Pub Date : 2024-11-01DOI: 10.1088/1361-648X/ad8696
Meng Niu, Shun-Yao Qin, Bai-Qian Wang, Nian-Ke Chen, Xian-Bin Li
Real-time time-dependent density-functional theory molecular dynamics (rt-TDDFT-MD) reveals the nonadiabatic dynamics of the ultrafast photoinduced structural transition in a typical phase-change material antimony (Sb) with Peierls distortion (PD). As the excitation intensity increases from 3.54% to 5.00%, three distinct structural transition behaviors within 1 ps are observed: no PD flipping, nonvolatile-like PD flipping, and nonstop back-and-forward PD flipping. Analyses on electron-phonon and phonon-phonon couplings indicate that the excitation-activated coherent A1gphonon mode by electron-phonon coupling drives the structural transition within several hundred femtoseconds. Then, the energy of coherent motions are transformed into that of random thermal motions via phonon-phonon coupling, which prevents the A1g-mode-like coherent structure oscillations. The electron-phonon coupling and coherent motions will be enhanced with increasing the excitation intensity. Therefore, a moderate excitation intensity that can balance the coherent and decoherent thermal movements will result in a nonvolatile-like PD flipping. These findings illustrate important roles of nonadiabatic electron-phonon/phonon-phonon couplings in the ultrafast laser-induced structural transitions in materials with PD, offering insights for manipulating their structures and properties by light.
{"title":"Ultrafast structural transition and electron-phonon/phonon-phonon coupling in antimony revealed by nonadiabatic molecular dynamics.","authors":"Meng Niu, Shun-Yao Qin, Bai-Qian Wang, Nian-Ke Chen, Xian-Bin Li","doi":"10.1088/1361-648X/ad8696","DOIUrl":"10.1088/1361-648X/ad8696","url":null,"abstract":"<p><p>Real-time time-dependent density-functional theory molecular dynamics (rt-TDDFT-MD) reveals the nonadiabatic dynamics of the ultrafast photoinduced structural transition in a typical phase-change material antimony (Sb) with Peierls distortion (PD). As the excitation intensity increases from 3.54% to 5.00%, three distinct structural transition behaviors within 1 ps are observed: no PD flipping, nonvolatile-like PD flipping, and nonstop back-and-forward PD flipping. Analyses on electron-phonon and phonon-phonon couplings indicate that the excitation-activated coherent A<sub>1g</sub>phonon mode by electron-phonon coupling drives the structural transition within several hundred femtoseconds. Then, the energy of coherent motions are transformed into that of random thermal motions via phonon-phonon coupling, which prevents the A<sub>1g</sub>-mode-like coherent structure oscillations. The electron-phonon coupling and coherent motions will be enhanced with increasing the excitation intensity. Therefore, a moderate excitation intensity that can balance the coherent and decoherent thermal movements will result in a nonvolatile-like PD flipping. These findings illustrate important roles of nonadiabatic electron-phonon/phonon-phonon couplings in the ultrafast laser-induced structural transitions in materials with PD, offering insights for manipulating their structures and properties by light.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1088/1361-648X/ad81a2
Jie-Ming Pu, Shuai Chen, Tong-Yi Zhang
Atom probe tomography (APT) is a powerful technique for three-dimensional (3D) atomic-scale imaging, enabling the accurate analysis on the compositional distribution at the nanoscale. How to accurately reconstruct crystallographic information from APT data, however, is still a great challenge due to the intrinsic nature of the APT technique. In this paper, we propose a novel approach that consists of the modified forward simulation process and the backward machine learning process to recover the tested crystal from APT data. The high-throughput forward simulations on Al single crystals of different orientations generate 10 000 original 3D images and data augmentation is implemented on the original images, resulting in 100 000 3D images. The big data allows the development of deep learning models and three deep learning algorithms of Convolutional Neural Network (CNN), Vision Transformer (ViT), and Variational Autoencoder (VAE) are used in the backward process. After training, the ViT model performs superior than the CNN and VAE models, which can recover the crystalline orientation outstandingly, as evaluated by the coefficient of determinationR2and the Mean Percent Error (MPE), viz.,R2= 0.93 and MPE = 0.43%,R2= 0.97 and MPE = 0.35%, andR2= 0.93 and MPE = 0.77% for the rotation anglesϕ,ψandθ, respectively, on the test dataset. The present work clearly demonstrates the capability of deep learning models in the recovery of the tested crystals from APT data, thereby paving the way for the further development of large artificial intelligent models of APT.
