首页 > 最新文献

Journal of Manufacturing Science and Engineering-transactions of The Asme最新文献

英文 中文
Evaluation of Contrived Wear Methodology in End Milling of Inconel 718 Inconel 718立铣削人为磨损方法评价
IF 4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-05-23 DOI: 10.1115/1.4062603
Nils Potthoff, Ankit Agarwal, F. Wöste, P. Wiederkehr, L. Mears
Tool wear plays a decisive role in achieving the required surface quality and dimensional accuracy during the machining of Inconel 718-based products. The highly stochastic phenomenon of tool wear, particularly in later stages, results in difficulty in predicting the failure point of the tool. The present research work aims to study this late-stage wear of the tool by generating consistent wear conditions and thereby decoupling the late-stage wear from the wear history. To do so, a multi-axis grinding operation is employed to create artificial tool wear that replicates the topology of natural wear occurring in the process. In order to evaluate the imitating ability of the proposed methodology, microscopic images in different wear states of naturally and contrived worn tools were analyzed. The methodology was validated by comparing the resulting process forces measured during end milling with the natural and contrived worn tool for different path strategies. Finally, a qualitative FE-analysis was conducted, and specific force coefficients for worn tool segments were determined through simulation.
在加工以Inconel 718为基础的产品时,刀具磨损对实现所需的表面质量和尺寸精度起着决定性的作用。刀具磨损的高度随机现象,特别是在后期阶段,导致难以预测刀具的失效点。目前的研究工作旨在通过产生一致的磨损条件来研究刀具的后期磨损,从而将后期磨损与磨损历史解耦。为此,采用多轴磨削操作来产生人工刀具磨损,以复制加工过程中发生的自然磨损的拓扑结构。为了评估所提方法的模拟能力,分析了自然磨损和人为磨损工具在不同磨损状态下的显微图像。通过将立铣削过程中测量的过程力与不同路径策略下的自然磨损和人工磨损刀具进行比较,验证了该方法。最后进行定性有限元分析,通过仿真确定磨损刀段的比力系数。
{"title":"Evaluation of Contrived Wear Methodology in End Milling of Inconel 718","authors":"Nils Potthoff, Ankit Agarwal, F. Wöste, P. Wiederkehr, L. Mears","doi":"10.1115/1.4062603","DOIUrl":"https://doi.org/10.1115/1.4062603","url":null,"abstract":"\u0000 Tool wear plays a decisive role in achieving the required surface quality and dimensional accuracy during the machining of Inconel 718-based products. The highly stochastic phenomenon of tool wear, particularly in later stages, results in difficulty in predicting the failure point of the tool. The present research work aims to study this late-stage wear of the tool by generating consistent wear conditions and thereby decoupling the late-stage wear from the wear history. To do so, a multi-axis grinding operation is employed to create artificial tool wear that replicates the topology of natural wear occurring in the process. In order to evaluate the imitating ability of the proposed methodology, microscopic images in different wear states of naturally and contrived worn tools were analyzed. The methodology was validated by comparing the resulting process forces measured during end milling with the natural and contrived worn tool for different path strategies. Finally, a qualitative FE-analysis was conducted, and specific force coefficients for worn tool segments were determined through simulation.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48824156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface Integrity Analysis in Grinding of Dual-phase High Entropy Alloy 双相高熵合金磨削过程中的表面完整性分析
IF 4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-05-23 DOI: 10.1115/1.4062604
Xing Wang, Shu Zan, Qin Xu, Z. Liao
High-entropy alloys (HEAs) are highly anticipated due to their excellent properties (e.g. high strength, high hardness, excellent wear resistance). However, compared with numerous studies on the design and properties of HEAs, the research on the machinability of HEAs is extremely rare, which limits the application of HEAs. In this work, grinding experiments of (FeCoNi)86Al7Ti7 dual-phase HEA workpieces were carried out, and the results are analysed from general machinability perspective (the effect of machining parameters on grinding force and surface roughness value) to a more in-depth perspective, including grinding induced changes in morphology and microstructure on ground surface and subsurface. With SEM and EBSD information of subsurface, the deformation mechanisms have been studied, including the role of the second phase (Ni2AlTi) in the grinding process, the material removal modes of the different phases and the morphology of the nanoprecipitates in the matrix, based on the completely opposite properties of different phases in HEA. It is noticed that the hard and brittle property of the second phase brings support to the material, reduces the plastic deformation, and also makes its own removal brittle, while the plastic matrix experiences shear deformation in grinding, which makes the nanoprecipitates in it assume different morphologies. These detailed findings could be of help to understand the effect of grinding on material properties so as to improve the machining quality of this material.
