Pub Date : 2020-01-01DOI: 10.5352/JLS.2020.30.7.598
H. Kim, J. Bak, H. Kang, Min-Ji Kim, Ji-Min Kim, Kyungsung Min, S. Park, J. Pyo, Yun-Sik Choi
Padina gymnospora is a brown algae of the class Phaeophyceae. It has been established that P. gymnospora ameliorates amyloid-β-induced neuropathology and has an anticoagulation effect, but this study was designed to estimate its skin-whitening effect and identify its active component. The ingredients of P. gymnospora were extracted with ethanol and its activity was compared with arbutin. First, the P. gymnospora extract was observed to inhibit tyrosinase activity in a dose-dependent manner, tyrosinase being the rate-limiting enzyme of melanin synthesis. Notably, where 200 μM of arbutin inhibited tyrosinase activity by 58.1%, P. gymnospora extract (0.5%) achieved 76.7%. The P. gymnospora extract also significantly reduced α-melanocyte-stimulating hormone-induced TRP-1 and TRP-2 mRNA expression. In addition, it significantly inhibited melanin synthesis in B16F10 melanoma cells. We identified the 0.66% fucosterol content that inhibited melanin synthesis as comparable to that of arbutin. Additionally, we tested the potential cytotoxicity of P. gymnospora by MTT and LDH release assay and found that the extract significantly reduced LDH release in CCD-986sk cells. These results indicate that P. gymnospora extract could be a potential active ingredient of cosmetics with a skinwhitening effect.
{"title":"The Skin-Whitening Effects of Padina Gymnospora and Its Active Compound, Fucosterol","authors":"H. Kim, J. Bak, H. Kang, Min-Ji Kim, Ji-Min Kim, Kyungsung Min, S. Park, J. Pyo, Yun-Sik Choi","doi":"10.5352/JLS.2020.30.7.598","DOIUrl":"https://doi.org/10.5352/JLS.2020.30.7.598","url":null,"abstract":"Padina gymnospora is a brown algae of the class Phaeophyceae. It has been established that P. gymnospora ameliorates amyloid-β-induced neuropathology and has an anticoagulation effect, but this study was designed to estimate its skin-whitening effect and identify its active component. The ingredients of P. gymnospora were extracted with ethanol and its activity was compared with arbutin. First, the P. gymnospora extract was observed to inhibit tyrosinase activity in a dose-dependent manner, tyrosinase being the rate-limiting enzyme of melanin synthesis. Notably, where 200 μM of arbutin inhibited tyrosinase activity by 58.1%, P. gymnospora extract (0.5%) achieved 76.7%. The P. gymnospora extract also significantly reduced α-melanocyte-stimulating hormone-induced TRP-1 and TRP-2 mRNA expression. In addition, it significantly inhibited melanin synthesis in B16F10 melanoma cells. We identified the 0.66% fucosterol content that inhibited melanin synthesis as comparable to that of arbutin. Additionally, we tested the potential cytotoxicity of P. gymnospora by MTT and LDH release assay and found that the extract significantly reduced LDH release in CCD-986sk cells. These results indicate that P. gymnospora extract could be a potential active ingredient of cosmetics with a skinwhitening effect.","PeriodicalId":16322,"journal":{"name":"Journal of Life Science","volume":"14 1","pages":"598-605"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87511779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.5352/JLS.2020.30.1.58
Yong-Jun Kang, Sang-Geum Kim, Su-yeon Kim, Shin Muncheol, Woo Jehun, Kim Namyeom, Shin Sangmin, Choi Jaeyeong, Yoo Jihyeon, Park Namgeon, Yang Byeongcheol, Cho Incheol
{"title":"Association of Melanocortin 4 Receptor (MC4R) Genotypes with Fatty Acid Compositions in an Intercross Population between Duroc and Jeju Native Pigs","authors":"Yong-Jun Kang, Sang-Geum Kim, Su-yeon Kim, Shin Muncheol, Woo Jehun, Kim Namyeom, Shin Sangmin, Choi Jaeyeong, Yoo Jihyeon, Park Namgeon, Yang Byeongcheol, Cho Incheol","doi":"10.5352/JLS.2020.30.1.58","DOIUrl":"https://doi.org/10.5352/JLS.2020.30.1.58","url":null,"abstract":"","PeriodicalId":16322,"journal":{"name":"Journal of Life Science","volume":"86 1","pages":"58-63"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86702708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.5352/JLS.2020.30.2.129
Myoung-Eun Lee, Seo-Jin Mun, Do-Hyuck Kwon, H. Suh