{"title":"Machine learning assisted crystallographic reconstruction from atom probe tomographic images.","authors":"Jie-Ming Pu, Shuai Chen, Tong-Yi Zhang","doi":"10.1088/1361-648X/ad81a2","DOIUrl":"10.1088/1361-648X/ad81a2","url":null,"abstract":"<p><p>Atom probe tomography (APT) is a powerful technique for three-dimensional (3D) atomic-scale imaging, enabling the accurate analysis on the compositional distribution at the nanoscale. How to accurately reconstruct crystallographic information from APT data, however, is still a great challenge due to the intrinsic nature of the APT technique. In this paper, we propose a novel approach that consists of the modified forward simulation process and the backward machine learning process to recover the tested crystal from APT data. The high-throughput forward simulations on Al single crystals of different orientations generate 10 000 original 3D images and data augmentation is implemented on the original images, resulting in 100 000 3D images. The big data allows the development of deep learning models and three deep learning algorithms of Convolutional Neural Network (CNN), Vision Transformer (ViT), and Variational Autoencoder (VAE) are used in the backward process. After training, the ViT model performs superior than the CNN and VAE models, which can recover the crystalline orientation outstandingly, as evaluated by the coefficient of determinationR2and the Mean Percent Error (MPE), viz.,R2= 0.93 and MPE = 0.43%,R2= 0.97 and MPE = 0.35%, andR2= 0.93 and MPE = 0.77% for the rotation anglesϕ,ψandθ, respectively, on the test dataset. The present work clearly demonstrates the capability of deep learning models in the recovery of the tested crystals from APT data, thereby paving the way for the further development of large artificial intelligent models of APT.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142348883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1088/1361-648X/ad882c
G Dziembaj, T Chwiej
We investigate the effects of off-resonant THz-frequency laser light coupling to bound few-body electron-hole system, i.e. the exciton and negatively charged trion confined in quantum wire. To solve this problem, we first conduct a unitary Hennerberger-Kramers transformation of the Hamiltonian and diagonalize its perturbative approximation to obtain the exciton and trion Floquet states. Within this framework, the light-matter coupling renormalizes an attractiveehinteraction, leaving the repulsiveeeunchanged, thus modifying corresponding two-particle correlation energies. Generally, the correlation energy ofehwould exceed theeeone for a semiconductor material with strongly localized heavy holes. However, as the former is weakened by increasing laser intensity, this relation can be reversed. Consequently, the trion may dissociate unconventionally, the hole gradually decouples from still strongly interacting electrons, and adequate energy and optical spectra changes accompany this process. The energy levels of the exciton and trion Floquet states are raised, while their optical brightness smoothly decreases for stronger laser intensities. We also show this process can be further modified by breaking the mirror symmetry of wire with a static electric field, and then the occurrence of the avoided crossings between the lowest energy levels of the trion depends on the laser intensity. These anticrossings shall be observed experimentally, confirming thus the usefulness of Floquet engineering for fast manipulations of the few-particle states in electron-hole systems on a subpicosecond time scale.
