首页 > 最新文献

Journal of Plant Interactions最新文献

英文 中文
Nitric oxide generated by Piriformospora indica-induced nitrate reductase promotes tobacco growth by regulating root architecture and ammonium and nitrate transporter gene expression 梨形孢菌诱导的硝酸还原酶产生的一氧化氮通过调节根结构和铵和硝酸盐转运蛋白基因表达促进烟草生长
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-08-11 DOI: 10.1080/17429145.2022.2108926
Han Li, Shenghua Fu, Jing-de Zhu, W. Gao, Lin Chen, Xiang Li, Shaoyu Zhang, Shan Zheng, Hengdi Zhang, Yanxia Liu
ABSTRACT Nitric oxide (NO) is involved not only in the regulation of plant growth, development, and stress responses but also in the regulation of plant-microbe interactions. Here, we demonstrate that Piriformospora indica can induce tobacco nitrate reductase to produce a NO signal in roots which enhances nitrogen uptake capacity by inducing the expression of ammonium and nitrate transporter genes and the development of lateral root and root hair, thereby promoting tobacco growth. In addition, the NO signal induced by P. indica is significantly different from that induced by the pathogen Phytophthora nicotianae. Inoculation with P. indica did not produce H2O2 and maintained high expression of Phytoglobin 1 in roots, resulting in a significantly lower NO level than in the roots inoculated with P. nicotianae. These findings suggest that an appropriate NO level is the likely basis of plant-P. indica symbiosis, which promotes the growth of host plants.
一氧化氮(NO)不仅参与植物生长发育和胁迫反应的调控,还参与植物与微生物相互作用的调控。在这里,我们证明梨形孢菌可以诱导烟草硝酸还原酶在根中产生NO信号,通过诱导铵和硝酸盐转运蛋白基因的表达以及侧根和根毛的发育来增强氮吸收能力,从而促进烟草生长。此外,P.indica诱导的NO信号与烟草疫霉菌诱导的NO明显不同。用P.indica接种不产生H2O2,并且在根中保持植物球蛋白1的高表达,导致NO水平显著低于用P.nicotianae接种的根。这些发现表明,适当的NO水平可能是植物P的基础。籼稻共生,促进寄主植物的生长。
{"title":"Nitric oxide generated by Piriformospora indica-induced nitrate reductase promotes tobacco growth by regulating root architecture and ammonium and nitrate transporter gene expression","authors":"Han Li, Shenghua Fu, Jing-de Zhu, W. Gao, Lin Chen, Xiang Li, Shaoyu Zhang, Shan Zheng, Hengdi Zhang, Yanxia Liu","doi":"10.1080/17429145.2022.2108926","DOIUrl":"https://doi.org/10.1080/17429145.2022.2108926","url":null,"abstract":"ABSTRACT Nitric oxide (NO) is involved not only in the regulation of plant growth, development, and stress responses but also in the regulation of plant-microbe interactions. Here, we demonstrate that Piriformospora indica can induce tobacco nitrate reductase to produce a NO signal in roots which enhances nitrogen uptake capacity by inducing the expression of ammonium and nitrate transporter genes and the development of lateral root and root hair, thereby promoting tobacco growth. In addition, the NO signal induced by P. indica is significantly different from that induced by the pathogen Phytophthora nicotianae. Inoculation with P. indica did not produce H2O2 and maintained high expression of Phytoglobin 1 in roots, resulting in a significantly lower NO level than in the roots inoculated with P. nicotianae. These findings suggest that an appropriate NO level is the likely basis of plant-P. indica symbiosis, which promotes the growth of host plants.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"861 - 872"},"PeriodicalIF":3.2,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45091534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
RNA interference (RNAi) of 2-Cys Prx gene enhances PSII photoinhibition but does not affect PSI activity in tobacco leaves under high-temperature stress 2-Cys-Prx基因的RNA干扰(RNAi)增强了高温胁迫下烟叶PSII的光抑制作用,但不影响PSI的活性
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-08-11 DOI: 10.1080/17429145.2022.2110291
Han Yu, Yuanyuan Huang, Peng Wang, Litao Wang, Zhihao Zhou, Yue Wang, Jiechen Wang, Hongbo Zhang, Kejun Yang, Huihui Zhang
ABSTRACT This study aimed to evaluate the effects of 2-Cys Prx gene inhibition on photochemical reaction and reactive oxygen species (ROS) metabolism under high temperature (35°C) with low light (HT + LL) or high temperature with high light (HT + HL) in tobacco. The results showed that HT significantly increased the production of and H2O2 compared with CK (25°C). Particularly, the oxidative damage of RNAi plants was significantly greater than that of wild type (WT) under HT + HL treatment, possibly due to the inhibition of superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities. HT treatment inhibited the photosystem II (PSII) activity, and the oxygen evolution complex (OEC) was the main injury site. Notably, the photosystem I (PSI) activity of WT and RNAi plants did not change significantly under HT + LL treatment compared with CK. Although the PSI activity of WT and RNAi plants decreased significantly under HT + HL treatment, there was no significant difference between WT and RNAi plants. Collectively, these findings indicate that high light increases the photoinhibition of PSII and PSI and oxidative damage under high-temperature stress. The results also revealed that 2-Cys Prx plays a crucial role in alleviating oxidative damage and PSII photoinhibition under high-temperature stress in tobacco.