{"title":"Isolation of Microorganisms and Development of Microbial Augmentation for Treatment of Industrial Wastewater containing Ammonium Nitrogen","authors":"Myoung-Eun Lee, Seo-Jin Mun, Do-Hyuck Kwon, H. Suh","doi":"10.5352/JLS.2020.30.2.129","DOIUrl":"https://doi.org/10.5352/JLS.2020.30.2.129","url":null,"abstract":"","PeriodicalId":16322,"journal":{"name":"Journal of Life Science","volume":"108 1","pages":"129-136"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86617230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.5352/JLS.2020.30.3.267
Jin Young Lee
This study was conducted to assess the effect of highly concentrated onion intake on rodents. The experimental animals were divided two groups as follows; water administered group (CON) and Allium cepa administered group (ACE). The ACE group showed a slightly increases in the number of erythrocytes (RBC), hemoglobin (HGB), hematocrit (Hct) levels compared to the control group (p< 0.05). Hemoglobin, monocyte, lymphocyte and neutrophil had no significant change (p>0.05) in ACE group and control group. The analysis of glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) levels showed a significant decrease in ACE group compared to the control group (p<0.05). The blood glucose, total protein, HDL-cholesterol were slightly high in ACE group, while triglyceride, total cholesterol levels were lower in ACE group compared to the control group (p<0.05). The levels of cytokines (interluekin-1α (IL-1α), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10), interferon-γ (INF-γ), interleukin-18 (IL-18), interleukin-2 (IL-2), granulocyte-macrophage colony-stimulating factor (GM-CSF)) involved in immunity and inflammation in liver tissue and blood have all been confirmed to be within normal range. These findings could be used as basic data to show that highly concentrated dietary onion extract is not toxic to hematological indicators and immune functions.
{"title":"A Study on the Biological Activity of Allium cepa Extract in Vivo","authors":"Jin Young Lee","doi":"10.5352/JLS.2020.30.3.267","DOIUrl":"https://doi.org/10.5352/JLS.2020.30.3.267","url":null,"abstract":"This study was conducted to assess the effect of highly concentrated onion intake on rodents. The experimental animals were divided two groups as follows; water administered group (CON) and Allium cepa administered group (ACE). The ACE group showed a slightly increases in the number of erythrocytes (RBC), hemoglobin (HGB), hematocrit (Hct) levels compared to the control group (p< 0.05). Hemoglobin, monocyte, lymphocyte and neutrophil had no significant change (p>0.05) in ACE group and control group. The analysis of glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) levels showed a significant decrease in ACE group compared to the control group (p<0.05). The blood glucose, total protein, HDL-cholesterol were slightly high in ACE group, while triglyceride, total cholesterol levels were lower in ACE group compared to the control group (p<0.05). The levels of cytokines (interluekin-1α (IL-1α), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10), interferon-γ (INF-γ), interleukin-18 (IL-18), interleukin-2 (IL-2), granulocyte-macrophage colony-stimulating factor (GM-CSF)) involved in immunity and inflammation in liver tissue and blood have all been confirmed to be within normal range. These findings could be used as basic data to show that highly concentrated dietary onion extract is not toxic to hematological indicators and immune functions.","PeriodicalId":16322,"journal":{"name":"Journal of Life Science","volume":"38 1","pages":"267-277"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87740261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.5352/JLS.2020.30.10.919
Ji-yeong Lee, Jin-ho Lee