{"title":"Floquet engineering of interparticle correlations in electron-hole few-body system for strong radial confinement.","authors":"G Dziembaj, T Chwiej","doi":"10.1088/1361-648X/ad882c","DOIUrl":"10.1088/1361-648X/ad882c","url":null,"abstract":"<p><p>We investigate the effects of off-resonant THz-frequency laser light coupling to bound few-body electron-hole system, i.e. the exciton and negatively charged trion confined in quantum wire. To solve this problem, we first conduct a unitary Hennerberger-Kramers transformation of the Hamiltonian and diagonalize its perturbative approximation to obtain the exciton and trion Floquet states. Within this framework, the light-matter coupling renormalizes an attractive<i>eh</i>interaction, leaving the repulsive<i>ee</i>unchanged, thus modifying corresponding two-particle correlation energies. Generally, the correlation energy of<i>eh</i>would exceed the<i>ee</i>one for a semiconductor material with strongly localized heavy holes. However, as the former is weakened by increasing laser intensity, this relation can be reversed. Consequently, the trion may dissociate unconventionally, the hole gradually decouples from still strongly interacting electrons, and adequate energy and optical spectra changes accompany this process. The energy levels of the exciton and trion Floquet states are raised, while their optical brightness smoothly decreases for stronger laser intensities. We also show this process can be further modified by breaking the mirror symmetry of wire with a static electric field, and then the occurrence of the avoided crossings between the lowest energy levels of the trion depends on the laser intensity. These anticrossings shall be observed experimentally, confirming thus the usefulness of Floquet engineering for fast manipulations of the few-particle states in electron-hole systems on a subpicosecond time scale.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1088/1361-648X/ad8853
G Santos-Castro, L K Teles, I Guilhon Mitoso, J M Pereira
We introduce a refined tight-binding (TB) model for Pt-based jacutingaite materialsPt2NX3, (N= Zn, Cd, Hg; X = S, Se, Te), offering a detailed representation of the low-energy physics of its monolayers. This model incorporates all elements with significant spin-orbit coupling contributions, which are essential for understanding the topological energy gaps in these materials. Through comparison with first-principles calculations, we meticulously fitted the TB parameters, ensuring an accurate depiction of the energy bands near the Fermi level. Our model reveals the intricate interplay between the Pt 3eandNmetal orbitals, forming distinct kagome and honeycomb lattice structures. Applying this model, we explore the edge states of Pt-based jacutingaite monolayer nanoribbons, highlighting the sensitivity of the topological edge states dispersion bands to the nanostructures geometric configurations. These insights not only deepen our understanding of jacutingaite materials but also assist in tailoring their electronic properties for future applications.
{"title":"Tight-binding model of Pt-based jacutingaites as combination of the honeycomb and kagome lattices.","authors":"G Santos-Castro, L K Teles, I Guilhon Mitoso, J M Pereira","doi":"10.1088/1361-648X/ad8853","DOIUrl":"10.1088/1361-648X/ad8853","url":null,"abstract":"<p><p>We introduce a refined tight-binding (TB) model for Pt-based jacutingaite materialsPt2NX3, (N= Zn, Cd, Hg; X = S, Se, Te), offering a detailed representation of the low-energy physics of its monolayers. This model incorporates all elements with significant spin-orbit coupling contributions, which are essential for understanding the topological energy gaps in these materials. Through comparison with first-principles calculations, we meticulously fitted the TB parameters, ensuring an accurate depiction of the energy bands near the Fermi level. Our model reveals the intricate interplay between the Pt 3<i>e</i>and<i>N</i>metal orbitals, forming distinct kagome and honeycomb lattice structures. Applying this model, we explore the edge states of Pt-based jacutingaite monolayer nanoribbons, highlighting the sensitivity of the topological edge states dispersion bands to the nanostructures geometric configurations. These insights not only deepen our understanding of jacutingaite materials but also assist in tailoring their electronic properties for future applications.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1088/1361-648X/ad8852
O Namir, J Chen, I Belabbas
Computer atomistic simulations based on density functional theory were carried out to investigate strain induced phase transitions in aluminium nitride (AlN). The wurtzite to graphitic and graphitic to wurtzite transformations were investigated at the atomic level and their physical origins were identified. Both phase transitions were found to be of the first order. The wurtzite to graphitic phase transition takes place in the tensile regime at a strain value of +7%. The driving force for this transformation was identified to be an elastic instability induced by tensile strain. A hysteresis was demonstrated where the graphitic structure is separated from the wurtzite by a kinetic energy barrier. The origin of the observed hysteresis is due to the asymmetry of bond formation and bond breaking associated with the wurtzite to graphitic and graphitic to wurtzite transitions, respectively. A dynamic instability taking place at +3%, along the graphitic path, prevents the hysteresis to fully occur. The possible occurrence of the hysteresis has then to be taken into account when growing the graphitic phase by heteroepitaxy. Otherwise, maintaining the graphitic structure at low strain, through the hysteresis, offers new possibilities in the development of novel future applications.
