decreases due to the drop in the load-bearing capacity of the shear band. When enough material piles up in front of the tool, a new shear band forms, and the entire contact length returns to the sliding condition. This process repeats each time a shear band occurs, causing the cyclic formation of shear bands and time-varying nature of the tool-chip contact length, therefore influencing the temperature and stress evolution at the tool-chip interface.
剪切局部化是加工高性能金属部件(如钛和镍基合金制成的部件)的主要切屑形成机制。本文提出了一个考虑剪切局部化引起的新型刀具-芯片接触机制的热机械分析模型。首先,实验表明,粘滑接触长度随剪切局部化频率的变化而变化。其次,建立了考虑剪切带形成、剪切带在刀具前刀面上的滚动以及时变刀具-切屑接触长度的切削力学模型,并进行了实验验证。最后,通过考虑滚动现象和工具-芯片界面处的时变热源,预测了工具-芯片接口处的瞬态温度。所提出的模型表明,在每个分割周期开始时,整个刀具-芯片接触长度由滑动条件主导,粘着长度可以忽略不计。当刀具前进时,随着粘着长度的增加,新的工件材料会堆积在刀具的前部。同时,由于剪切带承载能力的下降,滑动长度减小。当足够多的材料堆积在工具前面时,就会形成一个新的剪切带,整个接触长度就会恢复到滑动状态。每次出现剪切带时,该过程都会重复,导致剪切带的循环形成和工具-芯片接触长度的时变性质,从而影响工具-芯片界面的温度和应力演变。
{"title":"Time-Varying Tool-Chip Contact in the Cutting Mechanics of Shear Localization","authors":"M. Fazlali, Xiaoliang Jin","doi":"10.1115/1.4062749","DOIUrl":"https://doi.org/10.1115/1.4062749","url":null,"abstract":"\u0000 Shear localization is the dominant chip formation mechanism in machining of high performance metallic components, such as those made of titanium and nickel-based alloys. This paper presents an analytical thermo-mechanical model considering a new tool-chip contact mechanism due to shear localization. First, it is experimentally shown that the sticking and sliding contact lengths fluctuate with the frequency of shear localization. Second, a cutting mechanics model is developed considering the shear band formation, its rolling on the tool’s rake face, and the time-varying tool-chip contact length with experimental validation. Finally, the transient temperature at the tool-chip interface is predicted by taking the rolling phenomenon and the time-varying heat sources at the tool-chip interface into account. The proposed model shows that at the beginning of each segmentation cycle, the entire tool-chip contact length is dominated by sliding condition with negligible sticking length. When the tool advances, new workpiece material piles up in its front with an increase in the sticking length. Meanwhile, the sliding length decreases due to the drop in the load-bearing capacity of the shear band. When enough material piles up in front of the tool, a new shear band forms, and the entire contact length returns to the sliding condition. This process repeats each time a shear band occurs, causing the cyclic formation of shear bands and time-varying nature of the tool-chip contact length, therefore influencing the temperature and stress evolution at the tool-chip interface.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47287384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
THE MICROSTRUCTURAL ORIGINS OF ACOUSTIC EMISSION SIGNATURES ENCOUNTERED DURING FRACTURE CUTTING OF BOVINE CORTICAL BONE 牛皮质骨骨折切割过程中遇到的声发射信号的微观结构起源
IF 4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-06-09 DOI: 10.1115/1.4062728
Roshan Mishra, Michael Conward, J. Samuel
This paper is aimed at studying the acoustic emission signatures of dominant failure mechanisms encountered during fracture cutting of bovine cortical bone. This is achieved through an orthogonal cutting study performed in a sensor-rich environment comprising of a cutting force sensor, acoustic emission sensor and a high-speed camera. The synchronization of these three sensing modalities allows for the visual identification of the dominant failure modes, while also mapping them to their corresponding acoustic and cutting force metrics. Given their distinctly different underlying microstructures, the haversian and plexiform components of the bovine cortical bone are investigated separately. A total of six dominant failure mechanisms have been confirmed across the haversian and plexiform bone types. Osteon fracture and trans-lamellar fracture have been identified as the mechanisms expending the maximum energy during the fracture cutting of haversian and plexiform bone, respectively. Overall, the acoustic emission and the cutting force metrics are seen to be complementary in characterizing the six failure mechanisms. The findings of this work have implications for tool-mounted sensing modalities that could be used to detect ‘in-process’ failure mechanisms during bone surgical procedures.
