首页 > 最新文献

Journal of Plant Interactions最新文献

英文 中文
Genome-wide identification of the LBD transcription factor genes in common bean (Phaseolus vulgaris L.) and expression analysis under different abiotic stresses 菜豆LBD转录因子基因的全基因组鉴定及在不同非生物胁迫下的表达分析
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-07-04 DOI: 10.1080/17429145.2022.2095449
Yanli Du, Qiang Zhao, Weijia Li, Jing Geng, Siqi Li, Xiankai Yuan, Yanhua Gu, Jingwen Zhong, Yuxian Zhang, Jidao Du
ABSTRACT Lateral organ boundary Domain (LBD) proteins are plant-specific transcription factors that play a key role in plant lateral organ development and stress tolerance. However, LBD gene has not been identified in the common bean (Phaseolus vulgaris L.). Here, a total of 47 common bean LBD genes (PvLBDs) were identified. Members of the same subfamily had similar genetic structures. Synteny analysis indicated that LBDs in the common bean genome have greater collinearity with soybean (Glycine max L.) than with Arabidopsis and rice (Oryza sativa L.). Additionally, 9 pair of segmental duplication genes were identified by collinearity analysis. Phytozome data analysis showed significant differences in PvLBD gene expression abundance between different developmental stages of the same tissue. The qRT-PCR results showed that NaCl, CdCl2, and HgCl2 stresses up-regulated 19% and down-regulated 81% of the PvLBD genes. This study provides a basis for further analysis of the function of the PvLBD gene family.
摘要侧方器官边界结构域(LBD)蛋白是一种植物特异性转录因子,在植物侧方器官发育和抗逆性中起着关键作用。然而,在普通菜豆(Phaseolus vulgaris L.)中尚未鉴定出LBD基因。本文共鉴定出47个普通菜豆LBD基因(PvLBD)。同一亚科的成员具有相似的遗传结构。Synteny分析表明,普通大豆基因组中的LBD与大豆(Glycine max L.)的共线性大于与拟南芥(Arabidopsis)和水稻(Oryza sativa L.)的同线性。Phytozome数据分析显示,同一组织不同发育阶段的PvLBD基因表达丰度存在显著差异。qRT-PCR结果显示,NaCl、CdCl2和HgCl2胁迫上调和下调了19%的PvLBD基因。本研究为进一步分析PvLBD基因家族的功能提供了基础。
{"title":"Genome-wide identification of the LBD transcription factor genes in common bean (Phaseolus vulgaris L.) and expression analysis under different abiotic stresses","authors":"Yanli Du, Qiang Zhao, Weijia Li, Jing Geng, Siqi Li, Xiankai Yuan, Yanhua Gu, Jingwen Zhong, Yuxian Zhang, Jidao Du","doi":"10.1080/17429145.2022.2095449","DOIUrl":"https://doi.org/10.1080/17429145.2022.2095449","url":null,"abstract":"ABSTRACT Lateral organ boundary Domain (LBD) proteins are plant-specific transcription factors that play a key role in plant lateral organ development and stress tolerance. However, LBD gene has not been identified in the common bean (Phaseolus vulgaris L.). Here, a total of 47 common bean LBD genes (PvLBDs) were identified. Members of the same subfamily had similar genetic structures. Synteny analysis indicated that LBDs in the common bean genome have greater collinearity with soybean (Glycine max L.) than with Arabidopsis and rice (Oryza sativa L.). Additionally, 9 pair of segmental duplication genes were identified by collinearity analysis. Phytozome data analysis showed significant differences in PvLBD gene expression abundance between different developmental stages of the same tissue. The qRT-PCR results showed that NaCl, CdCl2, and HgCl2 stresses up-regulated 19% and down-regulated 81% of the PvLBD genes. This study provides a basis for further analysis of the function of the PvLBD gene family.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"731 - 743"},"PeriodicalIF":3.2,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47692872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
OsMATE6 gene putatively involved in host defense response toward susceptibility against Rhizoctonia solani in rice OsMATE6基因可能参与水稻对丝核菌易感性的宿主防御反应
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-07-04 DOI: 10.1080/17429145.2022.2094003
Rupnaz Kaur, Pankaj Kumar, Arun Kumar, Umesh Preethi Praba, Rancy Birdi, Rajveer Singh, G. Kaur, J. S. Lore, K. Neelam, Y. Vikal
ABSTRACT Sheath blight caused by Rhizoctonia solani AG1-IA is the second most serious disease of rice worldwide. Elucidating the role of multi-drug and toxic compound extrusion (MATE) gene family in host-pathogens interactions may uncover a new possible way to comprehend the mechanism of sheath blight resistance in rice. We foremost explored the role of OsMATE genes against R. solani resistance through comparative transcriptomics in PR114 (susceptible) and ShB-8 (moderately resistant) at 24 and 48 hpi (hours post-inoculation) of R. solani infection, respectively. Six OsMATE genes were differentially expressed and further validated through qRT-PCR. OsMATE6 gene was identified as a potential candidate for sheath blight susceptibility as it was significantly up-regulated in PR114. OsMATE6 is conserved within the wild relatives and might be translocated from Oryza nivara during the domestication of rice. Further studies are focused to verify its role by overexpression and protein interactions to understand the molecular mechanism of sheath blight resistance.
