首页 > 最新文献

Journal of Plant Interactions最新文献

英文 中文
Lead-Immobilization, transformation, and induced toxicity alleviation in sunflower using nanoscale Fe°/BC: Experimental insights with Mechanistic validations 纳米Fe°/BC对向日葵中铅的固定化、转化和诱导毒性减轻:机制验证的实验见解
IF 3.2 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2022-08-03 DOI: 10.1080/17429145.2022.2107722
M. Aslam, M. Waris, Ihsan Muhammad, Maqbool Ahmed, Z. Khan, Z. Jabeen, Mohammad Yakoob Zehri, M. Arsalan, S. Rehman, A. M. Alnasrawi, Jawaher Alkahtani, M. S. Elshikh, Muhammad Rizwan, Shoaib Raza, Jinsong Deng, Adnan Raza Altaf
ABSTRACT Lead (Pb) is a biologically non-essential element in the soil that brutally affects plants and other living organisms in soil; hence, its removal has become a worldwide concern. In this work, a multifunctional nanoscale zerovalent-iron assisted biochar (nFe°/BC) was used to minimize the Pb bioavailability in soil with aim of alleviating the Pb-induced toxicity in sunflower. Results revealed that nFe°/BC treatment had significantly improved plant growth (58%), chlorophyll contents (66%), intracellular permeability (60%), and ratio factor (93%), while decreasing the Pb uptake (78%) in plants. The Pb-immobilization and transformation mechanisms were proposed, suggesting that the presence of organic functional groups over the nFe°/BC surface might induce the complex formation with Pb by the ions exchange process in soil solution. The XPS analysis confirmed that surface-active components (Fe+, O2−, O*, C═O) were the key factor for high Pb-immobilization within soil matrix. In addition, 87% of stable Pb species, including PbCO3, PbO, Pb (OH)2, and Pb-O-Fe were found in the soil surface. Current findings have exposed the diverse functions of nFe°/BC on plant health and established a phenomenon that nFe°/BC application could improve the plant agronomic attributes by regulating the homeostasis of antioxidants and Pb uptake.
铅(Pb)是土壤中的一种生物非必需元素,对土壤中的植物和其他生物具有严重影响;因此,它的清除已成为全世界关注的问题。在本研究中,利用纳米多功能零价铁辅助生物炭(nFe°/BC)降低土壤中铅的生物有效性,以减轻铅对向日葵的毒性。结果表明,nFe°/BC处理显著提高了植物生长(58%)、叶绿素含量(66%)、细胞内通透性(60%)和比值因子(93%),降低了植物对Pb的吸收(78%)。研究结果表明,nFe°/BC表面有机官能团的存在可能导致土壤溶液中离子交换过程中与Pb形成络合物。XPS分析证实,表面活性成分(Fe+, O2−,O*, C = O)是土壤基质内高铅固定的关键因素。此外,土壤表层有87%的Pb稳定种,包括PbCO3、PbO、Pb (OH)2和Pb- o - fe。目前的研究结果揭示了nFe°/BC对植物健康的多种作用,并确定了nFe°/BC可以通过调节抗氧化剂和铅吸收的动态平衡来改善植物农艺性状的现象。
{"title":"Lead-Immobilization, transformation, and induced toxicity alleviation in sunflower using nanoscale Fe°/BC: Experimental insights with Mechanistic validations","authors":"M. Aslam, M. Waris, Ihsan Muhammad, Maqbool Ahmed, Z. Khan, Z. Jabeen, Mohammad Yakoob Zehri, M. Arsalan, S. Rehman, A. M. Alnasrawi, Jawaher Alkahtani, M. S. Elshikh, Muhammad Rizwan, Shoaib Raza, Jinsong Deng, Adnan Raza Altaf","doi":"10.1080/17429145.2022.2107722","DOIUrl":"https://doi.org/10.1080/17429145.2022.2107722","url":null,"abstract":"ABSTRACT Lead (Pb) is a biologically non-essential element in the soil that brutally affects plants and other living organisms in soil; hence, its removal has become a worldwide concern. In this work, a multifunctional nanoscale zerovalent-iron assisted biochar (nFe°/BC) was used to minimize the Pb bioavailability in soil with aim of alleviating the Pb-induced toxicity in sunflower. Results revealed that nFe°/BC treatment had significantly improved plant growth (58%), chlorophyll contents (66%), intracellular permeability (60%), and ratio factor (93%), while decreasing the Pb uptake (78%) in plants. The Pb-immobilization and transformation mechanisms were proposed, suggesting that the presence of organic functional groups over the nFe°/BC surface might induce the complex formation with Pb by the ions exchange process in soil solution. The XPS analysis confirmed that surface-active components (Fe+, O2−, O*, C═O) were the key factor for high Pb-immobilization within soil matrix. In addition, 87% of stable Pb species, including PbCO3, PbO, Pb (OH)2, and Pb-O-Fe were found in the soil surface. Current findings have exposed the diverse functions of nFe°/BC on plant health and established a phenomenon that nFe°/BC application could improve the plant agronomic attributes by regulating the homeostasis of antioxidants and Pb uptake.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43031122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Wood vinegar alleviates photosynthetic inhibition and oxidative damage caused by Pseudomonas syringae pv. tabaci (Pst) infection in tobacco leaves 木醋可减轻丁香假单胞菌的光合抑制和氧化损伤。烟草叶片中的烟粉虱(Pst)感染
IF 3.2 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2022-08-03 DOI: 10.1080/17429145.2022.2106385
Yuan Ye, S. Hongwei, Wang Yue, Xu Zisong, Han Shixin, He Guoqiang, Yin Kuide, Huihui Zhang