本文旨在研究牛皮质骨骨折切割过程中主要失效机制的声发射特征。这是通过在由切削力传感器、声发射传感器和高速相机组成的富含传感器的环境中进行的正交切削研究来实现的。这三种传感模式的同步允许对主要失效模式进行视觉识别,同时将它们映射到相应的声学和切削力度量。考虑到它们明显不同的底层微观结构,分别研究了牛皮质骨的哈氏和丛状成分。共有六种主要的失败机制已在哈弗西和丛状骨类型中得到证实。骨单位骨折和横贯层骨折分别被确定为haversian和丛状骨骨折切割过程中消耗最大能量的机制。总体而言,声发射和切削力指标在表征六种失效机制方面是互补的。这项工作的发现对可用于检测骨外科手术过程中“过程中”故障机制的工具安装传感模式具有启示意义。
{"title":"THE MICROSTRUCTURAL ORIGINS OF ACOUSTIC EMISSION SIGNATURES ENCOUNTERED DURING FRACTURE CUTTING OF BOVINE CORTICAL BONE","authors":"Roshan Mishra, Michael Conward, J. Samuel","doi":"10.1115/1.4062728","DOIUrl":"https://doi.org/10.1115/1.4062728","url":null,"abstract":"\u0000 This paper is aimed at studying the acoustic emission signatures of dominant failure mechanisms encountered during fracture cutting of bovine cortical bone. This is achieved through an orthogonal cutting study performed in a sensor-rich environment comprising of a cutting force sensor, acoustic emission sensor and a high-speed camera. The synchronization of these three sensing modalities allows for the visual identification of the dominant failure modes, while also mapping them to their corresponding acoustic and cutting force metrics. Given their distinctly different underlying microstructures, the haversian and plexiform components of the bovine cortical bone are investigated separately. A total of six dominant failure mechanisms have been confirmed across the haversian and plexiform bone types. Osteon fracture and trans-lamellar fracture have been identified as the mechanisms expending the maximum energy during the fracture cutting of haversian and plexiform bone, respectively. Overall, the acoustic emission and the cutting force metrics are seen to be complementary in characterizing the six failure mechanisms. The findings of this work have implications for tool-mounted sensing modalities that could be used to detect ‘in-process’ failure mechanisms during bone surgical procedures.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43001209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laser powder bed fusion additive manufacturing of maraging steel: A review 马氏体时效钢的激光粉末床熔融增材制造研究进展
IF 4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-06-09 DOI: 10.1115/1.4062727
U. Kizhakkinan, S. Seetharaman, N. Raghavan, David W. Rosen
Laser powder bed fusion (L-PBF) is a popular metal additive manufacturing (AM) process used to manufacture complex metallic 3D components. Maraging steel is one of the metals used in AM and it belongs to the class of ultra-high-strength steels used in aerospace and tooling industries. In the L-PBF process, a laser beam is used to melt and fuse the metal powder particles. This creates a high thermal gradient and rapid cooling of the melt pool results in columnar grains. The microstructure of AM part is entirely different from the conventionally manufactured case and this necessitates post-AM heat treatments. The current paper reviews the effects of printing parameters and heat treatment on microstructure and mechanical properties of L-PBF produced maraging steel 300 alloy. Tensile, impact, fracture, and fatigue properties of as-built and heat-treated L-PBF parts are discussed in detail.