摘要水稻纹章枯病是由茄核菌AG1-IA引起的世界第二大水稻病害。阐明多药和有毒化合物挤压(MATE)基因家族在寄主-病原体相互作用中的作用,可能为理解水稻抗纹叶枯病机制开辟一条新的途径。我们首先通过分别在R.solani感染24和48 hpi(接种后数小时)的PR114(易感)和ShB-8(中度抗性)中的比较转录组学,探讨了OsMATE基因对R.solani抗性的作用。6个OsMATE基因被差异表达,并通过qRT-PCR进一步验证。OsMATE6基因在PR114中被显著上调,因此被鉴定为纹叶枯病易感性的潜在候选基因。OsMATE6在野生亲缘关系中是保守的,可能在水稻驯化过程中从水稻中转移。进一步的研究重点是通过过表达和蛋白质相互作用来验证其作用,以了解抗纹叶枯病的分子机制。
{"title":"OsMATE6 gene putatively involved in host defense response toward susceptibility against Rhizoctonia solani in rice","authors":"Rupnaz Kaur, Pankaj Kumar, Arun Kumar, Umesh Preethi Praba, Rancy Birdi, Rajveer Singh, G. Kaur, J. S. Lore, K. Neelam, Y. Vikal","doi":"10.1080/17429145.2022.2094003","DOIUrl":"https://doi.org/10.1080/17429145.2022.2094003","url":null,"abstract":"ABSTRACT Sheath blight caused by Rhizoctonia solani AG1-IA is the second most serious disease of rice worldwide. Elucidating the role of multi-drug and toxic compound extrusion (MATE) gene family in host-pathogens interactions may uncover a new possible way to comprehend the mechanism of sheath blight resistance in rice. We foremost explored the role of OsMATE genes against R. solani resistance through comparative transcriptomics in PR114 (susceptible) and ShB-8 (moderately resistant) at 24 and 48 hpi (hours post-inoculation) of R. solani infection, respectively. Six OsMATE genes were differentially expressed and further validated through qRT-PCR. OsMATE6 gene was identified as a potential candidate for sheath blight susceptibility as it was significantly up-regulated in PR114. OsMATE6 is conserved within the wild relatives and might be translocated from Oryza nivara during the domestication of rice. Further studies are focused to verify its role by overexpression and protein interactions to understand the molecular mechanism of sheath blight resistance.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"744 - 755"},"PeriodicalIF":3.2,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42413450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Azotobacter chroococcum F8/2: a multitasking bacterial strain in sugar beet biopriming 固氮细菌choococcus F8/2:一种在甜菜生物发酵中的多任务菌株
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-06-30 DOI: 10.1080/17429145.2022.2091802
Slavica Kerečki, I. Pećinar, Vera Karličić, N. Mirković, I. Kljujev, V. Raičević, Jelena Jovičić-Petrović
ABSTRACT This study assesses the effects of Azotobacter biopriming on the early development of sugar beet. Azotobacter chroococcum F8/2 was screened for plant growth promoting characteristics and biopriming effects were estimated through germination parameters and the structural changes of the root tissues. A. chroococcum F8/2 was characterized as a contributor to nitrogen, iron, and potassium availability, as well as a producer of auxin and 1-aminocyclopropane-1-carboxilic acid deaminase. Applied biopriming had reduced mean germination time by 34.44% and increased vigor I by 90.99% compared to control. Volatile blend comprised 47.67% ethanol, 32.01% 2-methyl-propanol, 17.32% 3-methyl-1-butanol, and a trace of 2,3-butanedione. Root micromorphological analysis of bioprimed sugar beet revealed a considerable increase in primary, secondary xylem area, and vessels size. Obtained results determine A. chroococcum F8/2 as a successful biopriming agent, and active participant in nutrient availability and hormonal status modulation affecting root vascular tissue.