{"title":"Strain induced phase transitions and hysteresis in aluminium nitride: a density functional theory study.","authors":"O Namir, J Chen, I Belabbas","doi":"10.1088/1361-648X/ad8852","DOIUrl":"10.1088/1361-648X/ad8852","url":null,"abstract":"<p><p>Computer atomistic simulations based on density functional theory were carried out to investigate strain induced phase transitions in aluminium nitride (AlN). The wurtzite to graphitic and graphitic to wurtzite transformations were investigated at the atomic level and their physical origins were identified. Both phase transitions were found to be of the first order. The wurtzite to graphitic phase transition takes place in the tensile regime at a strain value of +7%. The driving force for this transformation was identified to be an elastic instability induced by tensile strain. A hysteresis was demonstrated where the graphitic structure is separated from the wurtzite by a kinetic energy barrier. The origin of the observed hysteresis is due to the asymmetry of bond formation and bond breaking associated with the wurtzite to graphitic and graphitic to wurtzite transitions, respectively. A dynamic instability taking place at +3%, along the graphitic path, prevents the hysteresis to fully occur. The possible occurrence of the hysteresis has then to be taken into account when growing the graphitic phase by heteroepitaxy. Otherwise, maintaining the graphitic structure at low strain, through the hysteresis, offers new possibilities in the development of novel future applications.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1088/1361-648X/ad88c6
Shixin Hu, Jijun Xue, Xiaoying Wang, Hua Pang
There has been controversy about the driving force of the nematic order in the FeSe superconductor. Here, we present a detailed study of the57Fe Mössbauer spectra of FeSe single-crystal powders, focusing on the temperature dependences of the hyperfine parameters in the vicinity of the nematic transition temperature,Ts∼ 90 K. The nematicity-induced splitting ofdxzanddyzbands, obtained from the anomalous increase in quadrupole splitting nearTs, starts at 143 K. The temperature evolution of the lattice dynamics, deduced from the recoilless fractions and second-order Doppler shifts, is found to undergo successively two segments of phonon-softening (160 K-105 K) and phonon-hardening (105 K-90 K), related to the appearance of local orthorhombic distortions aboveTsand the establishing way of the associated nematic correlations. Analysis of the linewidths shows that spin fluctuations occur not only below 70 K but also acrossTs(105 K-70 K), accompanied by the non-Fermi liquid behavior of the electrons. The results demonstrate the strong interactions between lattice, spin, and electron degrees of freedom in the vicinity ofTsand that the lattice degrees of freedom may play an essential role in driving the nematic order for FeSe.
