首页 > 最新文献

Journal of Nanoparticles最新文献

英文 中文
On the Possibility of Ferromagnetism in Nanosized CuCl2 纳米CuCl2具有铁磁性的可能性
Pub Date : 2013-01-09 DOI: 10.1155/2013/756473
F. Owens
Copper chloride consists of parallel chains of CuCl2. The chains are sufficiently far apart such that the electronic and magnetic properties of CuCl2 have been approximated as arising from isolated chains. Density functional theory using the LANL2DZ/6-31G* basis set has been used to calculate the total energy of CuCl2 chains having nanometer length. The calculations, which are performed as a function of chain length, predict that chains having ferromagnetic order have a lower energy than chains with no order. Calculations of the band gap as a function of length for the ferromagnetic chains indicate that chains greater than 6 nm may be semiconducting suggesting that nanosized CuCl2 chains have the potential to be magnetic semiconductors.
氯化铜由平行的CuCl2链组成。这些链之间的距离足够远,使得CuCl2的电子和磁性能可以近似地由孤立的链产生。采用LANL2DZ/6-31G*基集的密度泛函理论计算了CuCl2纳米链的总能量。计算是作为链长度的函数来执行的,预测具有铁磁顺序的链比没有顺序的链具有更低的能量。对铁磁链带隙随长度的函数计算表明,大于6 nm的铁磁链可能具有半导体性质,这表明纳米CuCl2链具有成为磁性半导体的潜力。
{"title":"On the Possibility of Ferromagnetism in Nanosized CuCl2","authors":"F. Owens","doi":"10.1155/2013/756473","DOIUrl":"https://doi.org/10.1155/2013/756473","url":null,"abstract":"Copper chloride consists of parallel chains of CuCl2. The chains are sufficiently far apart such that the electronic and magnetic properties of CuCl2 have been approximated as arising from isolated chains. Density functional theory using the LANL2DZ/6-31G* basis set has been used to calculate the total energy of CuCl2 chains having nanometer length. The calculations, which are performed as a function of chain length, predict that chains having ferromagnetic order have a lower energy than chains with no order. Calculations of the band gap as a function of length for the ferromagnetic chains indicate that chains greater than 6 nm may be semiconducting suggesting that nanosized CuCl2 chains have the potential to be magnetic semiconductors.","PeriodicalId":16507,"journal":{"name":"Journal of Nanoparticles","volume":"2 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82101063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Studying the Effects of Adding Silica Sand Nanoparticles on Epoxy Based Composites 纳米二氧化硅砂对环氧基复合材料的影响研究
Pub Date : 2013-01-08 DOI: 10.1155/2013/603069
T. Ahmad, O. Mamat, R. Ahmad
The research about the preparation of submicron inorganic particles, once conducted in the past decade, is now leading to prepare polymer matrix composite (PMC) reinforced with nanofillers. The objective of present research is to study the modified effects of reinforcement dispersion of nanoparticle silica in epoxy resin on the physical properties, mechanical and thermal behaviour, and the microstructure of resultant composites. Stirrer mixing associated with manual mixing of silica sand nanoparticles (developed in our earlier research) (Ahmad and Mamat, 2012) into epoxy was followed by curing being the adopted technique to develop the subject nanocomposites. Experimental values showed that 15 wt.% addition of silica sand nanoparticles improves Young’s modulus of the composites; however, a reduction in tensile strength was also observed. Number of holes and cavities produced due to improper mixing turn out to be the main cause of effected mechanical properties. Addition of silica sand nanoparticles causes a reduction in degree of crystallinity of the nanocomposites as being observed in differential scanning calorimetry (DSC) analysis.
制备亚微米无机粒子的研究在过去的十年中一直处于主导地位,现在正在制备纳米填料增强的聚合物基复合材料(PMC)。本研究的目的是研究纳米二氧化硅在环氧树脂中的增强分散体对复合材料的物理性能、力学和热行为以及微观结构的改性作用。将硅砂纳米颗粒(在我们早期的研究中开发)(Ahmad和Mamat, 2012)手动混合到环氧树脂中,然后采用搅拌混合的方法进行固化,从而开发出纳米复合材料。实验值表明:15wt。纳米硅砂的加入提高了复合材料的杨氏模量;然而,拉伸强度的降低也被观察到。由于搅拌不当而产生的孔洞和空腔是影响材料力学性能的主要原因。在差示扫描量热法(DSC)分析中观察到,硅砂纳米颗粒的加入导致纳米复合材料结晶度的降低。
{"title":"Studying the Effects of Adding Silica Sand Nanoparticles on Epoxy Based Composites","authors":"T. Ahmad, O. Mamat, R. Ahmad","doi":"10.1155/2013/603069","DOIUrl":"https://doi.org/10.1155/2013/603069","url":null,"abstract":"The research about the preparation of submicron inorganic particles, once conducted in the past decade, is now leading to prepare polymer matrix composite (PMC) reinforced with nanofillers. The objective of present research is to study the modified effects of reinforcement dispersion of nanoparticle silica in epoxy resin on the physical properties, mechanical and thermal behaviour, and the microstructure of resultant composites. Stirrer mixing associated with manual mixing of silica sand nanoparticles (developed in our earlier research) (Ahmad and Mamat, 2012) into epoxy was followed by curing being the adopted technique to develop the subject nanocomposites. Experimental values showed that 15 wt.% addition of silica sand nanoparticles improves Young’s modulus of the composites; however, a reduction in tensile strength was also observed. Number of holes and cavities produced due to improper mixing turn out to be the main cause of effected mechanical properties. Addition of silica sand nanoparticles causes a reduction in degree of crystallinity of the nanocomposites as being observed in differential scanning calorimetry (DSC) analysis.","PeriodicalId":16507,"journal":{"name":"Journal of Nanoparticles","volume":"314 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2013-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84737468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 42
期刊
Journal of Nanoparticles
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1