摘要本研究评估了固氮菌生物农药对甜菜早期发育的影响。筛选了慢球菌(Azotobacter chroococcum)F8/2的促生长特性,并通过发芽参数和根组织结构变化来评价其生物鉴别效果。A.chroococcum F8/2被表征为氮、铁和钾有效性的贡献者,以及生长素和1-氨基环丙烷-1-羧酸脱氨酶的产生者。与对照组相比,应用生物农药使平均发芽时间缩短了34.44%,活力I提高了90.99%。挥发性混合物包括47.67%的乙醇、32.01%的2-甲基丙醇、17.32%的3-甲基-1-丁醇和痕量的2,3-丁二酮。生物聚合甜菜根的微观形态分析显示,初级、次级木质部面积和导管大小显著增加。所获得的结果确定A.chroococcumF8/2是一种成功的生物农药,也是影响根血管组织的营养物质可用性和激素状态调节的积极参与者。
{"title":"Azotobacter chroococcum F8/2: a multitasking bacterial strain in sugar beet biopriming","authors":"Slavica Kerečki, I. Pećinar, Vera Karličić, N. Mirković, I. Kljujev, V. Raičević, Jelena Jovičić-Petrović","doi":"10.1080/17429145.2022.2091802","DOIUrl":"https://doi.org/10.1080/17429145.2022.2091802","url":null,"abstract":"ABSTRACT This study assesses the effects of Azotobacter biopriming on the early development of sugar beet. Azotobacter chroococcum F8/2 was screened for plant growth promoting characteristics and biopriming effects were estimated through germination parameters and the structural changes of the root tissues. A. chroococcum F8/2 was characterized as a contributor to nitrogen, iron, and potassium availability, as well as a producer of auxin and 1-aminocyclopropane-1-carboxilic acid deaminase. Applied biopriming had reduced mean germination time by 34.44% and increased vigor I by 90.99% compared to control. Volatile blend comprised 47.67% ethanol, 32.01% 2-methyl-propanol, 17.32% 3-methyl-1-butanol, and a trace of 2,3-butanedione. Root micromorphological analysis of bioprimed sugar beet revealed a considerable increase in primary, secondary xylem area, and vessels size. Obtained results determine A. chroococcum F8/2 as a successful biopriming agent, and active participant in nutrient availability and hormonal status modulation affecting root vascular tissue.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"719 - 730"},"PeriodicalIF":3.2,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42876331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Pragmatic role of microbial plant biostimulants in abiotic stress relief in crop plants 微生物植物生物刺激剂在作物非生物胁迫缓解中的实用作用
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-06-22 DOI: 10.1080/17429145.2022.2091801
Sajid Ali, Y. Moon, M. Hamayun, M. Khan, K. Bibi, In-Jung Lee
ABSTRACT Abiotic stresses lead to excessive crop yield losses and are a major threat to agriculture. It is essential to equip crops with multi-stress tolerance to mitigate the adverse effects of abiotic stressors and meet the demands of the increasing global population. The association between plants and symbiotic microorganisms is involved in key functions at the ecosystem and plant levels, and the application of microbial plant biostimulants (MPBs) is a sustainable strategy to augment plant growth and productivity, even under abiotic stress conditions. Several different microorganisms can be used as MPBs to enhance plant growth and produce progressive and reproducible effects on crops. In the present review, we assessed the current knowledge on the use of MPBs, discuss the diversity and characteristics of MPBs, and provide a meticulous assessment of the possible applications of MPBs in abiotic stress relief in crops.
摘要:非生物胁迫导致作物产量损失过大,是对农业的主要威胁。至关重要的是,为作物配备耐多种胁迫的能力,以减轻非生物胁迫的不利影响,满足日益增长的全球人口的需求。植物和共生微生物之间的联系涉及生态系统和植物层面的关键功能,即使在非生物胁迫条件下,微生物植物生物刺激剂(MPBs)的应用也是提高植物生长和生产力的可持续策略。几种不同的微生物可以用作MPB来促进植物生长,并对作物产生渐进和可再生的影响。在本综述中,我们评估了目前关于多溴联苯使用的知识,讨论了多溴联苯的多样性和特征,并对多溴联苯在作物非生物胁迫缓解中的可能应用进行了细致的评估。
{"title":"Pragmatic role of microbial plant biostimulants in abiotic stress relief in crop plants","authors":"Sajid Ali, Y. Moon, M. Hamayun, M. Khan, K. Bibi, In-Jung Lee","doi":"10.1080/17429145.2022.2091801","DOIUrl":"https://doi.org/10.1080/17429145.2022.2091801","url":null,"abstract":"ABSTRACT Abiotic stresses lead to excessive crop yield losses and are a major threat to agriculture. It is essential to equip crops with multi-stress tolerance to mitigate the adverse effects of abiotic stressors and meet the demands of the increasing global population. The association between plants and symbiotic microorganisms is involved in key functions at the ecosystem and plant levels, and the application of microbial plant biostimulants (MPBs) is a sustainable strategy to augment plant growth and productivity, even under abiotic stress conditions. Several different microorganisms can be used as MPBs to enhance plant growth and produce progressive and reproducible effects on crops. In the present review, we assessed the current knowledge on the use of MPBs, discuss the diversity and characteristics of MPBs, and provide a meticulous assessment of the possible applications of MPBs in abiotic stress relief in crops.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"705 - 718"},"PeriodicalIF":3.2,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42748571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 34