ABSTRACT We used chlorophyll fluorescence technology and biochemical methods to analyze the effects of wood vinegar (WV) on the photosynthetic mechanism and reactive oxygen species metabolism of tobacco (Nicotiana tabacum L.) leaves infected by Pseudomonas syringae pv. tabaci (Pst). The results showed that Pst infection reduced the chlorophyll content and the activities of PSII and PSI, which inhibited the normal photosynthesis of tobacco leaves. However, pretreatment with WV alleviated the degradation of chlorophyll. Treatment with WV alleviated the downregulation of core gene expression in PSII and PSI and improved the photosynthetic electron transfer in Pst-infected leaves. The levels of expression of PetE, ATPa and ATPc in the Pst-infected leaves were significantly upregulated when pretreated with WV. Pst infection increased the rate of production of superoxide anions and the contents of hydrogen peroxide. WV pretreatment could eliminate the oxidative damage of Pst-infected leaves by enhancing the activities of peroxidase (POD) and glutathione peroxidase (GPx) and upregulating the levels of expression of the POD2 and GPX2 genes. In conclusion, pretreatment with WV can alleviate the photosynthetic inhibition and oxidative damage of tobacco leaves caused by Pst infection.
摘要利用叶绿素荧光技术和生物化学方法,分析了木醋(WV)对丁香假单胞菌(Pseudomonas syringae pv)感染烟草(Nicotiana tabacum L.)叶片光合机制和活性氧代谢的影响。烟草(Pst)。结果表明,Pst感染降低了烟叶的叶绿素含量,降低了PSII和PSI的活性,抑制了烟叶的正常光合作用。然而,WV预处理减轻了叶绿素的降解。WV处理减轻了PSII和PSI核心基因表达的下调,并改善了Pst感染叶片的光合电子传递。经WV预处理的Pst感染叶片中PetE、ATPa和ATPc的表达水平显著上调。Pst感染增加了超氧阴离子的产生率和过氧化氢的含量。WV预处理可以通过提高过氧化物酶(POD)和谷胱甘肽过氧化物酶(GPx)的活性以及上调POD2和GPX2基因的表达水平来消除Pst感染叶片的氧化损伤。总之,WV预处理可以减轻Pst感染对烟草叶片的光合抑制和氧化损伤。
{"title":"Wood vinegar alleviates photosynthetic inhibition and oxidative damage caused by Pseudomonas syringae pv. tabaci (Pst) infection in tobacco leaves","authors":"Yuan Ye, S. Hongwei, Wang Yue, Xu Zisong, Han Shixin, He Guoqiang, Yin Kuide, Huihui Zhang","doi":"10.1080/17429145.2022.2106385","DOIUrl":"https://doi.org/10.1080/17429145.2022.2106385","url":null,"abstract":"ABSTRACT We used chlorophyll fluorescence technology and biochemical methods to analyze the effects of wood vinegar (WV) on the photosynthetic mechanism and reactive oxygen species metabolism of tobacco (Nicotiana tabacum L.) leaves infected by Pseudomonas syringae pv. tabaci (Pst). The results showed that Pst infection reduced the chlorophyll content and the activities of PSII and PSI, which inhibited the normal photosynthesis of tobacco leaves. However, pretreatment with WV alleviated the degradation of chlorophyll. Treatment with WV alleviated the downregulation of core gene expression in PSII and PSI and improved the photosynthetic electron transfer in Pst-infected leaves. The levels of expression of PetE, ATPa and ATPc in the Pst-infected leaves were significantly upregulated when pretreated with WV. Pst infection increased the rate of production of superoxide anions and the contents of hydrogen peroxide. WV pretreatment could eliminate the oxidative damage of Pst-infected leaves by enhancing the activities of peroxidase (POD) and glutathione peroxidase (GPx) and upregulating the levels of expression of the POD2 and GPX2 genes. In conclusion, pretreatment with WV can alleviate the photosynthetic inhibition and oxidative damage of tobacco leaves caused by Pst infection.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46660616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A synthetic cytokinin primes photosynthetic and growth response in grapevine under ion-independent salinity stress 一种合成的细胞分裂素在离子非依赖性盐胁迫下启动葡萄的光合和生长反应
IF 3.2 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2022-07-21 DOI: 10.1080/17429145.2022.2102259
G. Montanaro, N. Briglia, L. Lopez, D. Amato, F. Panara, A. Petrozza, F. Cellini, V. Nuzzo
ABSTRACT Aiding optimal plant–environment interaction would favor plant resilience against environmental constrains including salt stress. We test the hypothesis that 6-Benzylaminopurine (BAP) primes grapevine’s salt tolerance in vines (Vitis vinifera) received salt water (NaCl 100 mM) through the modulation of gene expression of BAP (AHK4, AHP1) and salt-stress (CAT, APX) inducible genes and morpho-physiological traits. A subgroup of vines had previously (48 h) been primed with BAP (80 mg/L) before salt stress. The gene expressions were 30% (CAT) and 56% (APX) lower in primed salt-stressed vines than that in un-primed. Salt treatment did not increase leaf Na+ but it lowered stomatal conductance (g s), photosynthesis (A), stem water potential (less negative) and photosystem-II efficiency (F v/F m). Chlorophyll-a concentrations were 30% higher in BAP-primed compared to un-primed. Adverse effects of salt were significantly reduced, maintaining high A/g s, F v/F m and growth. After the relief of the stress, the BAP primed vines had a fast recovery.