Aromatic compounds are widely used in the chemical, food, polymer, cosmetic, and pharmaceutical industries and are produced by mainly chemical synthesis using benzene, toluene, and xylene or by plant extraction methods. Due to many rising threats, including the depletion of fossil fuels, global warming, the strengthening of international environmental regulations, and the excessive harvesting of plant resources, the microbial production of aromatic compounds using renewable biomass is regarded as a promising alternative. By integrating metabolic engineering with synthetic and systems biology, artificial biosynthetic pathways have been reconstituted from L-tryptophan biosynthetic pathway in relevant microorganisms, such as Escherichia coli and Corynebacterium glutamicum, enabling the production of a variety of value-added aromatic compounds, such as 5-hydroxytryptophan, serotonin, melatonin, 7-chloro-L-tryptophan, 7-bromo-L-tryptophan, indigo, indirubin, indole-3-acetic acid, violacein, and dexoyviolacein. In this review, we summarize the characteristics, usage, and biosynthetic pathways of these aromatic compounds and highlight the latest metabolic engineering strategies for the microbial production of aromatic compounds and suitable solution strategies to overcome problems in increasing production titers. It is expected that strain development based on systems metabolic engineering and the optimization of media and bioprocesses using renewable biomass will enable the development of commercially viable technologies for the microbial production of many aromatic compounds.
芳香族化合物广泛应用于化工、食品、聚合物、化妆品和制药工业,主要通过苯、甲苯和二甲苯的化学合成或植物提取方法生产。由于化石燃料的枯竭、全球变暖、国际环境法规的加强以及植物资源的过度采收等诸多威胁日益加剧,利用可再生生物质生产芳香族化合物被认为是一种很有前途的替代方法。通过将代谢工程与合成生物学和系统生物学相结合,在大肠杆菌和谷氨酸棒杆菌等相关微生物中构建了l -色氨酸生物合成途径的人工生物合成途径,可生产5-羟色氨酸、5-羟色胺、褪黑素、7-氯- l -色氨酸、7-溴- l -色氨酸、靛蓝、靛红、吲哚-3-乙酸、紫罗兰素和dexoyviolacein等多种高附加值芳香族化合物。本文综述了这些芳香族化合物的特点、用途和生物合成途径,重点介绍了微生物生产芳香族化合物的最新代谢工程策略和克服提高生产滴度问题的合适溶液策略。预计基于系统代谢工程的菌株开发和使用可再生生物质的培养基和生物过程的优化将使开发商业上可行的技术用于微生物生产许多芳香族化合物。
{"title":"Recent Research Progress in the Microbial Production of Aromatic Compounds Derived from L-Tryptophan","authors":"Ji-yeong Lee, Jin-ho Lee","doi":"10.5352/JLS.2020.30.10.919","DOIUrl":"https://doi.org/10.5352/JLS.2020.30.10.919","url":null,"abstract":"Aromatic compounds are widely used in the chemical, food, polymer, cosmetic, and pharmaceutical industries and are produced by mainly chemical synthesis using benzene, toluene, and xylene or by plant extraction methods. Due to many rising threats, including the depletion of fossil fuels, global warming, the strengthening of international environmental regulations, and the excessive harvesting of plant resources, the microbial production of aromatic compounds using renewable biomass is regarded as a promising alternative. By integrating metabolic engineering with synthetic and systems biology, artificial biosynthetic pathways have been reconstituted from L-tryptophan biosynthetic pathway in relevant microorganisms, such as Escherichia coli and Corynebacterium glutamicum, enabling the production of a variety of value-added aromatic compounds, such as 5-hydroxytryptophan, serotonin, melatonin, 7-chloro-L-tryptophan, 7-bromo-L-tryptophan, indigo, indirubin, indole-3-acetic acid, violacein, and dexoyviolacein. In this review, we summarize the characteristics, usage, and biosynthetic pathways of these aromatic compounds and highlight the latest metabolic engineering strategies for the microbial production of aromatic compounds and suitable solution strategies to overcome problems in increasing production titers. It is expected that strain development based on systems metabolic engineering and the optimization of media and bioprocesses using renewable biomass will enable the development of commercially viable technologies for the microbial production of many aromatic compounds.","PeriodicalId":16322,"journal":{"name":"Journal of Life Science","volume":"30 1","pages":"919-929"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81769010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.5352/JLS.2020.30.7.651
Da Yeon Kim, Bo Min Kim, So Jung Kim, Jin Hee Choi, Sang-Mo Kwon