激光粉末床融合(L-PBF)是一种流行的金属增材制造(AM)工艺,用于制造复杂的金属3D部件。马氏体时效钢是AM中使用的金属之一,属于航空航天和工具工业中使用的超高强度钢。在L-PBF工艺中,激光束用于熔化和熔化金属粉末颗粒。这产生了高的热梯度,并且熔池的快速冷却导致柱状晶粒。AM零件的微观结构与传统制造的情况完全不同,这需要AM后热处理。综述了印刷工艺参数和热处理对L-PBF马氏体时效钢300合金组织和力学性能的影响。详细讨论了L-PBF零件的拉伸、冲击、断裂和疲劳性能。
{"title":"Laser powder bed fusion additive manufacturing of maraging steel: A review","authors":"U. Kizhakkinan, S. Seetharaman, N. Raghavan, David W. Rosen","doi":"10.1115/1.4062727","DOIUrl":"https://doi.org/10.1115/1.4062727","url":null,"abstract":"\u0000 Laser powder bed fusion (L-PBF) is a popular metal additive manufacturing (AM) process used to manufacture complex metallic 3D components. Maraging steel is one of the metals used in AM and it belongs to the class of ultra-high-strength steels used in aerospace and tooling industries. In the L-PBF process, a laser beam is used to melt and fuse the metal powder particles. This creates a high thermal gradient and rapid cooling of the melt pool results in columnar grains. The microstructure of AM part is entirely different from the conventionally manufactured case and this necessitates post-AM heat treatments. The current paper reviews the effects of printing parameters and heat treatment on microstructure and mechanical properties of L-PBF produced maraging steel 300 alloy. Tensile, impact, fracture, and fatigue properties of as-built and heat-treated L-PBF parts are discussed in detail.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46205651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous optimization of part and parting surface for hybrid casting and additive manufacturing 用于混合铸造和增材制造的零件和分型面的同时优化
IF 4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-06-02 DOI: 10.1115/1.4062662
Shu Wang, Xueqin Zheng, Cunfu Wang, Huageng Luo, Shi-Kai Jing
The paper presents formulations for hybrid casting and additive manufacturing(AM) in density-based topology optimization. A location-based Heaviside function is introduced to represent the parting surface. The optimized part on two sides of the parting surface can be fabricated with casting, additive manufacturing or both. Through the location-based Heaviside function and density gradient, two global constraints are formulated to remove undercuts and strong overhangs for casting and AM, respectively, inside the design domain. Since density gradient does not exist on the design domain boundary, two extra density-based global constraints are developed to control the strong overhangs and undercuts outside the design domain. Due to the smoothed parameterization of the parting surface, the proposed approach enables us to optimize the part and partition surface(including location and parting direction) simultaneously for hybrid casting and additive manufacturing. Both 2D and 3D numerical examples are presented to demonstrate the validity and efficiency of the proposed formulations for hybrid manufacturing processes. The proposed approach further enlarges the design space with manufacturing constraints, and has the potential to be used in the design for hybrid and multi-component manufacturing.