高熵合金(HEAs)由于其优异的性能(如高强度、高硬度、优异的耐磨性)而备受期待。然而,相对于对HEAs的设计和性能的大量研究,对HEAs可加工性的研究却很少,这限制了HEAs的应用。本文对(FeCoNi)86Al7Ti7双相HEA工件进行了磨削实验,并从一般的可加工性角度(加工参数对磨削力和表面粗糙度值的影响)深入分析了结果,包括磨削引起的表面和亚表面形貌和微观组织的变化。基于不同相在HEA中完全相反的性能,利用亚表面SEM和EBSD信息,研究了第二相(Ni2AlTi)在磨削过程中的作用、不同相的材料去除方式和基体中纳米沉淀物的形态。研究发现,第二相的硬脆特性为材料提供了支撑,减少了塑性变形,同时也使其自身的去除变得脆性,而塑性基体在磨削过程中发生剪切变形,使得其中的纳米沉淀呈现出不同的形态。这些详细的研究结果有助于了解磨削对材料性能的影响,从而提高材料的加工质量。
{"title":"Surface Integrity Analysis in Grinding of Dual-phase High Entropy Alloy","authors":"Xing Wang, Shu Zan, Qin Xu, Z. Liao","doi":"10.1115/1.4062604","DOIUrl":"https://doi.org/10.1115/1.4062604","url":null,"abstract":"\u0000 High-entropy alloys (HEAs) are highly anticipated due to their excellent properties (e.g. high strength, high hardness, excellent wear resistance). However, compared with numerous studies on the design and properties of HEAs, the research on the machinability of HEAs is extremely rare, which limits the application of HEAs. In this work, grinding experiments of (FeCoNi)86Al7Ti7 dual-phase HEA workpieces were carried out, and the results are analysed from general machinability perspective (the effect of machining parameters on grinding force and surface roughness value) to a more in-depth perspective, including grinding induced changes in morphology and microstructure on ground surface and subsurface. With SEM and EBSD information of subsurface, the deformation mechanisms have been studied, including the role of the second phase (Ni2AlTi) in the grinding process, the material removal modes of the different phases and the morphology of the nanoprecipitates in the matrix, based on the completely opposite properties of different phases in HEA. It is noticed that the hard and brittle property of the second phase brings support to the material, reduces the plastic deformation, and also makes its own removal brittle, while the plastic matrix experiences shear deformation in grinding, which makes the nanoprecipitates in it assume different morphologies. These detailed findings could be of help to understand the effect of grinding on material properties so as to improve the machining quality of this material.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45584087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thickness control of autoclave-moulded composite laminates 热压成型复合层压板的厚度控制
IF 4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-05-22 DOI: 10.1115/1.4062581
E. Gongadze, Chris Dighton, Gregory Nash, Martin Moss, Brett Hemingway, J. Belnoue, S. Hallett
Composite materials and especially those made from pre-impregnated (prepreg) material are widely used in the aerospace industry. To achieve the tight assembly dimensional tolerances required, manufacturers rely on additional manufacturing steps like shimming or machining, which generate extra waste, are time-consuming and expensive. Prepreg sheets come naturally with fibre and resin volume content variability that leads manufacturers to guarantee cured ply thicknesses within a typical +/-5% margin of their nominal values. For thick laminates, this can equate to a thickness variability of as much as a few mm. To solve the issue, it is proposed to twin in-situ laser measurements of the uncured prepreg thickness with numerical simulations of the laminate autoclave consolidation and cure process and to adjust the number of additional sacrificial plies in the laminate based on the model predictions. Data for IM7/8552 and IM7/977-3 is presented to demonstrate the potential of the method to reach an almost exact target thickness for flat panels.