Cu and Zn Stress affect the photosynthetic and antioxidative systems of alfalfa (Medicago sativa) Cu和Zn胁迫对紫花苜蓿光合和抗氧化系统的影响
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-06-17 DOI: 10.1080/17429145.2022.2074157
Hongzhi Chen, Linlin Song, Hongbo Zhang, Jiechen Wang, Yue Wang, Huihui Zhang
ABSTRACT Cu and Zn are common and potentially harmful heavy metals to plants, animals and humans. Herein, we investigated the effects of Cu and Zn stress on the photosynthesis and tolerance mechanism of alfalfa plants to ROS using fluorescence and biochemical methods. The results showed that Cu stress significantly reduced the chlorophyll content of the leaves, while Zn stress only reduced the Chl a content. The F v/F m decreased significantly under Cu stress but was not affected by Zn treatment. However, the PI ABS of the leaves were sensitive to Cu and Zn stress. Both Cu and Zn stress resulted in the weakening of the ability of PQ library to accept electrons, the damage of OEC and the inhibition of the electron transfer from QA - to QB. Moreover, Cu stress also dissociated the thylakoids of leaves, but Zn stress did not significantly damage it. In Cu and Zn stressed leaves, the reduction of RC/CS m significantly increased the ABS/RC and TR o/RC values. When the stress intensified, the value of DI o/RC increased indicated a plant self-protection mechanism that eliminates excess energy in the PSII reaction center and increases the energy for heat dissipation per unit reaction center. Cu stress significantly increased the O2 - production rate, H2O2 content, and MDA accumulation in the leaves. However, Zn stress exhibited a minimal effect on the ROS production and oxidative damage in the alfalfa leaves but increased the O2 - production rate at the concentration of 800 μmol·L−1. Cu stress increased the activities of SOD, POD, CAT, APX, and GPX in the leaves; however, leaves adapts to Zn stress by enhancing the activities of SOD and GPX. Thus under Cu stress, the degree of photoinhibition and oxidative damage in alfalfa leaves were significantly higher than under Zn stress.
铜和锌是常见的对植物、动物和人类都有潜在危害的重金属。本文采用荧光和生化两种方法,研究了Cu和Zn胁迫对紫花苜蓿光合作用的影响及其对活性氧的耐受机制。结果表明,Cu胁迫显著降低了叶片叶绿素含量,而Zn胁迫仅降低了Chl a含量。Cu胁迫下fv /F m显著降低,Zn处理对fv /F m影响不大。而叶片的PI - ABS对Cu和Zn胁迫较为敏感。Cu和Zn胁迫均导致PQ库接受电子的能力减弱,OEC损伤,电子从QA -向QB转移受到抑制。Cu胁迫对叶片类囊体也有解离作用,但Zn胁迫对类囊体的损伤不显著。Cu和Zn胁迫叶片中,RC/CS m的降低显著提高了ABS/RC和TR /RC值。当胁迫加剧时,DI o/RC值增加,表明植物存在自我保护机制,消除PSII反应中心的多余能量,增加单位反应中心的散热能量。Cu胁迫显著提高了叶片的产氧速率、H2O2含量和MDA积累量。800 μmol·L−1 Zn胁迫对紫花苜蓿叶片ROS生成和氧化损伤影响不大,但对O2生成速率有促进作用。Cu胁迫提高了叶片中SOD、POD、CAT、APX和GPX的活性;叶片通过提高SOD和GPX活性来适应Zn胁迫。因此,Cu胁迫下紫花苜蓿叶片的光抑制和氧化损伤程度显著高于Zn胁迫。
{"title":"Cu and Zn Stress affect the photosynthetic and antioxidative systems of alfalfa (Medicago sativa)","authors":"Hongzhi Chen, Linlin Song, Hongbo Zhang, Jiechen Wang, Yue Wang, Huihui Zhang","doi":"10.1080/17429145.2022.2074157","DOIUrl":"https://doi.org/10.1080/17429145.2022.2074157","url":null,"abstract":"ABSTRACT Cu and Zn are common and potentially harmful heavy metals to plants, animals and humans. Herein, we investigated the effects of Cu and Zn stress on the photosynthesis and tolerance mechanism of alfalfa plants to ROS using fluorescence and biochemical methods. The results showed that Cu stress significantly reduced the chlorophyll content of the leaves, while Zn stress only reduced the Chl a content. The F v/F m decreased significantly under Cu stress but was not affected by Zn treatment. However, the PI ABS of the leaves were sensitive to Cu and Zn stress. Both Cu and Zn stress resulted in the weakening of the ability of PQ library to accept electrons, the damage of OEC and the inhibition of the electron transfer from QA - to QB. Moreover, Cu stress also dissociated the thylakoids of leaves, but Zn stress did not significantly damage it. In Cu and Zn stressed leaves, the reduction of RC/CS m significantly increased the ABS/RC and TR o/RC values. When the stress intensified, the value of DI o/RC increased indicated a plant self-protection mechanism that eliminates excess energy in the PSII reaction center and increases the energy for heat dissipation per unit reaction center. Cu stress significantly increased the O2 - production rate, H2O2 content, and MDA accumulation in the leaves. However, Zn stress exhibited a minimal effect on the ROS production and oxidative damage in the alfalfa leaves but increased the O2 - production rate at the concentration of 800 μmol·L−1. Cu stress increased the activities of SOD, POD, CAT, APX, and GPX in the leaves; however, leaves adapts to Zn stress by enhancing the activities of SOD and GPX. Thus under Cu stress, the degree of photoinhibition and oxidative damage in alfalfa leaves were significantly higher than under Zn stress.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"695 - 704"},"PeriodicalIF":3.2,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"60093788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The impact of root exudates, volatile organic compounds, and common mycorrhizal networks on root system architecture in root-root interactions 根系分泌物、挥发性有机化合物和常见菌根网络对根系相互作用中根系结构的影响