本文提出了基于密度的拓扑优化中混合铸造和增材制造(AM)的公式。引入了一种基于位置的Heaviside函数来表示分型面。分型面两侧的优化零件可以通过铸造、增材制造或两者兼有来制造。通过基于位置的Heaviside函数和密度梯度,制定了两个全局约束,以分别去除设计域内铸件和AM的底切和强悬挑。由于设计域边界上不存在密度梯度,因此开发了两个额外的基于密度的全局约束来控制设计域外的强悬挑和底切。由于分型面的平滑参数化,所提出的方法使我们能够同时优化混合铸造和增材制造的零件和分型面(包括位置和分型方向)。给出了二维和三维数值例子,以证明所提出的混合制造工艺公式的有效性和效率。所提出的方法进一步扩大了具有制造约束的设计空间,并有可能用于混合和多部件制造的设计。
{"title":"Simultaneous optimization of part and parting surface for hybrid casting and additive manufacturing","authors":"Shu Wang, Xueqin Zheng, Cunfu Wang, Huageng Luo, Shi-Kai Jing","doi":"10.1115/1.4062662","DOIUrl":"https://doi.org/10.1115/1.4062662","url":null,"abstract":"\u0000 The paper presents formulations for hybrid casting and additive manufacturing(AM) in density-based topology optimization. A location-based Heaviside function is introduced to represent the parting surface. The optimized part on two sides of the parting surface can be fabricated with casting, additive manufacturing or both. Through the location-based Heaviside function and density gradient, two global constraints are formulated to remove undercuts and strong overhangs for casting and AM, respectively, inside the design domain. Since density gradient does not exist on the design domain boundary, two extra density-based global constraints are developed to control the strong overhangs and undercuts outside the design domain. Due to the smoothed parameterization of the parting surface, the proposed approach enables us to optimize the part and partition surface(including location and parting direction) simultaneously for hybrid casting and additive manufacturing. Both 2D and 3D numerical examples are presented to demonstrate the validity and efficiency of the proposed formulations for hybrid manufacturing processes. The proposed approach further enlarges the design space with manufacturing constraints, and has the potential to be used in the design for hybrid and multi-component manufacturing.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42465853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Contrived Wear Methodology in End Milling of Inconel 718 Inconel 718立铣削人为磨损方法评价
IF 4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-05-23 DOI: 10.1115/1.4062603
Nils Potthoff, Ankit Agarwal, F. Wöste, P. Wiederkehr, L. Mears
Tool wear plays a decisive role in achieving the required surface quality and dimensional accuracy during the machining of Inconel 718-based products. The highly stochastic phenomenon of tool wear, particularly in later stages, results in difficulty in predicting the failure point of the tool. The present research work aims to study this late-stage wear of the tool by generating consistent wear conditions and thereby decoupling the late-stage wear from the wear history. To do so, a multi-axis grinding operation is employed to create artificial tool wear that replicates the topology of natural wear occurring in the process. In order to evaluate the imitating ability of the proposed methodology, microscopic images in different wear states of naturally and contrived worn tools were analyzed. The methodology was validated by comparing the resulting process forces measured during end milling with the natural and contrived worn tool for different path strategies. Finally, a qualitative FE-analysis was conducted, and specific force coefficients for worn tool segments were determined through simulation.
在加工以Inconel 718为基础的产品时,刀具磨损对实现所需的表面质量和尺寸精度起着决定性的作用。刀具磨损的高度随机现象,特别是在后期阶段,导致难以预测刀具的失效点。目前的研究工作旨在通过产生一致的磨损条件来研究刀具的后期磨损,从而将后期磨损与磨损历史解耦。为此,采用多轴磨削操作来产生人工刀具磨损,以复制加工过程中发生的自然磨损的拓扑结构。为了评估所提方法的模拟能力,分析了自然磨损和人为磨损工具在不同磨损状态下的显微图像。通过将立铣削过程中测量的过程力与不同路径策略下的自然磨损和人工磨损刀具进行比较,验证了该方法。最后进行定性有限元分析,通过仿真确定磨损刀段的比力系数。