复合材料,特别是由预浸渍(prepreg)材料制成的复合材料广泛应用于航空航天工业。为了实现所需的严格装配尺寸公差,制造商依赖于额外的制造步骤,如摆振或加工,这会产生额外的浪费,既耗时又昂贵。预浸板具有天然的纤维和树脂体积含量变化,这使得制造商能够保证固化厚度在其标称值的+/-5%范围内。对于厚层压板,这可能相当于厚度变化高达几毫米。为了解决这个问题,建议将未固化预浸料厚度的原位激光测量与层压板高压灭菌器固结和固化过程的数值模拟相结合,并根据模型预测调整层压板中额外牺牲层的数量。给出了IM7/8552和IM7/977-3的数据,以证明该方法在达到平板几乎精确的目标厚度方面的潜力。
{"title":"Thickness control of autoclave-moulded composite laminates","authors":"E. Gongadze, Chris Dighton, Gregory Nash, Martin Moss, Brett Hemingway, J. Belnoue, S. Hallett","doi":"10.1115/1.4062581","DOIUrl":"https://doi.org/10.1115/1.4062581","url":null,"abstract":"\u0000 Composite materials and especially those made from pre-impregnated (prepreg) material are widely used in the aerospace industry. To achieve the tight assembly dimensional tolerances required, manufacturers rely on additional manufacturing steps like shimming or machining, which generate extra waste, are time-consuming and expensive. Prepreg sheets come naturally with fibre and resin volume content variability that leads manufacturers to guarantee cured ply thicknesses within a typical +/-5% margin of their nominal values. For thick laminates, this can equate to a thickness variability of as much as a few mm. To solve the issue, it is proposed to twin in-situ laser measurements of the uncured prepreg thickness with numerical simulations of the laminate autoclave consolidation and cure process and to adjust the number of additional sacrificial plies in the laminate based on the model predictions. Data for IM7/8552 and IM7/977-3 is presented to demonstrate the potential of the method to reach an almost exact target thickness for flat panels.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48626059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Room-temperature single-step production of ultrafine-grained bulk metallic sheets from Al powder 室温下用铝粉一步法制备超细晶粒大块金属板材
IF 4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-05-22 DOI: 10.1115/1.4062582
A. Pariyar, Viet Q Vu, S. Kailas, L. Toth
Obtaining fully dense products with high strength in one step at room temperature by powder metallurgy (PM) is generally not possible. However, doing so would reduce manufacturing and energy costs substantially. In this work, we have attempted to achieve this on commercially pure aluminum by utilizing the friction-assisted lateral extrusion process (FALEP) which has the capability of producing sheets from bulk or powder metal in a single step, by applying large shear strain. The texture, microstructure, and mechanical properties of the fully compacted powder sample were examined and compared to the bulk-sheet's properties obtained also by FALEP. The powder-FALEP sample showed a smaller grain size and significantly higher strength. Simulations carried out by the Taylor-type lattice-curvature-based polycrystal model shed light on the texture characteristics of the obtained materials and were in good agreement with the experiments.
通过粉末冶金(PM)在室温下一步获得具有高强度的完全致密的产品通常是不可能的。然而,这样做将大大降低制造和能源成本。在这项工作中,我们试图通过利用摩擦辅助横向挤压工艺(FALEP)在商业纯铝上实现这一点,该工艺具有通过施加大的剪切应变在一步中从大块或粉末金属生产板材的能力。对完全压实的粉末样品的织构、微观结构和机械性能进行了检查,并与同样通过FALEP获得的大块片材的性能进行了比较。粉末FALEP样品显示出较小的晶粒尺寸和显著较高的强度。基于泰勒型晶格曲率的多晶体模型进行的模拟揭示了所获得材料的织构特征,并与实验结果吻合良好。
{"title":"Room-temperature single-step production of ultrafine-grained bulk metallic sheets from Al powder","authors":"A. Pariyar, Viet Q Vu, S. Kailas, L. Toth","doi":"10.1115/1.4062582","DOIUrl":"https://doi.org/10.1115/1.4062582","url":null,"abstract":"\u0000 Obtaining fully dense products with high strength in one step at room temperature by powder metallurgy (PM) is generally not possible. However, doing so would reduce manufacturing and energy costs substantially. In this work, we have attempted to achieve this on commercially pure aluminum by utilizing the friction-assisted lateral extrusion process (FALEP) which has the capability of producing sheets from bulk or powder metal in a single step, by applying large shear strain. The texture, microstructure, and mechanical properties of the fully compacted powder sample were examined and compared to the bulk-sheet's properties obtained also by FALEP. The powder-FALEP sample showed a smaller grain size and significantly higher strength. Simulations carried out by the Taylor-type lattice-curvature-based polycrystal model shed light on the texture characteristics of the obtained materials and were in good agreement with the experiments.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46029933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling Variation in Multi-station Compliant Assembly using Parametric Space Envelope 基于参数化空间包络的多工位柔性装配变化建模
IF 4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-05-22 DOI: 10.1115/1.4062579
C. Luo, Jiaqi Nie, P. Franciosa, D. Ceglarek