摘要本研究旨在评估2-Cys-Prx基因抑制对高温(35°C)和弱光(HT)下光化学反应和活性氧(ROS)代谢的影响 + LL)或高温高光(HT + HL)。结果表明,与CK(25°C)相比,HT显著增加了H2O2的产生。特别是,在高温下,RNAi植物的氧化损伤明显大于野生型(WT) + HL处理,可能是由于超氧化物歧化酶(SOD)和抗坏血酸过氧化物酶(APX)活性受到抑制。HT处理抑制了光系统II(PSII)的活性,析氧复合物(OEC)是主要的损伤部位。值得注意的是,WT和RNAi植物的光系统I(PSI)活性在HT下没有显著变化 + LL处理与CK相比。尽管WT和RNAi植物的PSI活性在HT下显著降低 + HL处理,WT和RNAi植物之间没有显著差异。总之,这些发现表明,在高温胁迫下,高光增加了PSII和PSI的光抑制和氧化损伤。结果还表明,2-Cys-Prx在减轻烟草高温胁迫下的氧化损伤和PSII光抑制方面发挥着至关重要的作用。
{"title":"RNA interference (RNAi) of 2-Cys Prx gene enhances PSII photoinhibition but does not affect PSI activity in tobacco leaves under high-temperature stress","authors":"Han Yu, Yuanyuan Huang, Peng Wang, Litao Wang, Zhihao Zhou, Yue Wang, Jiechen Wang, Hongbo Zhang, Kejun Yang, Huihui Zhang","doi":"10.1080/17429145.2022.2110291","DOIUrl":"https://doi.org/10.1080/17429145.2022.2110291","url":null,"abstract":"ABSTRACT This study aimed to evaluate the effects of 2-Cys Prx gene inhibition on photochemical reaction and reactive oxygen species (ROS) metabolism under high temperature (35°C) with low light (HT + LL) or high temperature with high light (HT + HL) in tobacco. The results showed that HT significantly increased the production of and H2O2 compared with CK (25°C). Particularly, the oxidative damage of RNAi plants was significantly greater than that of wild type (WT) under HT + HL treatment, possibly due to the inhibition of superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities. HT treatment inhibited the photosystem II (PSII) activity, and the oxygen evolution complex (OEC) was the main injury site. Notably, the photosystem I (PSI) activity of WT and RNAi plants did not change significantly under HT + LL treatment compared with CK. Although the PSI activity of WT and RNAi plants decreased significantly under HT + HL treatment, there was no significant difference between WT and RNAi plants. Collectively, these findings indicate that high light increases the photoinhibition of PSII and PSI and oxidative damage under high-temperature stress. The results also revealed that 2-Cys Prx plays a crucial role in alleviating oxidative damage and PSII photoinhibition under high-temperature stress in tobacco.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"873 - 883"},"PeriodicalIF":3.2,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44351930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peace talks: symbiotic signaling molecules in arbuscular mycorrhizas and their potential application 和平谈判:丛枝菌根中的共生信号分子及其潜在应用
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-08-06 DOI: 10.1080/17429145.2022.2108150
Andrea Crosino, A. Genre
ABSTRACT Since the Green Revolution, intensive application of agrochemicals has increased productivity in agriculture, at a great cost in terms of water pollution, loss of soil fertility and biodiversity, and negative effects on human health. Scientific advance and increasing public awareness are driving a change toward sustainable practices. In such a context, the symbiosis between plants and arbuscular mycorrhizal (AM) fungi is extremely promising: AM interaction improves plant mineral nutrition and stress tolerance. In turn, AM fungi receive plant photosynthesis-derived carbon. A complex chemical dialogue mediates plant-fungus recognition and symbiosis establishment: AM fungi perceive root-secreted strigolactones, which promote spore germination, hyphal growth, branching and metabolism. Host roots recognize their symbionts through chitin-derived molecules. Such Myc–factors activate a range of symbiotic responses, preparing the plant to a successful association. Here we review the most recent advances in knowledge of AM signaling molecules, with a focus on their possible application.