{"title":"Evaluation of Contrived Wear Methodology in End Milling of Inconel 718","authors":"Nils Potthoff, Ankit Agarwal, F. Wöste, P. Wiederkehr, L. Mears","doi":"10.1115/1.4062603","DOIUrl":"https://doi.org/10.1115/1.4062603","url":null,"abstract":"\u0000 Tool wear plays a decisive role in achieving the required surface quality and dimensional accuracy during the machining of Inconel 718-based products. The highly stochastic phenomenon of tool wear, particularly in later stages, results in difficulty in predicting the failure point of the tool. The present research work aims to study this late-stage wear of the tool by generating consistent wear conditions and thereby decoupling the late-stage wear from the wear history. To do so, a multi-axis grinding operation is employed to create artificial tool wear that replicates the topology of natural wear occurring in the process. In order to evaluate the imitating ability of the proposed methodology, microscopic images in different wear states of naturally and contrived worn tools were analyzed. The methodology was validated by comparing the resulting process forces measured during end milling with the natural and contrived worn tool for different path strategies. Finally, a qualitative FE-analysis was conducted, and specific force coefficients for worn tool segments were determined through simulation.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48824156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface Integrity Analysis in Grinding of Dual-phase High Entropy Alloy 双相高熵合金磨削过程中的表面完整性分析
IF 4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-05-23 DOI: 10.1115/1.4062604
Xing Wang, Shu Zan, Qin Xu, Z. Liao
High-entropy alloys (HEAs) are highly anticipated due to their excellent properties (e.g. high strength, high hardness, excellent wear resistance). However, compared with numerous studies on the design and properties of HEAs, the research on the machinability of HEAs is extremely rare, which limits the application of HEAs. In this work, grinding experiments of (FeCoNi)86Al7Ti7 dual-phase HEA workpieces were carried out, and the results are analysed from general machinability perspective (the effect of machining parameters on grinding force and surface roughness value) to a more in-depth perspective, including grinding induced changes in morphology and microstructure on ground surface and subsurface. With SEM and EBSD information of subsurface, the deformation mechanisms have been studied, including the role of the second phase (Ni2AlTi) in the grinding process, the material removal modes of the different phases and the morphology of the nanoprecipitates in the matrix, based on the completely opposite properties of different phases in HEA. It is noticed that the hard and brittle property of the second phase brings support to the material, reduces the plastic deformation, and also makes its own removal brittle, while the plastic matrix experiences shear deformation in grinding, which makes the nanoprecipitates in it assume different morphologies. These detailed findings could be of help to understand the effect of grinding on material properties so as to improve the machining quality of this material.
高熵合金(HEAs)由于其优异的性能(如高强度、高硬度、优异的耐磨性)而备受期待。然而,相对于对HEAs的设计和性能的大量研究,对HEAs可加工性的研究却很少,这限制了HEAs的应用。本文对(FeCoNi)86Al7Ti7双相HEA工件进行了磨削实验,并从一般的可加工性角度(加工参数对磨削力和表面粗糙度值的影响)深入分析了结果,包括磨削引起的表面和亚表面形貌和微观组织的变化。基于不同相在HEA中完全相反的性能,利用亚表面SEM和EBSD信息,研究了第二相(Ni2AlTi)在磨削过程中的作用、不同相的材料去除方式和基体中纳米沉淀物的形态。研究发现,第二相的硬脆特性为材料提供了支撑,减少了塑性变形,同时也使其自身的去除变得脆性,而塑性基体在磨削过程中发生剪切变形,使得其中的纳米沉淀呈现出不同的形态。这些详细的研究结果有助于了解磨削对材料性能的影响,从而提高材料的加工质量。
{"title":"Surface Integrity Analysis in Grinding of Dual-phase High Entropy Alloy","authors":"Xing Wang, Shu Zan, Qin Xu, Z. Liao","doi":"10.1115/1.4062604","DOIUrl":"https://doi.org/10.1115/1.4062604","url":null,"abstract":"\u0000 High-entropy alloys (HEAs) are highly anticipated due to their excellent properties (e.g. high strength, high hardness, excellent wear resistance). However, compared with numerous studies on the design and properties of HEAs, the research on the machinability of HEAs is extremely rare, which limits the application of HEAs. In this work, grinding experiments of (FeCoNi)86Al7Ti7 dual-phase HEA workpieces were carried out, and the results are analysed from general machinability perspective (the effect of machining parameters on grinding force and surface roughness value) to a more in-depth perspective, including grinding induced changes in morphology and microstructure on ground surface and