Non-rigid compliant parts are widely used in industries today. One of the biggest challenges facing the industries is geometric variation management of these compliant parts, which directly impacts product quality and functionality. Existing rigid body based variation modeling is not suitable for compliant assembly while finite element analysis based methods have the disadvantage of requiring heavy computation efforts. In view of that, this paper develops a novel methodology to evaluate geometric variation propagation in multi-station compliant assembly based upon parametric space envelope (i.e. variation tool constructed from parametric curves). Three sources of variation: location-led positional variation, assembly deformation-induced variation and station transition caused variation are analyzed. Under proposal, geometric variations are modeled indirectly through a compact set of boundary control points. Compared with existing methods where geometric variation is modeled through targeting key feature points on the manufacturing part, the proposed approach brings modeling accuracy and computation efficiency. The effectiveness of the method is illustrated and verified through an industrial case study on a multi-station compliant panel assembly. The developed method provides industries a new way to manage geometric variation from compliant assembly.
非刚性柔顺零件在当今工业中被广泛使用。行业面临的最大挑战之一是对这些合规零件进行几何变化管理,这直接影响产品质量和功能。现有的基于刚体的变分建模不适合柔顺装配,而基于有限元分析的方法具有计算量大的缺点。有鉴于此,本文提出了一种基于参数空间包络(即由参数曲线构建的变异工具)的多工位柔顺装配几何变异传播评估方法。分析了三种变化来源:位置引起的位置变化、装配变形引起的变化和工位转换引起的变化。根据提议,几何变化是通过一组紧凑的边界控制点间接建模的。与现有的通过瞄准制造零件上的关键特征点来建模几何变化的方法相比,该方法提高了建模精度和计算效率。通过一个多工位柔性面板组件的工业案例研究,说明并验证了该方法的有效性。所开发的方法为行业提供了一种新的方法来管理来自柔顺装配的几何变化。
{"title":"Modeling Variation in Multi-station Compliant Assembly using Parametric Space Envelope","authors":"C. Luo, Jiaqi Nie, P. Franciosa, D. Ceglarek","doi":"10.1115/1.4062579","DOIUrl":"https://doi.org/10.1115/1.4062579","url":null,"abstract":"\u0000 Non-rigid compliant parts are widely used in industries today. One of the biggest challenges facing the industries is geometric variation management of these compliant parts, which directly impacts product quality and functionality. Existing rigid body based variation modeling is not suitable for compliant assembly while finite element analysis based methods have the disadvantage of requiring heavy computation efforts. In view of that, this paper develops a novel methodology to evaluate geometric variation propagation in multi-station compliant assembly based upon parametric space envelope (i.e. variation tool constructed from parametric curves). Three sources of variation: location-led positional variation, assembly deformation-induced variation and station transition caused variation are analyzed. Under proposal, geometric variations are modeled indirectly through a compact set of boundary control points. Compared with existing methods where geometric variation is modeled through targeting key feature points on the manufacturing part, the proposed approach brings modeling accuracy and computation efficiency. The effectiveness of the method is illustrated and verified through an industrial case study on a multi-station compliant panel assembly. The developed method provides industries a new way to manage geometric variation from compliant assembly.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46391747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Process-Structure-Property Relationships of Laser Powder Bed Fusion Lattice Structures 激光粉末床聚变晶格结构的工艺结构与性能关系
IF 4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-05-22 DOI: 10.1115/1.4062580
E. Jost, J. Pegues, D. Moore, C. Saldana
Lattice structure metamaterials offer a variety of unique and tailorable properties, yet industrial adoption is slowed by manufacturability and inspection-related difficulties. Despite recent advances in laser powder bed fusion (LPBF) additive manufacturing (AM), the sub-millimeter features of lattices are at the edge of process capabilities and suffer from low geometric quality. To better understand their complex process-structure-property (PSP) relationships, octahedron structures were manufactured across a power spectrum, inspected, and mechanically tested. X-ray computed tomography (CT) was used to characterize lattice geometry, and demonstrated that lattice strut geometry measures, increased significantly as a function of laser power. Furthermore, lattices are shown to exhibit a direct correlation between laser power and mechanical performance metrics. Performance variations up to 60% are shown as a function of process parameters despite nominally identical geometry. Significant geometry variations are found to be the cause of performance variation, while material properties as measured by microindentation hardness are constant across the studied parameter range. PSP relationships are modeled, and the limitations of these models are explored. It was found that resulting models can predict mechanical performance based on geometric characteristics with R2 values of up to 0.86. Finally, mechanistic causes of observed performance changes are discussed.