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-06-16 DOI: 10.1080/17429145.2022.2086307
Xiu Zhang, Jingfan Yan, M. Khashi u Rahman, Fengzhi Wu
ABSTRACT Plants constantly communicate with coexisting neighbors and adjust their physiological and morphological characteristics, including changes in root system architecture (RSA). Increased or decreased biomass accumulation, horizontal and vertical asymmetric distribution are the main behavioral performances. Some evidence has shown that these performances are associated with plant plasticity such as secretion of root exudates and release of volatile organic compounds (VOCs) and describe the role of common mycorrhizal networks (CMNs) as a communication pathway during belowground interplant interaction. Here, we highlight the direct role of root exudates as cues and signals and the indirect effects via regulating soil nutrients and soil microorganisms of these media in root-root interactions on RSA have been taken into consideration. At last, the existing knowledge gaps and potential research directions have been outlined for a better understanding of plant belowground interactions via RSA.
摘要植物不断与共存的邻居交流,调整其生理和形态特征,包括根系结构的变化。生物量积累增加或减少、水平和垂直不对称分布是主要的行为表现。一些证据表明,这些性能与植物的可塑性有关,如根系分泌物的分泌和挥发性有机化合物(VOC)的释放,并描述了常见菌根网络(CMN)作为地下-套种相互作用中的通信途径的作用。在这里,我们强调了根系分泌物作为线索和信号的直接作用,以及通过调节土壤养分和这些介质的土壤微生物在根系与RSA相互作用中的间接影响。最后,概述了现有的知识差距和潜在的研究方向,以便通过RSA更好地了解植物与地下的相互作用。
{"title":"The impact of root exudates, volatile organic compounds, and common mycorrhizal networks on root system architecture in root-root interactions","authors":"Xiu Zhang, Jingfan Yan, M. Khashi u Rahman, Fengzhi Wu","doi":"10.1080/17429145.2022.2086307","DOIUrl":"https://doi.org/10.1080/17429145.2022.2086307","url":null,"abstract":"ABSTRACT Plants constantly communicate with coexisting neighbors and adjust their physiological and morphological characteristics, including changes in root system architecture (RSA). Increased or decreased biomass accumulation, horizontal and vertical asymmetric distribution are the main behavioral performances. Some evidence has shown that these performances are associated with plant plasticity such as secretion of root exudates and release of volatile organic compounds (VOCs) and describe the role of common mycorrhizal networks (CMNs) as a communication pathway during belowground interplant interaction. Here, we highlight the direct role of root exudates as cues and signals and the indirect effects via regulating soil nutrients and soil microorganisms of these media in root-root interactions on RSA have been taken into consideration. At last, the existing knowledge gaps and potential research directions have been outlined for a better understanding of plant belowground interactions via RSA.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"685 - 694"},"PeriodicalIF":3.2,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48926588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Phenotypical, physiological and molecular assessment of drought tolerance of five Egyptian teosinte genotypes 五种埃及黄颡鱼基因型耐旱性的表型、生理和分子评估
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-06-07 DOI: 10.1080/17429145.2022.2085335
A. Bondok, W. Mousa, Asmaa A. M. Rady, K. Saad-Allah
ABSTRACT Prolonged drought presents a serious challenge to the agricultural sector. The main concern of this work was to assess the phenotypical, physiological, and molecular responses of five teosinte (Zea mexicana Schrad L.) genotypes (Ba, Gm1, Gm2, Gm3 and Gm4). In a two-season (2020 and 2021) field experiment, fifteen-day-old teosinte plants were subjected to well-watered (15-day watering frequency) as a control, moderate drought (25-day watering frequency), and extreme drought (35-day watering frequency) treatments. Drought negatively affected growth, yield, chlorophyll, and POD activity of all genotypes, but promoted soluble sugars and proteins, osmoregulatory molecules (glycinebetaine, amino acids, and proline), non-enzymatic antioxidants (phenols, flavonoids, and alkaloids), and SOD activity. Furthermore, long-term water stress upregulated MOCOS, Rad17, NCED1, CAT1, and P5CS genes expression, with Gm3 and Gm4 being the most drought-tolerant genotypes. These findings could be employed in breeding programs to develop tolerant genotypes to address the challenges posed by climate changes like drought.