关于 FeSe 超导体中向列有序的驱动力一直存在争议。在此,我们详细研究了 FeSe 单晶粉末的 57Fe 莫斯鲍尔光谱,重点是向列转变温度 Ts ~ 90 K 附近超线性参数的温度依赖性。从无再消散分数和二阶多普勒频移推导出的晶格动力学温度演化,发现先后经历了声子软化(160 K - 105 K)和声子硬化(105 K - 90 K)两个阶段,这与 Ts 以上局部正交畸变的出现和相关向列关联的建立有关。对线宽的分析表明,自旋波动不仅发生在 70 K 以下,而且跨越 Ts(105 K-70 K),并伴随着电子的非费米液体行为。结果表明,在 Ts 附近,晶格、自旋和电子自由度之间存在强烈的相互作用,晶格自由度可能在驱动 FeSe 的向列有序中发挥了重要作用。
{"title":"Evidence for nematic fluctuations in FeSe superconductor: a<sup>57</sup>Fe Mössbauer spectroscopy study.","authors":"Shixin Hu, Jijun Xue, Xiaoying Wang, Hua Pang","doi":"10.1088/1361-648X/ad88c6","DOIUrl":"10.1088/1361-648X/ad88c6","url":null,"abstract":"<p><p>There has been controversy about the driving force of the nematic order in the FeSe superconductor. Here, we present a detailed study of the<sup>57</sup>Fe Mössbauer spectra of FeSe single-crystal powders, focusing on the temperature dependences of the hyperfine parameters in the vicinity of the nematic transition temperature,<i>T</i><sub>s</sub>∼ 90 K. The nematicity-induced splitting of<i>d</i><sub>xz</sub>and<i>d</i><sub>yz</sub>bands, obtained from the anomalous increase in quadrupole splitting near<i>T</i><sub>s</sub>, starts at 143 K. The temperature evolution of the lattice dynamics, deduced from the recoilless fractions and second-order Doppler shifts, is found to undergo successively two segments of phonon-softening (160 K-105 K) and phonon-hardening (105 K-90 K), related to the appearance of local orthorhombic distortions above<i>T</i><sub>s</sub>and the establishing way of the associated nematic correlations. Analysis of the linewidths shows that spin fluctuations occur not only below 70 K but also across<i>T</i><sub>s</sub>(105 K-70 K), accompanied by the non-Fermi liquid behavior of the electrons. The results demonstrate the strong interactions between lattice, spin, and electron degrees of freedom in the vicinity of<i>T</i><sub>s</sub>and that the lattice degrees of freedom may play an essential role in driving the nematic order for FeSe.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1088/1361-648X/ad8715
Bhautik R Dhori, Aritri Mohanta, Prafulla K Jha
Triply degenerate nodal point (TP) fermions, lacking elementary particle counterparts, have been theoretically anticipated as quasiparticle excitations near specific band crossing points constrained by distinct space-group symmetries instead of Lorentz invariance. Here, based onfirst-principlescalculations and symmetry analysis, we demonstrate the presence of TP fermions in Heusler alloys. Furthermore, we predict that these Heusler alloys are dynamically stable, exhibiting TP fermions along four distinctC3axes in the F-43m space group. We show thatα-LiCaPdSb harbours peculiar Fermi arcs and surface states on the (111) and (001) crystal facets, owing to the coexistence of threefold rotational and time reversal symmetry. More interestingly, a modest tensile strain can increase the distance of fermions along the Γ-Lhigh symmetric line by as much as 21.10%, which give rise to measurable Fermi arcs. Furthermore, we investigate non-trivial topological insulator phase inβ-LiCaPdSb, by changing the chemical environment through placing transition metal atoms at various Wyckoff positions. Theβ-LiCaPdSb harbour a semi-metallic nature, and by breaking cubic symmetry, it undergoes a transition from semi-metal to a non-trivial topological insulator. In addition, for the first time, rare-earth LaPtBi half-Heusler alloy is examined under strain to uncover multiple band inversions associated with the TP fermionic phase. The observed multiple band inversion is entirely unaffected by spin-orbit coupling. We show that the LaPtBi compound hosts TP fermions, which are linked to aZ2topological invariant. Remarkably, with clear band crossings and multiple band inversion, we point out the possibilities of the LaPtBi for displaying a rich topological phase diagram. Our work provides a prototype material platform for experimental detection through angle-resolved photoemission spectroscopy or scanning tunnelling spectroscopy and practical spintronic applications.