晶格结构超材料提供了各种独特和可定制的特性,但由于可制造性和检测相关的困难,工业应用缓慢。尽管近年来在激光粉末床融合(LPBF)增材制造(AM)方面取得了进展,但晶格的亚毫米特征处于工艺能力的边缘,并且几何质量较低。为了更好地理解它们复杂的工艺-结构-性能(PSP)关系,在功率谱上制造了八面体结构,进行了检查和机械测试。x射线计算机断层扫描(CT)用于表征晶格几何形状,并证明了晶格支柱几何尺寸随激光功率的增加而显著增加。此外,晶格显示出激光功率和机械性能指标之间的直接相关性。性能变化高达60%显示为工艺参数的函数,尽管名义上相同的几何形状。发现显著的几何变化是性能变化的原因,而通过微压痕硬度测量的材料性能在所研究的参数范围内是恒定的。建立了PSP关系模型,并探讨了这些模型的局限性。结果表明,所建立的模型可以基于几何特征预测力学性能,R2值高达0.86。最后,讨论了观察到的性能变化的机理原因。
{"title":"Process-Structure-Property Relationships of Laser Powder Bed Fusion Lattice Structures","authors":"E. Jost, J. Pegues, D. Moore, C. Saldana","doi":"10.1115/1.4062580","DOIUrl":"https://doi.org/10.1115/1.4062580","url":null,"abstract":"\u0000 Lattice structure metamaterials offer a variety of unique and tailorable properties, yet industrial adoption is slowed by manufacturability and inspection-related difficulties. Despite recent advances in laser powder bed fusion (LPBF) additive manufacturing (AM), the sub-millimeter features of lattices are at the edge of process capabilities and suffer from low geometric quality. To better understand their complex process-structure-property (PSP) relationships, octahedron structures were manufactured across a power spectrum, inspected, and mechanically tested. X-ray computed tomography (CT) was used to characterize lattice geometry, and demonstrated that lattice strut geometry measures, increased significantly as a function of laser power. Furthermore, lattices are shown to exhibit a direct correlation between laser power and mechanical performance metrics. Performance variations up to 60% are shown as a function of process parameters despite nominally identical geometry. Significant geometry variations are found to be the cause of performance variation, while material properties as measured by microindentation hardness are constant across the studied parameter range. PSP relationships are modeled, and the limitations of these models are explored. It was found that resulting models can predict mechanical performance based on geometric characteristics with R2 values of up to 0.86. Finally, mechanistic causes of observed performance changes are discussed.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46636559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vision guided dynamic synchronous path tracking control of dual manipulator cooperative system 双机械手协作系统视觉引导动态同步路径跟踪控制
IF 4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-05-16 DOI: 10.1115/1.4062546
Q. Bai, Pengcheng Li, W. Tian, Jianxin Shen, Bo Li, Junshan Hu
Compared with a single manipulator manufacturing cell, a dual manipulator cooperative system has more advantages in reconfigurability and flexibility. However, there are calibration errors and multi-source disturbances in the collaborative process, which lead to the processing trajectory accuracy defects of large-scale associated machining features. To solve the above problems, a practical path tracking synchronous control algorithm is proposed based on position based visual servoing (PBVS) in this paper for the dual manipulator cooperative system, the proposed dynamic cross-coupled sliding mode controller (DCSMC) scheme can realize dynamic paths correction while executing the pre-planned paths. Moreover, since the cross-coupled technology is integrated into the proposed control algorithm for dynamic path tracking based on the real-time feedback of the highly repeatable 3D visual measurement instrument (VMI), both the tracking and synchronous errors of the dual manipulators converge to zero. Finally, the stability of the proposed controller has been verified by the Lyapunov method. In the end, the real-time line and circle path tracking experimental results using two industrial manipulators demonstrate that the proposed scheme can achieve better synchronous tracking accuracy than the independent control scheme.