长期干旱给农业部门带来了严峻的挑战。本研究主要研究了5种大刍草(Zea mexicana Schrad L.)基因型(Ba、Gm1、Gm2、Gm3和Gm4)的表型、生理和分子反应。在两季(2020年和2021年)的田间试验中,15日龄大刍草分别进行了充足水分(15天浇灌频率)、中度干旱(25天浇灌频率)和极端干旱(35天浇灌频率)处理作为对照。干旱对所有基因型的生长、产量、叶绿素和POD活性都有负面影响,但促进了可溶性糖和蛋白质、渗透调节分子(甘氨酸、氨基酸和脯氨酸)、非酶抗氧化剂(酚类、黄酮类和生物碱)和SOD活性。此外,长期水分胁迫上调了MOCOS、Rad17、NCED1、CAT1和P5CS基因的表达,其中Gm3和Gm4是最耐旱的基因型。这些发现可以用于培育耐受性基因型的育种项目,以应对干旱等气候变化带来的挑战。
{"title":"Phenotypical, physiological and molecular assessment of drought tolerance of five Egyptian teosinte genotypes","authors":"A. Bondok, W. Mousa, Asmaa A. M. Rady, K. Saad-Allah","doi":"10.1080/17429145.2022.2085335","DOIUrl":"https://doi.org/10.1080/17429145.2022.2085335","url":null,"abstract":"ABSTRACT Prolonged drought presents a serious challenge to the agricultural sector. The main concern of this work was to assess the phenotypical, physiological, and molecular responses of five teosinte (Zea mexicana Schrad L.) genotypes (Ba, Gm1, Gm2, Gm3 and Gm4). In a two-season (2020 and 2021) field experiment, fifteen-day-old teosinte plants were subjected to well-watered (15-day watering frequency) as a control, moderate drought (25-day watering frequency), and extreme drought (35-day watering frequency) treatments. Drought negatively affected growth, yield, chlorophyll, and POD activity of all genotypes, but promoted soluble sugars and proteins, osmoregulatory molecules (glycinebetaine, amino acids, and proline), non-enzymatic antioxidants (phenols, flavonoids, and alkaloids), and SOD activity. Furthermore, long-term water stress upregulated MOCOS, Rad17, NCED1, CAT1, and P5CS genes expression, with Gm3 and Gm4 being the most drought-tolerant genotypes. These findings could be employed in breeding programs to develop tolerant genotypes to address the challenges posed by climate changes like drought.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"656 - 673"},"PeriodicalIF":3.2,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41897727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Synergistic effect of phytohormone-producing ectomycorrhizal fungus Suillus luteus and fertilizer GGR6 on Pinus massoniana growth 产激素外生菌根真菌叶黄松与肥料GGR6对马尾松生长的协同效应
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-06-01 DOI: 10.1080/17429145.2022.2081369
Xueyu Pan, Jinhua Zhang, Zhenwen Xue, Junfeng Liang, Yanliu Chen, Ying Liu
ABSTRACT Suillus luteus is an edible ectomycorrhizal fungus (EMF). The S. luteus strain LS88 secretes many phytohormones, including salicylic acid (SA) and indole-3-carboxylic acid (ICA). LS88 was inoculated to the tree Pinus massoniana and treated with the amino acid fertilizer GGR6. Plant growth parameters, plant enzyme activities, chlorophyll contents, and element contents were analyzed. Our results show that GGR6 may help the development of S. luteus-P. massoniana ectomycorrhiza. Moreover, LS88 and GGR6 synergistically affect P. massoniana growth and element uptake. Phytohormone detection on the roots of LS88-inoculated P. massoniana seedlings showed that LS88 could significantly increase the ICA content within a week. The SA content in the roots in the inoculated group seedlings increased slightly, but the salicylic acid 2-O-β-glucoside (SAG) content decreased. Therefore, we speculate GGR6 may enhance the growth-promoting effect of EMF on plants, and LS88 affects P. massoniana growth through secreting phytohormones.