自绿色革命以来,农用化学品的大量使用提高了农业生产力,但代价是水污染、土壤肥力和生物多样性的丧失以及对人类健康的负面影响。科学进步和公众意识的提高正在推动向可持续实践的转变。在这样的背景下,植物与丛枝菌根(AM)真菌之间的共生是非常有前途的:AM相互作用可以改善植物的矿物质营养和抗逆性。反过来,AM真菌接收植物光合作用产生的碳。一种复杂的化学对话介导了植物与真菌的识别和共生关系的建立:AM真菌感知根分泌的独脚金内酯,促进孢子萌发、菌丝生长、分支和代谢。寄主根系通过几丁质衍生的分子识别它们的共生体。这样的myc因子激活了一系列的共生反应,为植物的成功结合做准备。在这里,我们回顾了AM信号分子知识的最新进展,重点是它们可能的应用。
{"title":"Peace talks: symbiotic signaling molecules in arbuscular mycorrhizas and their potential application","authors":"Andrea Crosino, A. Genre","doi":"10.1080/17429145.2022.2108150","DOIUrl":"https://doi.org/10.1080/17429145.2022.2108150","url":null,"abstract":"ABSTRACT Since the Green Revolution, intensive application of agrochemicals has increased productivity in agriculture, at a great cost in terms of water pollution, loss of soil fertility and biodiversity, and negative effects on human health. Scientific advance and increasing public awareness are driving a change toward sustainable practices. In such a context, the symbiosis between plants and arbuscular mycorrhizal (AM) fungi is extremely promising: AM interaction improves plant mineral nutrition and stress tolerance. In turn, AM fungi receive plant photosynthesis-derived carbon. A complex chemical dialogue mediates plant-fungus recognition and symbiosis establishment: AM fungi perceive root-secreted strigolactones, which promote spore germination, hyphal growth, branching and metabolism. Host roots recognize their symbionts through chitin-derived molecules. Such Myc–factors activate a range of symbiotic responses, preparing the plant to a successful association. Here we review the most recent advances in knowledge of AM signaling molecules, with a focus on their possible application.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"824 - 839"},"PeriodicalIF":3.2,"publicationDate":"2022-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43221848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Volatile organic compounds in the interaction between plants and beneficial microorganisms 植物与有益微生物相互作用中的挥发性有机化合物
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-08-06 DOI: 10.1080/17429145.2022.2107243
Assunta Russo, S. Pollastri, M. Ruocco, M. M. Monti, F. Loreto
ABSTRACT A growing population coupled with a higher demand for food is putting pressure on agriculture. The use of synthetic pesticides and chemical fertilizers allowed us to boost agricultural productions, but at a great environmental cost. Exploitation of beneficial microorganism (BM)-plant interactions has been proposed as an eco-friendly solution to improve plant resistance to stresses and to increase productivity sustainably. We provide an overview of scientific evidence that this positive interaction is often mediated also by the release of microbial Volatile Organic Compounds (mVOCs). A few mVOCs are reported to have a double, not mutually exclusive, positive effect on plants, as plant growth promoters, and/or inducers of resistance against biotic and abiotic stress factors. They may also alter plant VOCs indirectly improving plant performances. However, mechanisms and functions of mVOCs need deeper investigation. By understanding mVOC modes of action on plants, further tools for sustainably improving plant productivity in agro-ecosystems may become soon available.
摘要人口增长和对粮食的需求增加给农业带来了压力。合成杀虫剂和化肥的使用使我们能够提高农业生产,但却付出了巨大的环境代价。有益微生物(BM)-植物相互作用的开发已被提议作为一种环保的解决方案,以提高植物对胁迫的抵抗力并可持续地提高生产力。我们概述了科学证据,证明这种积极的相互作用通常也是由微生物挥发性有机化合物(mVOCs)的释放介导的。据报道,一些mVOCs对植物具有双重而非相互排斥的积极作用,如植物生长促进剂和/或对生物和非生物胁迫因子的抗性诱导剂。它们还可能改变植物挥发性有机物,间接改善植物性能。然而,mVOCs的机制和功能还需要深入研究。通过了解mVOC对植物的作用模式,可持续提高农业生态系统植物生产力的进一步工具可能很快就会出现。
{"title":"Volatile organic compounds in the interaction between plants and beneficial microorganisms","authors":"Assunta Russo, S. Pollastri, M. Ruocco, M. M. Monti, F. Loreto","doi":"10.1080/17429145.2022.2107243","DOIUrl":"https://doi.org/10.1080/17429145.2022.2107243","url":null,"abstract":"ABSTRACT A growing population coupled with a higher demand for food is putting pressure on agriculture. The use of synthetic pesticides and chemical fertilizers allowed us to boost agricultural productions, but at a great environmental cost. Exploitation of beneficial microorganism (BM)-plant interactions has been proposed as an eco-friendly solution to improve plant resistance to stresses and to increase productivity sustainably. We provide an overview of scientific evidence that this positive interaction is often mediated also by the release of microbial Volatile Organic Compounds (mVOCs). A few mVOCs are reported to have a double, not mutually exclusive, positive effect on plants, as plant growth promoters, and/or inducers of resistance against biotic and abiotic stress factors. They may also alter plant VOCs indirectly improving plant performances. However, mechanisms and functions of mVOCs need deeper investigation. By understanding mVOC modes of action on plants, further tools for sustainably improving plant productivity in agro-ecosystems may become soon available.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"840 - 852"},"PeriodicalIF":3.2,"publicationDate":"2022-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44150659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Lead-Immobilization, transformation, and induced toxicity alleviation in sunflower using nanoscale Fe°/BC: Experimental insights with Mechanistic validations 纳米Fe°/BC对向日葵中铅的固定化、转化和诱导毒性减轻:机制验证的实验见解
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-08-03 DOI: 10.1080/17429145.2022.2107722
M. Aslam, M. Waris, Ihsan Muhammad, Maqbool Ahmed, Z. Khan, Z. Jabeen, Mohammad Yakoob Zehri, M. Arsalan, S. Rehman, A. M. Alnasrawi, Jawaher Alkahtani, M. S. Elshikh, Muhammad Rizwan, Shoaib Raza, Jinsong Deng, Adnan Raza Altaf