与单机械手制造单元相比,双机械手协同系统在可重构性和灵活性方面具有更大的优势。然而,协作过程中存在校准误差和多源扰动,导致大规模关联加工特征的加工轨迹精度存在缺陷。针对上述问题,本文针对双机械手协同系统,提出了一种基于位置视觉伺服(PBVS)的实用路径跟踪同步控制算法,该算法可以在执行预先规划的路径的同时实现动态路径校正。此外,由于交叉耦合技术被集成到所提出的基于高度可重复三维视觉测量仪器(VMI)实时反馈的动态路径跟踪控制算法中,因此双机械手的跟踪和同步误差都收敛到零。最后,用李雅普诺夫方法验证了该控制器的稳定性。最后,使用两个工业机械手的实时直线和圆路径跟踪实验结果表明,该方案比独立控制方案能够获得更好的同步跟踪精度。
{"title":"Vision guided dynamic synchronous path tracking control of dual manipulator cooperative system","authors":"Q. Bai, Pengcheng Li, W. Tian, Jianxin Shen, Bo Li, Junshan Hu","doi":"10.1115/1.4062546","DOIUrl":"https://doi.org/10.1115/1.4062546","url":null,"abstract":"\u0000 Compared with a single manipulator manufacturing cell, a dual manipulator cooperative system has more advantages in reconfigurability and flexibility. However, there are calibration errors and multi-source disturbances in the collaborative process, which lead to the processing trajectory accuracy defects of large-scale associated machining features. To solve the above problems, a practical path tracking synchronous control algorithm is proposed based on position based visual servoing (PBVS) in this paper for the dual manipulator cooperative system, the proposed dynamic cross-coupled sliding mode controller (DCSMC) scheme can realize dynamic paths correction while executing the pre-planned paths. Moreover, since the cross-coupled technology is integrated into the proposed control algorithm for dynamic path tracking based on the real-time feedback of the highly repeatable 3D visual measurement instrument (VMI), both the tracking and synchronous errors of the dual manipulators converge to zero. Finally, the stability of the proposed controller has been verified by the Lyapunov method. In the end, the real-time line and circle path tracking experimental results using two industrial manipulators demonstrate that the proposed scheme can achieve better synchronous tracking accuracy than the independent control scheme.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48811358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Experimental investigation and modelling of the kerf profile in submerged milling by macro abrasive waterjet 大磨料水射流埋铣切口轮廓的实验研究与建模
IF 4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-05-16 DOI: 10.1115/1.4062547
R. Ravi, Deepu Kumar T. N., D. Srinivasu
Towards achieving control over the kerfing through abrasive waterjet submerged milling, there is a need to (i) understand the influence of the water column height on the kerf quality and (ii) develop a model for the prediction of the kerf characteristics. This study performs detailed experimentation to assess the kerf quality enhancement in submerged milling relative to the in-air on Al6061. From the modelling perspective, there are very limited efforts in developing a comprehensive model that includes both the jet flow dynamics and material removal models - this is the missing link. Towards this, a comprehensive model is proposed and validated for the prediction of kerf in in-air and submerged conditions by considering (i) jet dynamics and (ii) jet-material interaction. From the experimental results, it is observed that by adopting the submerged milling, the damaged region, top kerf width and edge radius got reduced by 20.3%, 13.53%, and 22.7%, respectively. However, this enhancement in the kerf quality is associated with a reduction in the centreline erosion depth (hmax) by 12.33% and a material removal rate by 24.52%. The material removal mechanism is more uniform and directed in the submerged milling, whereas in-air is random. The proposed model predicted the kerf cross-sectional profile in submerged milling and in-air with a mean absolute error of 60 μm and 57 μm, squared Pearson correlation coefficient of 0.97 and 0.99, and the hmax with a maximum error of 1.3% and 1.4%.