{"title":"Topological signatures of triply degenerate fermions in Heusler alloys: an<i>ab initio</i>study.","authors":"Bhautik R Dhori, Aritri Mohanta, Prafulla K Jha","doi":"10.1088/1361-648X/ad8715","DOIUrl":"10.1088/1361-648X/ad8715","url":null,"abstract":"<p><p>Triply degenerate nodal point (TP) fermions, lacking elementary particle counterparts, have been theoretically anticipated as quasiparticle excitations near specific band crossing points constrained by distinct space-group symmetries instead of Lorentz invariance. Here, based on<i>first-principles</i>calculations and symmetry analysis, we demonstrate the presence of TP fermions in Heusler alloys. Furthermore, we predict that these Heusler alloys are dynamically stable, exhibiting TP fermions along four distinct<i>C</i><sub>3</sub>axes in the F-43m space group. We show that<i>α</i>-LiCaPdSb harbours peculiar Fermi arcs and surface states on the (111) and (001) crystal facets, owing to the coexistence of threefold rotational and time reversal symmetry. More interestingly, a modest tensile strain can increase the distance of fermions along the Γ-<i>L</i>high symmetric line by as much as 21.10%, which give rise to measurable Fermi arcs. Furthermore, we investigate non-trivial topological insulator phase in<i>β</i>-LiCaPdSb, by changing the chemical environment through placing transition metal atoms at various Wyckoff positions. The<i>β</i>-LiCaPdSb harbour a semi-metallic nature, and by breaking cubic symmetry, it undergoes a transition from semi-metal to a non-trivial topological insulator. In addition, for the first time, rare-earth LaPtBi half-Heusler alloy is examined under strain to uncover multiple band inversions associated with the TP fermionic phase. The observed multiple band inversion is entirely unaffected by spin-orbit coupling. We show that the LaPtBi compound hosts TP fermions, which are linked to aZ2topological invariant. Remarkably, with clear band crossings and multiple band inversion, we point out the possibilities of the LaPtBi for displaying a rich topological phase diagram. Our work provides a prototype material platform for experimental detection through angle-resolved photoemission spectroscopy or scanning tunnelling spectroscopy and practical spintronic applications.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Spin dynamics in the van der Waals antiferromagnet FeGa2S4with triangular lattices are investigated using magnetometry, neutron scattering, and muon spin relaxation measurements. The characteristic spin relaxation time is thoroughly clarified over thirteen orders of magnitude. Although the temperature dependence of DC and AC susceptibilities recalls a conventional spin-glass transition, nonlinear susceptibilities showing no divergences at the anomalous temperature,T∗=16.87(7) K, deny that and instead hint at other mechanisms. Elastic neutron scattering together with previously measured muon results depict a slowly fluctuated (∼10-5 s) spin state aboveT∗. In juxtaposing the underlying simplest structure among frustrated magnets with an intricate hierarchy of time scales, FeGa2S4can be a playground for studying temporal spin correlations in the two-dimensional limit.