ABSTRACT Lead (Pb) is a biologically non-essential element in the soil that brutally affects plants and other living organisms in soil; hence, its removal has become a worldwide concern. In this work, a multifunctional nanoscale zerovalent-iron assisted biochar (nFe°/BC) was used to minimize the Pb bioavailability in soil with aim of alleviating the Pb-induced toxicity in sunflower. Results revealed that nFe°/BC treatment had significantly improved plant growth (58%), chlorophyll contents (66%), intracellular permeability (60%), and ratio factor (93%), while decreasing the Pb uptake (78%) in plants. The Pb-immobilization and transformation mechanisms were proposed, suggesting that the presence of organic functional groups over the nFe°/BC surface might induce the complex formation with Pb by the ions exchange process in soil solution. The XPS analysis confirmed that surface-active components (Fe+, O2−, O*, C═O) were the key factor for high Pb-immobilization within soil matrix. In addition, 87% of stable Pb species, including PbCO3, PbO, Pb (OH)2, and Pb-O-Fe were found in the soil surface. Current findings have exposed the diverse functions of nFe°/BC on plant health and established a phenomenon that nFe°/BC application could improve the plant agronomic attributes by regulating the homeostasis of antioxidants and Pb uptake.
铅(Pb)是土壤中的一种生物非必需元素,对土壤中的植物和其他生物具有严重影响;因此,它的清除已成为全世界关注的问题。在本研究中,利用纳米多功能零价铁辅助生物炭(nFe°/BC)降低土壤中铅的生物有效性,以减轻铅对向日葵的毒性。结果表明,nFe°/BC处理显著提高了植物生长(58%)、叶绿素含量(66%)、细胞内通透性(60%)和比值因子(93%),降低了植物对Pb的吸收(78%)。研究结果表明,nFe°/BC表面有机官能团的存在可能导致土壤溶液中离子交换过程中与Pb形成络合物。XPS分析证实,表面活性成分(Fe+, O2−,O*, C = O)是土壤基质内高铅固定的关键因素。此外,土壤表层有87%的Pb稳定种,包括PbCO3、PbO、Pb (OH)2和Pb- o - fe。目前的研究结果揭示了nFe°/BC对植物健康的多种作用,并确定了nFe°/BC可以通过调节抗氧化剂和铅吸收的动态平衡来改善植物农艺性状的现象。
{"title":"Lead-Immobilization, transformation, and induced toxicity alleviation in sunflower using nanoscale Fe°/BC: Experimental insights with Mechanistic validations","authors":"M. Aslam, M. Waris, Ihsan Muhammad, Maqbool Ahmed, Z. Khan, Z. Jabeen, Mohammad Yakoob Zehri, M. Arsalan, S. Rehman, A. M. Alnasrawi, Jawaher Alkahtani, M. S. Elshikh, Muhammad Rizwan, Shoaib Raza, Jinsong Deng, Adnan Raza Altaf","doi":"10.1080/17429145.2022.2107722","DOIUrl":"https://doi.org/10.1080/17429145.2022.2107722","url":null,"abstract":"ABSTRACT Lead (Pb) is a biologically non-essential element in the soil that brutally affects plants and other living organisms in soil; hence, its removal has become a worldwide concern. In this work, a multifunctional nanoscale zerovalent-iron assisted biochar (nFe°/BC) was used to minimize the Pb bioavailability in soil with aim of alleviating the Pb-induced toxicity in sunflower. Results revealed that nFe°/BC treatment had significantly improved plant growth (58%), chlorophyll contents (66%), intracellular permeability (60%), and ratio factor (93%), while decreasing the Pb uptake (78%) in plants. The Pb-immobilization and transformation mechanisms were proposed, suggesting that the presence of organic functional groups over the nFe°/BC surface might induce the complex formation with Pb by the ions exchange process in soil solution. The XPS analysis confirmed that surface-active components (Fe+, O2−, O*, C═O) were the key factor for high Pb-immobilization within soil matrix. In addition, 87% of stable Pb species, including PbCO3, PbO, Pb (OH)2, and Pb-O-Fe were found in the soil surface. Current findings have exposed the diverse functions of nFe°/BC on plant health and established a phenomenon that nFe°/BC application could improve the plant agronomic attributes by regulating the homeostasis of antioxidants and Pb uptake.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"812 - 823"},"PeriodicalIF":3.2,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43031122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Wood vinegar alleviates photosynthetic inhibition and oxidative damage caused by Pseudomonas syringae pv. tabaci (Pst) infection in tobacco leaves 木醋可减轻丁香假单胞菌的光合抑制和氧化损伤。烟草叶片中的烟粉虱(Pst)感染
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-08-03 DOI: 10.1080/17429145.2022.2106385
Yuan Ye, S. Hongwei, Wang Yue, Xu Zisong, Han Shixin, He Guoqiang, Yin Kuide, Huihui Zhang
ABSTRACT We used chlorophyll fluorescence technology and biochemical methods to analyze the effects of wood vinegar (WV) on the photosynthetic mechanism and reactive oxygen species metabolism of tobacco (Nicotiana tabacum L.) leaves infected by Pseudomonas syringae pv. tabaci (Pst). The results showed that Pst infection reduced the chlorophyll content and the activities of PSII and PSI, which inhibited the normal photosynthesis of tobacco leaves. However, pretreatment with WV alleviated the degradation of chlorophyll. Treatment with WV alleviated the downregulation of core gene expression in PSII and PSI and improved the photosynthetic electron transfer in Pst-infected leaves. The levels of expression of PetE, ATPa and ATPc in the Pst-infected leaves were significantly upregulated when pretreated with WV. Pst infection increased the rate of production of superoxide anions and the contents of hydrogen peroxide. WV pretreatment could eliminate the oxidative damage of Pst-infected leaves by enhancing the activities of peroxidase (POD) and glutathione peroxidase (GPx) and upregulating the levels of expression of the POD2 and GPX2 genes. In conclusion, pretreatment with WV can alleviate the photosynthetic inhibition and oxidative damage of tobacco leaves caused by Pst infection.