为了通过磨料水射流浸没式铣削实现对切口的控制,需要(i)了解水柱高度对切口质量的影响,以及(ii)开发用于预测切口特性的模型。本研究进行了详细的实验,以评估在Al6061上相对于空气中铣削的切口质量增强。从建模的角度来看,开发一个包括射流动力学和材料去除模型的综合模型的努力非常有限——这是缺失的一环。为此,通过考虑(i)射流动力学和(ii)射流-材料相互作用,提出并验证了一个综合模型,用于预测空气和水下条件下的切口。实验结果表明,采用浸没铣削,损伤区域、切口宽度和边缘半径分别减少了20.3%、13.53%和22.7%。然而,切口质量的提高与中心线侵蚀深度(hmax)减少12.33%和材料去除率减少24.52%有关。材料去除机制在浸没式铣削中更为均匀和直接,而在空气中则是随机的。所提出的模型预测了埋铣和空气中的切口截面轮廓,平均绝对误差分别为60μm和57μm,Pearson平方相关系数分别为0.97和0.99,hmax最大误差分别为1.3%和1.4%。
{"title":"Experimental investigation and modelling of the kerf profile in submerged milling by macro abrasive waterjet","authors":"R. Ravi, Deepu Kumar T. N., D. Srinivasu","doi":"10.1115/1.4062547","DOIUrl":"https://doi.org/10.1115/1.4062547","url":null,"abstract":"\u0000 Towards achieving control over the kerfing through abrasive waterjet submerged milling, there is a need to (i) understand the influence of the water column height on the kerf quality and (ii) develop a model for the prediction of the kerf characteristics. This study performs detailed experimentation to assess the kerf quality enhancement in submerged milling relative to the in-air on Al6061. From the modelling perspective, there are very limited efforts in developing a comprehensive model that includes both the jet flow dynamics and material removal models - this is the missing link. Towards this, a comprehensive model is proposed and validated for the prediction of kerf in in-air and submerged conditions by considering (i) jet dynamics and (ii) jet-material interaction. From the experimental results, it is observed that by adopting the submerged milling, the damaged region, top kerf width and edge radius got reduced by 20.3%, 13.53%, and 22.7%, respectively. However, this enhancement in the kerf quality is associated with a reduction in the centreline erosion depth (hmax) by 12.33% and a material removal rate by 24.52%. The material removal mechanism is more uniform and directed in the submerged milling, whereas in-air is random. The proposed model predicted the kerf cross-sectional profile in submerged milling and in-air with a mean absolute error of 60 μm and 57 μm, squared Pearson correlation coefficient of 0.97 and 0.99, and the hmax with a maximum error of 1.3% and 1.4%.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42810393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Manufacture of Power Skiving Cutter from Target Circular Spline Geometry 基于目标圆样条几何的动力刨削刀具的设计与制造
IF 4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-05-05 DOI: 10.1115/1.4062496
Yun-Hao Cheng, Yi-Cheng Chen
In this study, a novel design scheme for a power skiving cutter and its grinding wheel profile is proposed based on the geometry of a target circular spline (CS) workpiece. First, a generalized mathematical model of a target CS tooth profile is expressed using a B-spline curve. Subsequently, the nominal cutting edge of the skiving cutter for generating an error-free CS is derived based on power-skiving kinematics. In addition, the axial profile of the grinding wheel for generating the derived nominal cutting edge is resolved based on lengthwise-reciprocating grinding kinematics. Numerical examples are presented to demonstrate the proposed design process for the skiving cutter and its grinding wheel. The profile accuracy of the CS yielded by the designed nominal cutting edge is computed to validate the proposed design processes. Moreover, errors of the skived CS profile resulting from various resharpening depths by grinding back the stepped rake face of the skiving cutter are investigated. Finally, to effectively extend the tool life of the skiving cutter, a compensation rolling angle is introduced into the CS skiving process.