Cardiovascular disease is one of the leading causes of death across the world, and gold-standard treatments such as percutaneous coronary intervention and artery bypass grafting have various limitations including myocardial damage and subsequent maladaptive cardiac remodeling. To overcome this, stem-cell therapies are emerging as a promising strategy for cardiovascular regeneration. Endothelial progenitor cells (EPCs) have high potential to proliferate and differentiate into endothelial cells for vascularization and tissue regeneration, and several clinical trials have explored EPC function in tissue repair in relation to clinical safety and improving cardiac function. Consequently, EPC has been suggested as a feasible stem-cell therapy. However, autologous EPC transplantation in cardiovascular disease patients is restricted by risk factors such as age, smoking status, and hypertension that lead to reduced bioactivity in the EPCs. New approaches for improving EPC function and stem-cell efficacy have therefore been suggested, including cell priming, organoid culture systems, and enhancing transplantation efficiency through 3D bioprinting methods. In this review, we provide a comprehensive understanding of EPC characteristics, therapeutic approaches, and the current state of clinical research into EPCs as stem-cell therapy for cardiovascular disease.
{"title":"The Potential Therapeutic Effects of Endothelial Progenitor Cells in Ischemic Cardiovascular Disease","authors":"Da Yeon Kim, Bo Min Kim, So Jung Kim, Jin Hee Choi, Sang-Mo Kwon","doi":"10.5352/JLS.2020.30.7.651","DOIUrl":"https://doi.org/10.5352/JLS.2020.30.7.651","url":null,"abstract":"Cardiovascular disease is one of the leading causes of death across the world, and gold-standard treatments such as percutaneous coronary intervention and artery bypass grafting have various limitations including myocardial damage and subsequent maladaptive cardiac remodeling. To overcome this, stem-cell therapies are emerging as a promising strategy for cardiovascular regeneration. Endothelial progenitor cells (EPCs) have high potential to proliferate and differentiate into endothelial cells for vascularization and tissue regeneration, and several clinical trials have explored EPC function in tissue repair in relation to clinical safety and improving cardiac function. Consequently, EPC has been suggested as a feasible stem-cell therapy. However, autologous EPC transplantation in cardiovascular disease patients is restricted by risk factors such as age, smoking status, and hypertension that lead to reduced bioactivity in the EPCs. New approaches for improving EPC function and stem-cell efficacy have therefore been suggested, including cell priming, organoid culture systems, and enhancing transplantation efficiency through 3D bioprinting methods. In this review, we provide a comprehensive understanding of EPC characteristics, therapeutic approaches, and the current state of clinical research into EPCs as stem-cell therapy for cardiovascular disease.","PeriodicalId":16322,"journal":{"name":"Journal of Life Science","volume":"39 1","pages":"651-659"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80717577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.5352/JLS.2020.30.7.614
Yeon-Ok Park, Seong-Tae Choi, J. Son, Eun-Gyeong Kim, G. Ahn, J. Park, Wan-Kyu Joung, Y. Jang, Dong-Wan Kim
The recent development of next-generation sequencing technology has enabled increased genomic analysis, but very few single nucleotide polymorphism (SNP) markers applicable to sweet persimmon (Diospyros kaki Thunb.) cultivars have been identified. In this study, SNP primers developed from five pollination-constant astringent (PCA) persimmons native to Korea were applied to discriminate between cultivars and verify their usability. The polymerase chain reactions of 19 SNP primers developed by Jung et al. were checked, with 11 primers finally selected. The other eight were very difficult to analyze in the agarose gel electrophoresis and QIAxcel Advanced System used in this experiment and were therefore excluded. The 11 SNP primers were applied through first and second verification to 76 cultivars and collection lines including 20 pollination-variant non-astringent (PVNA), 30 pollination-constant non-astringent (PCNA), 20 PCA, and six pollination-variant astringent (PVA). Of these, 38 were indistinguishable (eight PVNA, 18 PCNA, nine PCA, and three PVA). However, the results of applying the 11 SNP primers to new sweet persimmon cultivars, namely Gamnuri, Dannuri, Hongchoo, Jamisi, and Migamjosaeng, showed that they have the potential to be used as a unique marker for simultaneously determining between them.