摘要利用叶绿素荧光技术和生物化学方法,分析了木醋(WV)对丁香假单胞菌(Pseudomonas syringae pv)感染烟草(Nicotiana tabacum L.)叶片光合机制和活性氧代谢的影响。烟草(Pst)。结果表明,Pst感染降低了烟叶的叶绿素含量,降低了PSII和PSI的活性,抑制了烟叶的正常光合作用。然而,WV预处理减轻了叶绿素的降解。WV处理减轻了PSII和PSI核心基因表达的下调,并改善了Pst感染叶片的光合电子传递。经WV预处理的Pst感染叶片中PetE、ATPa和ATPc的表达水平显著上调。Pst感染增加了超氧阴离子的产生率和过氧化氢的含量。WV预处理可以通过提高过氧化物酶(POD)和谷胱甘肽过氧化物酶(GPx)的活性以及上调POD2和GPX2基因的表达水平来消除Pst感染叶片的氧化损伤。总之,WV预处理可以减轻Pst感染对烟草叶片的光合抑制和氧化损伤。
{"title":"Wood vinegar alleviates photosynthetic inhibition and oxidative damage caused by Pseudomonas syringae pv. tabaci (Pst) infection in tobacco leaves","authors":"Yuan Ye, S. Hongwei, Wang Yue, Xu Zisong, Han Shixin, He Guoqiang, Yin Kuide, Huihui Zhang","doi":"10.1080/17429145.2022.2106385","DOIUrl":"https://doi.org/10.1080/17429145.2022.2106385","url":null,"abstract":"ABSTRACT We used chlorophyll fluorescence technology and biochemical methods to analyze the effects of wood vinegar (WV) on the photosynthetic mechanism and reactive oxygen species metabolism of tobacco (Nicotiana tabacum L.) leaves infected by Pseudomonas syringae pv. tabaci (Pst). The results showed that Pst infection reduced the chlorophyll content and the activities of PSII and PSI, which inhibited the normal photosynthesis of tobacco leaves. However, pretreatment with WV alleviated the degradation of chlorophyll. Treatment with WV alleviated the downregulation of core gene expression in PSII and PSI and improved the photosynthetic electron transfer in Pst-infected leaves. The levels of expression of PetE, ATPa and ATPc in the Pst-infected leaves were significantly upregulated when pretreated with WV. Pst infection increased the rate of production of superoxide anions and the contents of hydrogen peroxide. WV pretreatment could eliminate the oxidative damage of Pst-infected leaves by enhancing the activities of peroxidase (POD) and glutathione peroxidase (GPx) and upregulating the levels of expression of the POD2 and GPX2 genes. In conclusion, pretreatment with WV can alleviate the photosynthetic inhibition and oxidative damage of tobacco leaves caused by Pst infection.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"801 - 811"},"PeriodicalIF":3.2,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46660616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A synthetic cytokinin primes photosynthetic and growth response in grapevine under ion-independent salinity stress 一种合成的细胞分裂素在离子非依赖性盐胁迫下启动葡萄的光合和生长反应
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-07-21 DOI: 10.1080/17429145.2022.2102259
G. Montanaro, N. Briglia, L. Lopez, D. Amato, F. Panara, A. Petrozza, F. Cellini, V. Nuzzo
ABSTRACT Aiding optimal plant–environment interaction would favor plant resilience against environmental constrains including salt stress. We test the hypothesis that 6-Benzylaminopurine (BAP) primes grapevine’s salt tolerance in vines (Vitis vinifera) received salt water (NaCl 100 mM) through the modulation of gene expression of BAP (AHK4, AHP1) and salt-stress (CAT, APX) inducible genes and morpho-physiological traits. A subgroup of vines had previously (48 h) been primed with BAP (80 mg/L) before salt stress. The gene expressions were 30% (CAT) and 56% (APX) lower in primed salt-stressed vines than that in un-primed. Salt treatment did not increase leaf Na+ but it lowered stomatal conductance (g s), photosynthesis (A), stem water potential (less negative) and photosystem-II efficiency (F v/F m). Chlorophyll-a concentrations were 30% higher in BAP-primed compared to un-primed. Adverse effects of salt were significantly reduced, maintaining high A/g s, F v/F m and growth. After the relief of the stress, the BAP primed vines had a fast recovery.