subsurface. With SEM and EBSD information of subsurface, the deformation mechanisms have been studied, including the role of the second phase (Ni2AlTi) in the grinding process, the material removal modes of the different phases and the morphology of the nanoprecipitates in the matrix, based on the completely opposite properties of different phases in HEA. It is noticed that the hard and brittle property of the second phase brings support to the material, reduces the plastic deformation, and also makes its own removal brittle, while the plastic matrix experiences shear deformation in grinding, which makes the nanoprecipitates in it assume different morphologies. These detailed findings could be of help to understand the effect of grinding on material properties so as to improve the machining quality of this material.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45584087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thickness control of autoclave-moulded composite laminates 热压成型复合层压板的厚度控制
IF 4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-05-22 DOI: 10.1115/1.4062581
E. Gongadze, Chris Dighton, Gregory Nash, Martin Moss, Brett Hemingway, J. Belnoue, S. Hallett
Composite materials and especially those made from pre-impregnated (prepreg) material are widely used in the aerospace industry. To achieve the tight assembly dimensional tolerances required, manufacturers rely on additional manufacturing steps like shimming or machining, which generate extra waste, are time-consuming and expensive. Prepreg sheets come naturally with fibre and resin volume content variability that leads manufacturers to guarantee cured ply thicknesses within a typical +/-5% margin of their nominal values. For thick laminates, this can equate to a thickness variability of as much as a few mm. To solve the issue, it is proposed to twin in-situ laser measurements of the uncured prepreg thickness with numerical simulations of the laminate autoclave consolidation and cure process and to adjust the number of additional sacrificial plies in the laminate based on the model predictions. Data for IM7/8552 and IM7/977-3 is presented to demonstrate the potential of the method to reach an almost exact target thickness for flat panels.
复合材料,特别是由预浸渍(prepreg)材料制成的复合材料广泛应用于航空航天工业。为了实现所需的严格装配尺寸公差,制造商依赖于额外的制造步骤,如摆振或加工,这会产生额外的浪费,既耗时又昂贵。预浸板具有天然的纤维和树脂体积含量变化,这使得制造商能够保证固化厚度在其标称值的+/-5%范围内。对于厚层压板,这可能相当于厚度变化高达几毫米。为了解决这个问题,建议将未固化预浸料厚度的原位激光测量与层压板高压灭菌器固结和固化过程的数值模拟相结合,并根据模型预测调整层压板中额外牺牲层的数量。给出了IM7/8552和IM7/977-3的数据,以证明该方法在达到平板几乎精确的目标厚度方面的潜力。
{"title":"Thickness control of autoclave-moulded composite laminates","authors":"E. Gongadze, Chris Dighton, Gregory Nash, Martin Moss, Brett Hemingway, J. Belnoue, S. Hallett","doi":"10.1115/1.4062581","DOIUrl":"https://doi.org/10.1115/1.4062581","url":null,"abstract":"\u0000 Composite materials and especially those made from pre-impregnated (prepreg) material are widely used in the aerospace industry. To achieve the tight assembly dimensional tolerances required, manufacturers rely on additional manufacturing steps like shimming or machining, which generate extra waste, are time-consuming and expensive. Prepreg sheets come naturally with fibre and resin volume content variability that leads manufacturers to guarantee cured ply thicknesses within a typical +/-5% margin of their nominal values. For thick laminates, this can equate to a thickness variability of as much as a few mm. To solve the issue, it is proposed to twin in-situ laser measurements of the uncured prepreg thickness with numerical simulations of the laminate autoclave consolidation and cure process and to adjust the number of additional sacrificial plies in the laminate based on the model predictions. Data for IM7/8552 and IM7/977-3 is presented to demonstrate the potential of the method to reach an almost exact target thickness for flat panels.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48626059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Manufacturing Science and Engineering-transactions of The Asme
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1