摘要:木犀是一种可食用的外生菌根真菌。木犀菌株LS88分泌许多植物激素,包括水杨酸(SA)和吲哚-3-羧酸(ICA)。将LS88接种到马尾松上,用氨基酸肥料GGR6处理。分析了植物生长参数、植物酶活性、叶绿素含量和元素含量。我们的研究结果表明GGR6可能有助于S.luteus-P的发育。马尾松外生菌根。LS88和GGR6对马尾松生长和元素吸收有协同作用。对接种LS88的马尾松幼苗根部的植物激素检测表明,LS88能在一周内显著提高ICA含量。接种组幼苗根系SA含量略有增加,水杨酸2-O-β-葡萄糖苷(SAG)含量下降。因此,我们推测GGR6可能增强EMF对植物的促生长作用,LS88通过分泌植物激素影响马尾松的生长。
{"title":"Synergistic effect of phytohormone-producing ectomycorrhizal fungus Suillus luteus and fertilizer GGR6 on Pinus massoniana growth","authors":"Xueyu Pan, Jinhua Zhang, Zhenwen Xue, Junfeng Liang, Yanliu Chen, Ying Liu","doi":"10.1080/17429145.2022.2081369","DOIUrl":"https://doi.org/10.1080/17429145.2022.2081369","url":null,"abstract":"ABSTRACT Suillus luteus is an edible ectomycorrhizal fungus (EMF). The S. luteus strain LS88 secretes many phytohormones, including salicylic acid (SA) and indole-3-carboxylic acid (ICA). LS88 was inoculated to the tree Pinus massoniana and treated with the amino acid fertilizer GGR6. Plant growth parameters, plant enzyme activities, chlorophyll contents, and element contents were analyzed. Our results show that GGR6 may help the development of S. luteus-P. massoniana ectomycorrhiza. Moreover, LS88 and GGR6 synergistically affect P. massoniana growth and element uptake. Phytohormone detection on the roots of LS88-inoculated P. massoniana seedlings showed that LS88 could significantly increase the ICA content within a week. The SA content in the roots in the inoculated group seedlings increased slightly, but the salicylic acid 2-O-β-glucoside (SAG) content decreased. Therefore, we speculate GGR6 may enhance the growth-promoting effect of EMF on plants, and LS88 affects P. massoniana growth through secreting phytohormones.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"643 - 655"},"PeriodicalIF":3.2,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46461124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proline metabolism regulation in Spartina alterniflora and SaP5CS2 gene positively regulates salt stress tolerance in transgenic Arabidopsis thaliana 互花米草脯氨酸代谢调控和SaP5CS2基因正调控转基因拟南芥耐盐性
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-05-26 DOI: 10.1080/17429145.2022.2080291
Yang Zhao, Yingying He, Xixi Wang, Chang-feng Qu, J. Miao
ABSTRACT It has been discovered that many plants accumulate proline in response to osmotic stress. However, the interaction between salinity stress and proline metabolism-related genes has not been unequivocally identified in Spartina alterniflora. In our research, we successfully cloned key genes: SaP5CS1 and SaP5CS2, SaOAT, SaProT and correlated with expression profiles including SaPDH were also investigated. As the key enzyme genes for proline metabolism, the up-regulated expression of SaP5CS2 played a leading part under salt stress. Chlorophyll contents decreased gradually degree in leaves with prolonged salt stress time. Additionally, transgenic Arabidopsis overexpressing SaP5CS2 showed high tolerance to salt stress and accumulated more proline and H2O2 content was also reduced in salt stress condition. This study provided a foundation for deciphering the molecular osmoregulation underlying proline metabolism in S. alterniflora and SaP5CS2 may play an important role in conferred salinity tolerance by the regulation of proline.