植物与环境的最佳相互作用有助于植物抵御包括盐胁迫在内的环境约束。本文通过对6-苯氨基嘌呤(6-Benzylaminopurine, BAP)基因(AHK4、AHP1)和盐胁迫诱导基因(CAT、APX)的表达及形态生理性状的调控,验证了在100mm NaCl环境下葡萄(Vitis vinifera)的耐盐性。一个亚组葡萄藤在盐胁迫前(48 h)用BAP (80 mg/L)进行了预处理。与未处理相比,盐胁迫处理下基因表达量分别降低了30% (CAT)和56% (APX)。盐处理没有增加叶片Na+,但降低了气孔导度(g s)、光合作用(A)、茎水势(较少负)和光系统ii效率(F v/F m),叶绿素A浓度比未处理高30%。盐的不良影响显著降低,保持较高的A/g s、F / v/F m和生长。胁迫解除后,经BAP处理的葡萄植株恢复较快。
{"title":"A synthetic cytokinin primes photosynthetic and growth response in grapevine under ion-independent salinity stress","authors":"G. Montanaro, N. Briglia, L. Lopez, D. Amato, F. Panara, A. Petrozza, F. Cellini, V. Nuzzo","doi":"10.1080/17429145.2022.2102259","DOIUrl":"https://doi.org/10.1080/17429145.2022.2102259","url":null,"abstract":"ABSTRACT Aiding optimal plant–environment interaction would favor plant resilience against environmental constrains including salt stress. We test the hypothesis that 6-Benzylaminopurine (BAP) primes grapevine’s salt tolerance in vines (Vitis vinifera) received salt water (NaCl 100 mM) through the modulation of gene expression of BAP (AHK4, AHP1) and salt-stress (CAT, APX) inducible genes and morpho-physiological traits. A subgroup of vines had previously (48 h) been primed with BAP (80 mg/L) before salt stress. The gene expressions were 30% (CAT) and 56% (APX) lower in primed salt-stressed vines than that in un-primed. Salt treatment did not increase leaf Na+ but it lowered stomatal conductance (g s), photosynthesis (A), stem water potential (less negative) and photosystem-II efficiency (F v/F m). Chlorophyll-a concentrations were 30% higher in BAP-primed compared to un-primed. Adverse effects of salt were significantly reduced, maintaining high A/g s, F v/F m and growth. After the relief of the stress, the BAP primed vines had a fast recovery.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"789 - 800"},"PeriodicalIF":3.2,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45462752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
RNA editing analysis of some chloroplast transcripts and its response to light and salt stress in Mesona chinensis Benth 中国中介叶绿体转录物的RNA编辑分析及其对光照和盐胁迫的响应
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-07-18 DOI: 10.1080/17429145.2022.2101700
Changqian Quan, Fan Wei, Su-Hang Huang, Kun-hua Wei, Shimin Chen, J. Miao, Danfeng Tang
ABSTRACT To study the effects of light quality and salt stress on RNA editing of Mesona chinensis Benth (MCB) chloroplast genome, the RNA editing sites in the MCB chloroplast protein-coding genes were predicted and then partially verified by PCR and RT-PCR. Meanwhile, the RNA editing efficiency and relative expression of accD, ndhB, ndhF, and rpoB under red and blue light and salt stress conditions were analyzed. A total of 45 editing sites were predicted and all the editing sites were C-to-U conversion. 12 predicted editing sites were verified. The expression level of accD was down-regulated under red light compared with the blue light, as well as down-regulated under salt stress compared with the normal condition (CK). Additionally, the editing efficiency of accD-287 was 96.7% under normal condition, higher than that under salt stress (93.3%) but lower than those under blue and red light (both 100%). In ndhB, ndhB-494 was partially edited under normal growth condition but completely edited under blue and red light and salt stress, and other sites were completely edited under all conditions. It was indicated that the editing frequency was not positively relevant to the transcript level. Besides, accD-287 and ndhB-494 might be involved in response to salt stress.