通过磁力测量、中子散射和μ介子自旋弛豫测量,研究了具有三角形晶格的范德华反铁磁体 FeGa2S4 中的自旋动力学。自旋弛豫时间的特征在 13 个数量级上得到了彻底澄清。虽然直流和交流电感的温度依赖性让人联想到传统的自旋玻璃转变,但非线性电感在反常温度 T* = 16.87(7) K 时没有出现分歧,这否认了这一点,反而暗示了其他机制。弹性中子散射和先前测量到的μ介子结果描绘了一个高于T*的缓慢波动(约10-5秒)的自旋态。FeGa2S4将受挫磁体中最简单的底层结构与错综复杂的时间尺度层次并列在一起,可以成为研究二维极限中时间自旋相关性的乐园。
{"title":"Unusual spin dynamics in the van der Waals antiferromagnet FeGa<sub>2</sub>S<sub>4</sub>.","authors":"Yifei Tang, Yoshihiko Umemoto, Yo Kawamoto, Masahiro Kawamata, Shinichiro Asai, Yoichi Ikeda, Masaki Fujita, Yusuke Nambu","doi":"10.1088/1361-648X/ad861a","DOIUrl":"10.1088/1361-648X/ad861a","url":null,"abstract":"<p><p>Spin dynamics in the van der Waals antiferromagnet FeGa<sub>2</sub>S<sub>4</sub>with triangular lattices are investigated using magnetometry, neutron scattering, and muon spin relaxation measurements. The characteristic spin relaxation time is thoroughly clarified over thirteen orders of magnitude. Although the temperature dependence of DC and AC susceptibilities recalls a conventional spin-glass transition, nonlinear susceptibilities showing no divergences at the anomalous temperature,T∗=16.87(7) K, deny that and instead hint at other mechanisms. Elastic neutron scattering together with previously measured muon results depict a slowly fluctuated (∼10-5 s) spin state aboveT∗. In juxtaposing the underlying simplest structure among frustrated magnets with an intricate hierarchy of time scales, FeGa<sub>2</sub>S<sub>4</sub>can be a playground for studying temporal spin correlations in the two-dimensional limit.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1088/1361-648X/ad81a7
T T Zhao, Rui Li, C S Liu
Motivated by the experiment of electrostatic conveyor belt for indirect excitons (Winbowet al2011Phys. Rev. Lett.106196806), we studied the exciton patterns for understanding the exciton dynamics. By analyzing the exciton diffusion, we found that the patterns mainly came from the photoluminescence of two kinds of excitons. The patterns near the laser spot came from the hot excitons which can be regarded as the classical particles. However, the patterns far from the laser spot come from the cooled or coherent excitons. Considering the finite lifetime of Bosonic excitons and of the interactions between them, we built a time-dependent nonlinear Schrödinger equation including the non-Hermitian dissipation to describe the coherent exciton dynamics. The real-time and imaginary-time evolutions were used alternately to solve the Schrödinger equation to simulate the exciton diffusion accompanied by the exciton cooling in the moving lattices. By calculating the escape probability, we obtained the transport distances of the coherent excitons in the conveyor, consistent with the experimental data. The cooling speed of excitons was found to be important in coherent exciton transport. Moreover, the plateau in the average transport distance cannot be explained by the dynamical localization-delocalization transition induced by the disorders.
受间接
激子静电传送带实验的启发 [A. G. Winbow, textit{et al }, Phys.G. Winbow, textit{et al.}, Phys.textbf{106},
196806 (2011)],我们研究激子模式以了解激子
动力学。通过分析激子扩散,我们发现图案
主要来自两种激子的光致发光。靠近激光光斑的图案来自热激子,可视为经典粒子;而远离激光光斑的图案则来自冷却激子或相干激子。考虑到玻色激子的有限寿命以及它们之间的相互作用,我们建立了一个包含非赫米耗散的时变非线性薛定谔方程来描述相干激子动力学。为了模拟移动晶格中伴随激子冷却的激子扩散,我们交替使用实时和虚时演化来求解薛定谔方程。通过计算逃逸概率,我们得到了相干激子在传送带中的传输距离,这与实验数据一致。我们发现激子的冷却速度对相干激子的传输非常重要。此外,平均传输距离的高原现象不能用失调引起的动态局部化-非局部化转变来解释。
{"title":"What can we learn from the experiment of electrostatic conveyor belt for excitons?","authors":"T T Zhao, Rui Li, C S Liu","doi":"10.1088/1361-648X/ad81a7","DOIUrl":"10.1088/1361-648X/ad81a7","url":null,"abstract":"<p><p>Motivated by the experiment of electrostatic conveyor belt for indirect excitons (Winbow<i>et al</i>2011<i>Phys. Rev. Lett.