研究发现,许多植物在渗透胁迫下积累脯氨酸。然而,在互花米草中,盐胁迫与脯氨酸代谢相关基因之间的相互作用尚未得到明确的鉴定。在我们的研究中,我们成功克隆了关键基因SaP5CS1和SaP5CS2, SaOAT, SaProT,并研究了与SaPDH等表达谱相关的基因。作为脯氨酸代谢的关键酶基因,盐胁迫下SaP5CS2的表达上调起主导作用。随着盐胁迫时间的延长,叶片叶绿素含量逐渐降低。此外,过表达SaP5CS2的转基因拟南芥对盐胁迫表现出较高的耐受性,在盐胁迫条件下积累的脯氨酸和H2O2含量也有所降低。本研究为解读互花草脯氨酸代谢的分子渗透调控奠定了基础,SaP5CS2可能通过脯氨酸的调控在互花草耐盐性中发挥重要作用。
{"title":"Proline metabolism regulation in Spartina alterniflora and SaP5CS2 gene positively regulates salt stress tolerance in transgenic Arabidopsis thaliana","authors":"Yang Zhao, Yingying He, Xixi Wang, Chang-feng Qu, J. Miao","doi":"10.1080/17429145.2022.2080291","DOIUrl":"https://doi.org/10.1080/17429145.2022.2080291","url":null,"abstract":"ABSTRACT It has been discovered that many plants accumulate proline in response to osmotic stress. However, the interaction between salinity stress and proline metabolism-related genes has not been unequivocally identified in Spartina alterniflora. In our research, we successfully cloned key genes: SaP5CS1 and SaP5CS2, SaOAT, SaProT and correlated with expression profiles including SaPDH were also investigated. As the key enzyme genes for proline metabolism, the up-regulated expression of SaP5CS2 played a leading part under salt stress. Chlorophyll contents decreased gradually degree in leaves with prolonged salt stress time. Additionally, transgenic Arabidopsis overexpressing SaP5CS2 showed high tolerance to salt stress and accumulated more proline and H2O2 content was also reduced in salt stress condition. This study provided a foundation for deciphering the molecular osmoregulation underlying proline metabolism in S. alterniflora and SaP5CS2 may play an important role in conferred salinity tolerance by the regulation of proline.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"632 - 642"},"PeriodicalIF":3.2,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42437625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Comprehensive comparative analysis and expression profiles and effects on physiological response of DEAD-box RNA helicase genes in Lumnitzera littorea (Jack) Voigt under cold stress 冷胁迫下白腰蓝DEAD-box RNA解旋酶基因表达谱及对生理反应的影响
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-05-23 DOI: 10.1080/17429145.2022.2074158
Lulu Hao, Ying Zhang, Yin Li, Linxia Bai, Danfei Yue, Huiyu Zhang, Chun-ying Zheng
ABSTRACT The DEAD-box family has been shown to play an important role in a variety of abiotic stresses, but little is known in studies of mangrove plants. Here, the effects of cold stress on various physiological changes and the role of the DEAD-box RNA helicase family in response to cold stress were determined. First, we identified 73 DEAD-box RNA helicase family members in L. littorea. Second, the evolutionary relationships between the DEAD family in L. littorea and the model species Arabidopsis thaliana were investigated by evolutionary phylogenetic analysis. Finally, qRT-PCR study of representative DEAD-box genes showed that DEAD-box genes played a major role in the low-temperature stress response of L. littorea. Furthermore, we found that LlDEAD48, LlDEAD36, and LlDEAD47 might be involved in the maintenance of chlorophyll function, and LlDEAD43 might play a role in the maintenance of mitochondrial function in L. littorea under cold stress.
DEAD盒家族已被证明在各种非生物胁迫中发挥着重要作用,但在红树林植物的研究中知之甚少。在此,确定了冷应激对各种生理变化的影响以及DEAD-box RNA解旋酶家族在应对冷应激中的作用。首先,我们在L.littorea中鉴定了73个DEAD-box RNA解旋酶家族成员。其次,通过进化系统发育分析,研究了L.littorea DEAD家族与模式种拟南芥的进化关系。最后,对具有代表性的DEAD-box基因的qRT-PCR研究表明,DEAD-box-基因在littorea的低温胁迫反应中起着重要作用。此外,我们发现在冷胁迫下,LlDEAD48、LlDEAD36和LlDEAD47可能参与维持littorea的叶绿素功能,而LlDEAD43可能参与维持线粒体功能。
{"title":"Comprehensive comparative analysis and expression profiles and effects on physiological response of DEAD-box RNA helicase genes in Lumnitzera littorea (Jack) Voigt under cold stress","authors":"Lulu Hao, Ying Zhang, Yin Li, Linxia Bai, Danfei Yue, Huiyu Zhang, Chun-ying Zheng","doi":"10.1080/17429145.2022.2074158","DOIUrl":"https://doi.org/10.1080/17429145.2022.2074158","url":null,"abstract":"ABSTRACT The DEAD-box family has been shown to play an important role in a variety of abiotic stresses, but little is known in studies of mangrove plants. Here, the effects of cold stress on various physiological changes and the role of the DEAD-box RNA helicase family in response to cold stress were determined. First, we identified 73 DEAD-box RNA helicase family members in L. littorea. Second, the evolutionary relationships between the DEAD family in L. littorea and the model species Arabidopsis thaliana were investigated by evolutionary phylogenetic analysis. Finally, qRT-PCR study of representative DEAD-box genes showed that DEAD-box genes played a major role in the low-temperature stress response of L. littorea. Furthermore, we found that LlDEAD48, LlDEAD36, and LlDEAD47 might be involved in the maintenance of chlorophyll function, and LlDEAD43 might play a role in the maintenance of mitochondrial function in L. littorea under cold stress.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"595 - 607"},"PeriodicalIF":3.2,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46301547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Journal of Plant Interactions
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1