摘要为了研究光照质量和盐胁迫对中华鳖叶绿体基因组RNA编辑的影响,对其叶绿体蛋白编码基因中的RNA编辑位点进行了预测,并通过PCR和RT-PCR进行了部分验证。同时,分析了在红光、蓝光和盐胁迫条件下accD、ndhB、ndhF和rpoB的RNA编辑效率和相对表达。总共预测了45个编辑站点,所有编辑站点都是C-to-U转换。对12个预测编辑位点进行了验证。accD的表达水平在红光下比蓝光下下调,在盐胁迫下比正常条件下下调(CK)。此外,accD-287在正常条件下的编辑效率为96.7%,高于盐胁迫下(93.3%),但低于蓝光和红光下(均为100%)。在ndhB中,ndhB-494在正常生长条件下被部分编辑,但在蓝光、红光和盐胁迫下被完全编辑,其他位点在所有条件下都被完全编辑。有人指出,编辑频率与转录水平没有正相关。此外,accD-287和ndhB-494可能参与了对盐胁迫的反应。
{"title":"RNA editing analysis of some chloroplast transcripts and its response to light and salt stress in Mesona chinensis Benth","authors":"Changqian Quan, Fan Wei, Su-Hang Huang, Kun-hua Wei, Shimin Chen, J. Miao, Danfeng Tang","doi":"10.1080/17429145.2022.2101700","DOIUrl":"https://doi.org/10.1080/17429145.2022.2101700","url":null,"abstract":"ABSTRACT To study the effects of light quality and salt stress on RNA editing of Mesona chinensis Benth (MCB) chloroplast genome, the RNA editing sites in the MCB chloroplast protein-coding genes were predicted and then partially verified by PCR and RT-PCR. Meanwhile, the RNA editing efficiency and relative expression of accD, ndhB, ndhF, and rpoB under red and blue light and salt stress conditions were analyzed. A total of 45 editing sites were predicted and all the editing sites were C-to-U conversion. 12 predicted editing sites were verified. The expression level of accD was down-regulated under red light compared with the blue light, as well as down-regulated under salt stress compared with the normal condition (CK). Additionally, the editing efficiency of accD-287 was 96.7% under normal condition, higher than that under salt stress (93.3%) but lower than those under blue and red light (both 100%). In ndhB, ndhB-494 was partially edited under normal growth condition but completely edited under blue and red light and salt stress, and other sites were completely edited under all conditions. It was indicated that the editing frequency was not positively relevant to the transcript level. Besides, accD-287 and ndhB-494 might be involved in response to salt stress.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"779 - 788"},"PeriodicalIF":3.2,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42998799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Advances in heavy metals detoxification, tolerance, accumulation mechanisms, and properties enhancement of Leersia hexandra Swartz 六棱李对重金属的解毒、耐受、积累机制及性能增强研究进展
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-07-14 DOI: 10.1080/17429145.2022.2096266
Mouyixing Chen, Xue-hong Zhang, P. Jiang, Jiun-Cheng Liu, Shaohong You, Youran Lv
ABSTRACT Heavy metal (HM) pollution is increasingly becoming a serious threat to public and environmental health with more-than-ever rapid industrialization and urbanization activities. Phytoremediation is a sustainable and largely accepted technology because of its low cost, simple operation, environmental safety and recognized as a promising approach for environmental remediation applications. Hyperaccumulator plants are the core of phytoremediation, and the study of their accumulation, detoxification, and HM tolerance mechanisms is fundamental to the progress of phytoremediation. In-depth investigations to understand the physiochemical and dissipation pathways of hyperaccumulators such as Leersia hexandra Swartz (L. hexandra) which can serve as a useful tool in environmental remediation applications. L. hexandra as a chromium hyperaccumulator plant, can also be a remarkable choice to remediate copper and nickel contaminated soils. Therefore, this article summarizes the previous studies on the detoxification strategies/tolerance mechanisms and the enhancement of the properties of L. hexandra, which will inspire its future applications in the sustainable environmental cleanup initiatives.
摘要随着工业化和城市化进程的加快,重金属污染日益成为公众健康和环境健康的严重威胁。植物修复是一种可持续的、被广泛接受的技术,因为它成本低、操作简单、环境安全,被认为是一种很有前途的环境修复应用方法。超积累植物是植物修复的核心,研究其积累、解毒和HM耐受机制是植物修复进展的基础。深入研究以了解超积累植物的理化和耗散途径,如Leersia hexandra Swartz(L.hexandr),这可以作为环境修复应用中的有用工具。L.hexandra作为一种铬超积累植物,也是修复铜和镍污染土壤的一个显著选择。因此,本文总结了以往关于L.hexandra解毒策略/耐受机制和增强其特性的研究,这将启发其未来在可持续环境清理倡议中的应用。
{"title":"Advances in heavy metals detoxification, tolerance, accumulation mechanisms, and properties enhancement of Leersia hexandra Swartz","authors":"Mouyixing Chen, Xue-hong Zhang, P. Jiang, Jiun-Cheng Liu, Shaohong You, Youran Lv","doi":"10.1080/17429145.2022.2096266","DOIUrl":"https://doi.org/10.1080/17429145.2022.2096266","url":null,"abstract":"ABSTRACT Heavy metal (HM) pollution is increasingly becoming a serious threat to public and environmental health with more-than-ever rapid industrialization and urbanization activities. Phytoremediation is a sustainable and largely accepted technology because of its low cost, simple operation, environmental safety and recognized as a promising approach for environmental remediation applications. Hyperaccumulator plants are the core of phytoremediation, and the study of their accumulation, detoxification, and HM tolerance mechanisms is fundamental to the progress of phytoremediation. In-depth investigations to understand the physiochemical and dissipation pathways of hyperaccumulators such as Leersia hexandra Swartz (L. hexandra) which can serve as a useful tool in environmental remediation applications. L. hexandra as a chromium hyperaccumulator plant, can also be a remarkable choice to remediate copper and nickel contaminated soils. Therefore, this article summarizes the previous studies on the detoxification strategies/tolerance mechanisms and the enhancement of the properties of L. hexandra, which will inspire its future applications in the sustainable environmental cleanup initiatives.