</i><b>106</b>196806), we studied the exciton patterns for understanding the exciton dynamics. By analyzing the exciton diffusion, we found that the patterns mainly came from the photoluminescence of two kinds of excitons. The patterns near the laser spot came from the hot excitons which can be regarded as the classical particles. However, the patterns far from the laser spot come from the cooled or coherent excitons. Considering the finite lifetime of Bosonic excitons and of the interactions between them, we built a time-dependent nonlinear Schrödinger equation including the non-Hermitian dissipation to describe the coherent exciton dynamics. The real-time and imaginary-time evolutions were used alternately to solve the Schrödinger equation to simulate the exciton diffusion accompanied by the exciton cooling in the moving lattices. By calculating the escape probability, we obtained the transport distances of the coherent excitons in the conveyor, consistent with the experimental data. The cooling speed of excitons was found to be important in coherent exciton transport. Moreover, the plateau in the average transport distance cannot be explained by the dynamical localization-delocalization transition induced by the disorders.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142348893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1088/1361-648X/ad8697
Rania Amairi, Adlen Smiri, Sihem Jaziri
Bandgap engineering of low-dimensional materials forms a robust basis for advancements in optoelectronic technologies. Platinum diselenide (PtSe2) material exhibits a transition from semi-metal to semiconductor (SM-SC) when going from bulk to monolayer. In this work, density functional theory (DFT) with various van der Waals (vdW) corrections has been tested to study the effect of the layer-number on the structural and electronic properties of the PtSe2material. The considered vdW corrections gave different results regarding the number of layers at which the SM-SC transition occurs. This variation is due to the different interlayer distances found for each correction, revealing the sensitivity of the bandgap to this distance in addition to the layer number. In fact, the bandgap increases with the increasing of the interlayer distance, due to the energy shift of conduction and valence bands dominated by Se-pzorbitals. According to the comparison with the available experimental data, the vdW corrections vdW-DF and rVV10 gave the most accurate results. Moreover, the control of the interlayer distance via vertical compressive strain led to the bandgap tuning of semiconductor PtSe2BL. Indeed, a semi-metal character of PtSe2BL can be obtained under 17% vertical strain. Our work shows a deep understanding of the correlation between the structural and electronic properties, and thus a possibility to tune the bandgap by strain means.
{"title":"Layer-number and strain effects on the structural and electronic properties of PtSe<sub>2</sub>material.","authors":"Rania Amairi, Adlen Smiri, Sihem Jaziri","doi":"10.1088/1361-648X/ad8697","DOIUrl":"https://doi.org/10.1088/1361-648X/ad8697","url":null,"abstract":"<p><p>Bandgap engineering of low-dimensional materials forms a robust basis for advancements in optoelectronic technologies. Platinum diselenide (PtSe<sub>2</sub>) material exhibits a transition from semi-metal to semiconductor (SM-SC) when going from bulk to monolayer. In this work, density functional theory (DFT) with various van der Waals (vdW) corrections has been tested to study the effect of the layer-number on the structural and electronic properties of the PtSe<sub>2</sub>material. The considered vdW corrections gave different results regarding the number of layers at which the SM-SC transition occurs. This variation is due to the different interlayer distances found for each correction, revealing the sensitivity of the bandgap to this distance in addition to the layer number. In fact, the bandgap increases with the increasing of the interlayer distance, due to the energy shift of conduction and valence bands dominated by Se-<i>p<sub>z</sub></i>orbitals. According to the comparison with the available experimental data, the vdW corrections vdW-DF and rVV10 gave the most accurate results. Moreover, the control of the interlayer distance via vertical compressive strain led to the bandgap tuning of semiconductor PtSe<sub>2</sub>BL. Indeed, a semi-metal character of PtSe<sub>2</sub>BL can be obtained under 17% vertical strain. Our work shows a deep understanding of the correlation between the structural and electronic properties, and thus a possibility to tune the bandgap by strain means.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":"37 3","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}