在本研究中,基于目标圆花键(CS)工件的几何形状,提出了一种新的动力刮削刀具及其砂轮轮廓的设计方案。首先,使用B样条曲线表示目标CS齿廓的广义数学模型。随后,基于动力刮削运动学推导出用于生成无误差CS的刮削刀具的标称切削刃。此外,基于纵向往复磨削运动学,求解了用于生成导出的标称切削刃的砂轮的轴向轮廓。通过算例说明了所提出的刮削刀具及其砂轮的设计过程。计算了由设计的标称切削刃产生的CS的轮廓精度,以验证所提出的设计过程。此外,还研究了通过对铣刀的阶梯前刀面进行回磨而产生的不同再磨深度所导致的切屑CS轮廓的误差。最后,为了有效地延长刀具寿命,在CS刮削过程中引入了补偿滚动角。
{"title":"Design and Manufacture of Power Skiving Cutter from Target Circular Spline Geometry","authors":"Yun-Hao Cheng, Yi-Cheng Chen","doi":"10.1115/1.4062496","DOIUrl":"https://doi.org/10.1115/1.4062496","url":null,"abstract":"\u0000 In this study, a novel design scheme for a power skiving cutter and its grinding wheel profile is proposed based on the geometry of a target circular spline (CS) workpiece. First, a generalized mathematical model of a target CS tooth profile is expressed using a B-spline curve. Subsequently, the nominal cutting edge of the skiving cutter for generating an error-free CS is derived based on power-skiving kinematics. In addition, the axial profile of the grinding wheel for generating the derived nominal cutting edge is resolved based on lengthwise-reciprocating grinding kinematics. Numerical examples are presented to demonstrate the proposed design process for the skiving cutter and its grinding wheel. The profile accuracy of the CS yielded by the designed nominal cutting edge is computed to validate the proposed design processes. Moreover, errors of the skived CS profile resulting from various resharpening depths by grinding back the stepped rake face of the skiving cutter are investigated. Finally, to effectively extend the tool life of the skiving cutter, a compensation rolling angle is introduced into the CS skiving process.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46028409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning tools for flow-related defects detection in friction stir welding 用于搅拌摩擦焊中流动相关缺陷检测的机器学习工具
IF 4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-05-03 DOI: 10.1115/1.4062457
D. Ambrosio, V. Wagner, G. Dessein, J. Vivas, O. Cahuc
Flow-related defects in friction stir welding are critical for the joints affecting their mechanical properties and functionality. One way to identify them, avoiding long and sometimes expensive destructive and non-destructive testing, is using machine learning tools with monitored physical quantities as input data. In this work, artificial neural network and decision tree models are trained, validated, and tested on a large dataset consisting of forces, torque, and temperature in the stirred zone measured when friction stir welding three aluminum alloys such as 5083-H111, 6082-T6, and 7075-T6. The built models successfully classified welds between sound and defective with accuracies over 95%, proving their usefulness in identifying defects on new datasets. Independently from the models, the temperature in the stirred zone is found to be the most influential parameter for the assessment of friction stir weld quality.
搅拌摩擦焊中与流动相关的缺陷对影响其机械性能和功能的接头至关重要。识别它们的一种方法是使用机器学习工具,将监测到的物理量作为输入数据,从而避免漫长且有时昂贵的破坏性和非破坏性测试。在这项工作中,人工神经网络和决策树模型在由搅拌摩擦焊接三种铝合金(如5083-H111、6082-T6和7075-T6)时测量的搅拌区的力、扭矩和温度组成的大型数据集上进行了训练、验证和测试。所建立的模型成功地将焊缝分为完好焊缝和缺陷焊缝,准确率超过95%,证明了它们在新数据集上识别缺陷的有用性。与模型无关,搅拌区的温度是评估搅拌摩擦焊接质量的最有影响的参数。
{"title":"Machine learning tools for flow-related defects detection in friction stir welding","authors":"D. Ambrosio, V. Wagner, G. Dessein, J. Vivas, O. Cahuc","doi":"10.1115/1.4062457","DOIUrl":"https://doi.org/10.1115/1.4062457","url":null,"abstract":"\u0000 Flow-related defects in friction stir welding are critical for the joints affecting their mechanical properties and functionality. One way to identify them, avoiding long and sometimes expensive destructive and non-destructive testing, is using machine learning tools with monitored physical quantities as input data. In this work, artificial neural network and decision tree models are trained, validated, and tested on a large dataset consisting of forces, torque, and temperature in the stirred zone measured when friction stir welding three aluminum alloys such as 5083-H111, 6082-T6, and 7075-T6. The built models successfully classified welds between sound and defective with accuracies over 95%, proving their usefulness in identifying defects on new datasets. Independently from the models, the temperature in the stirred zone is found to be the most influential parameter for the assessment of friction stir weld quality.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42089346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Manufacturing Science and Engineering-transactions of The Asme
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1