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"766 - 778"},"PeriodicalIF":3.2,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45531131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Molybdenum-induced effects on nitrogen absorption and utilization under different nitrogen sources in Vitis vinifera 不同氮源条件下钼对葡萄氮素吸收利用的影响
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-07-07 DOI: 10.1080/17429145.2022.2089752
Li Liu, Mengjiao An, Xiu-jie Li, Zhen Han, Shao-xuan Li, Bo Li
ABSTRACT Nitrogen (N) in different forms has been demonstrated to play significant roles in plants. However, little is known about molybdenum (Mo) effects on N absorption and utilization in grapevine seedlings grown under different N sources. The present study used a sand culture system to analyze the impact of Mo application (0 μM; 1 μM) on N absorption and utilization in grapevine (Vitislabrusca × V. vinifera ‘Shine Muscat’ (rootstock 3309 m)) young potted seedlings under different N sources (NO3 −, NH4NO3 and NH4 +). The different N forms and Mo application significantly influenced dry matter accumulation, and root architecture and activity. The effects of Mo on total N content followed the order of (NH4NO3 > NO3 − > NH4 +). Moreover, Mo and N induced VvMOT1 and VvNRT1.1 expression synergistically. Mo supply altered the utilization of NO3 −, NO2 −, and NH4 + in grapevines under different N sources. NH4NO3 showed the highest effect while NH4 + the least. Furthermore, the 15N-labeling experiment showed that the 15N content in shoot and root and the 15N-use efficiency were the highest after Mo application under NH4NO3 source, indicating the synergistic effects of Mo with the co-application of NO3 − and NH4 + sources. The study’s findings provide insights on Mo and N fertilizer utilization for cultivation and production practices in fruits.
摘要不同形态的氮已被证明在植物中发挥着重要作用。然而,钼对不同氮源下葡萄幼苗氮吸收和利用的影响却知之甚少。本研究采用砂培系统,分析了在不同氮源(NO3−、NH4NO3和NH4+)条件下施钼(0μM;1μM)对葡萄(Vitislabrusca×V.vinifera‘Shine Muscat’(砧木3309m))幼盆栽幼苗氮吸收和利用的影响。不同的N形态和Mo施用对干物质积累、根系结构和活性有显著影响。Mo对总氮含量的影响顺序为(NH4NO3) > NO3− > NH4+)。此外,Mo和N协同诱导VvMOT1和VvNRT1.1的表达。钼的供应改变了不同氮源下葡萄对NO3−、NO2−和NH4+的利用。NH4NO3效果最好,NH4+效果最低。此外,15N标记实验表明,在NH4NO3源下施用Mo后,地上部和根部的15N含量和15N利用效率最高,表明Mo与NO3−和NH4+源的共同施用具有协同作用。这项研究的结果为钼和氮肥料在水果种植和生产实践中的应用提供了见解。
{"title":"Molybdenum-induced effects on nitrogen absorption and utilization under different nitrogen sources in Vitis vinifera","authors":"Li Liu, Mengjiao An, Xiu-jie Li, Zhen Han, Shao-xuan Li, Bo Li","doi":"10.1080/17429145.2022.2089752","DOIUrl":"https://doi.org/10.1080/17429145.2022.2089752","url":null,"abstract":"ABSTRACT\u0000 Nitrogen (N) in different forms has been demonstrated to play significant roles in plants. However, little is known about molybdenum (Mo) effects on N absorption and utilization in grapevine seedlings grown under different N sources. The present study used a sand culture system to analyze the impact of Mo application (0 μM; 1 μM) on N absorption and utilization in grapevine (Vitislabrusca × V. vinifera ‘Shine Muscat’ (rootstock 3309 m)) young potted seedlings under different N sources (NO3 −, NH4NO3 and NH4 +). The different N forms and Mo application significantly influenced dry matter accumulation, and root architecture and activity. The effects of Mo on total N content followed the order of (NH4NO3 > NO3 − > NH4 +). Moreover, Mo and N induced VvMOT1 and VvNRT1.1 expression synergistically. Mo supply altered the utilization of NO3 −, NO2 −, and NH4 + in grapevines under different N sources. NH4NO3 showed the highest effect while NH4 + the least. Furthermore, the 15N-labeling experiment showed that the 15N content in shoot and root and the 15N-use efficiency were the highest after Mo application under NH4NO3 source, indicating the synergistic effects of Mo with the co-application of NO3 − and NH4 + sources. The study’s findings provide insights on Mo and N fertilizer utilization for cultivation and production practices in fruits.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"756 - 765"},"PeriodicalIF":3.2,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43204374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Journal of Plant Interactions
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1