{"title":"The Application of Single Nucleotide Polymorphism Markers for Discrimination of Sweet Persimmon Cultivars","authors":"Yeon-Ok Park, Seong-Tae Choi, J. Son, Eun-Gyeong Kim, G. Ahn, J. Park, Wan-Kyu Joung, Y. Jang, Dong-Wan Kim","doi":"10.5352/JLS.2020.30.7.614","DOIUrl":"https://doi.org/10.5352/JLS.2020.30.7.614","url":null,"abstract":"The recent development of next-generation sequencing technology has enabled increased genomic analysis, but very few single nucleotide polymorphism (SNP) markers applicable to sweet persimmon (Diospyros kaki Thunb.) cultivars have been identified. In this study, SNP primers developed from five pollination-constant astringent (PCA) persimmons native to Korea were applied to discriminate between cultivars and verify their usability. The polymerase chain reactions of 19 SNP primers developed by Jung et al. were checked, with 11 primers finally selected. The other eight were very difficult to analyze in the agarose gel electrophoresis and QIAxcel Advanced System used in this experiment and were therefore excluded. The 11 SNP primers were applied through first and second verification to 76 cultivars and collection lines including 20 pollination-variant non-astringent (PVNA), 30 pollination-constant non-astringent (PCNA), 20 PCA, and six pollination-variant astringent (PVA). Of these, 38 were indistinguishable (eight PVNA, 18 PCNA, nine PCA, and three PVA). However, the results of applying the 11 SNP primers to new sweet persimmon cultivars, namely Gamnuri, Dannuri, Hongchoo, Jamisi, and Migamjosaeng, showed that they have the potential to be used as a unique marker for simultaneously determining between them.","PeriodicalId":16322,"journal":{"name":"Journal of Life Science","volume":"16 2 1","pages":"614-624"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83872457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.5352/JLS.2020.30.9.798
이소영, 김은경, 박재령, 김경민
{"title":"내건성 및 BPH 내성 계통의 육성을 위한 농업형질 고정여부 조사","authors":"이소영, 김은경, 박재령, 김경민","doi":"10.5352/JLS.2020.30.9.798","DOIUrl":"https://doi.org/10.5352/JLS.2020.30.9.798","url":null,"abstract":"","PeriodicalId":16322,"journal":{"name":"Journal of Life Science","volume":"96 1","pages":"798-803"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85741228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.5352/JLS.2020.30.2.169
S. Park, H. Sohn, C. Lee, H. Hwang, S. Park, Jongsik Kim
{"title":"Functional Chemical Components and Their Biological Activities of Houttuynia cordata and Lespedeza cuneata","authors":"S. Park, H. Sohn, C. Lee, H. Hwang, S. Park, Jongsik Kim","doi":"10.5352/JLS.2020.30.2.169","DOIUrl":"https://doi.org/10.5352/JLS.2020.30.2.169","url":null,"abstract":"","PeriodicalId":16322,"journal":{"name":"Journal of Life Science","volume":"25 1","pages":"169-177"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88136499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.5352/JLS.2020.30.4.394
Y. Moon
{"title":"Reversine, Cell Dedifferentiation and Transdifferentiation","authors":"Y. Moon","doi":"10.5352/JLS.2020.30.4.394","DOIUrl":"https://doi.org/10.5352/JLS.2020.30.4.394","url":null,"abstract":"","PeriodicalId":16322,"journal":{"name":"Journal of Life Science","volume":"363 1","pages":"394-401"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76570828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}