植物与环境的最佳相互作用有助于植物抵御包括盐胁迫在内的环境约束。本文通过对6-苯氨基嘌呤(6-Benzylaminopurine, BAP)基因(AHK4、AHP1)和盐胁迫诱导基因(CAT、APX)的表达及形态生理性状的调控,验证了在100mm NaCl环境下葡萄(Vitis vinifera)的耐盐性。一个亚组葡萄藤在盐胁迫前(48 h)用BAP (80 mg/L)进行了预处理。与未处理相比,盐胁迫处理下基因表达量分别降低了30% (CAT)和56% (APX)。盐处理没有增加叶片Na+,但降低了气孔导度(g s)、光合作用(A)、茎水势(较少负)和光系统ii效率(F v/F m),叶绿素A浓度比未处理高30%。盐的不良影响显著降低,保持较高的A/g s、F / v/F m和生长。胁迫解除后,经BAP处理的葡萄植株恢复较快。
{"title":"A synthetic cytokinin primes photosynthetic and growth response in grapevine under ion-independent salinity stress","authors":"G. Montanaro, N. Briglia, L. Lopez, D. Amato, F. Panara, A. Petrozza, F. Cellini, V. Nuzzo","doi":"10.1080/17429145.2022.2102259","DOIUrl":"https://doi.org/10.1080/17429145.2022.2102259","url":null,"abstract":"ABSTRACT Aiding optimal plant–environment interaction would favor plant resilience against environmental constrains including salt stress. We test the hypothesis that 6-Benzylaminopurine (BAP) primes grapevine’s salt tolerance in vines (Vitis vinifera) received salt water (NaCl 100 mM) through the modulation of gene expression of BAP (AHK4, AHP1) and salt-stress (CAT, APX) inducible genes and morpho-physiological traits. A subgroup of vines had previously (48 h) been primed with BAP (80 mg/L) before salt stress. The gene expressions were 30% (CAT) and 56% (APX) lower in primed salt-stressed vines than that in un-primed. Salt treatment did not increase leaf Na+ but it lowered stomatal conductance (g s), photosynthesis (A), stem water potential (less negative) and photosystem-II efficiency (F v/F m). Chlorophyll-a concentrations were 30% higher in BAP-primed compared to un-primed. Adverse effects of salt were significantly reduced, maintaining high A/g s, F v/F m and growth. After the relief of the stress, the BAP primed vines had a fast recovery.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45462752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
RNA editing analysis of some chloroplast transcripts and its response to light and salt stress in Mesona chinensis Benth 中国中介叶绿体转录物的RNA编辑分析及其对光照和盐胁迫的响应
IF 3.2 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2022-07-18 DOI: 10.1080/17429145.2022.2101700
Changqian Quan, Fan Wei, Su-Hang Huang, Kun-hua Wei, Shimin Chen, J. Miao, Danfeng Tang
ABSTRACT To study the effects of light quality and salt stress on RNA editing of Mesona chinensis Benth (MCB) chloroplast genome, the RNA editing sites in the MCB chloroplast protein-coding genes were predicted and then partially verified by PCR and RT-PCR. Meanwhile, the RNA editing efficiency and relative expression of accD, ndhB, ndhF, and rpoB under red and blue light and salt stress conditions were analyzed. A total of 45 editing sites were predicted and all the editing sites were C-to-U conversion. 12 predicted editing sites were verified. The expression level of accD was down-regulated under red light compared with the blue light, as well as down-regulated under salt stress compared with the normal condition (CK). Additionally, the editing efficiency of accD-287 was 96.7% under normal condition, higher than that under salt stress (93.3%) but lower than those under blue and red light (both 100%). In ndhB, ndhB-494 was partially edited under normal growth condition but completely edited under blue and red light and salt stress, and other sites were completely edited under all conditions. It was indicated that the editing frequency was not positively relevant to the transcript level. Besides, accD-287 and ndhB-494 might be involved in response to salt stress.
摘要为了研究光照质量和盐胁迫对中华鳖叶绿体基因组RNA编辑的影响,对其叶绿体蛋白编码基因中的RNA编辑位点进行了预测,并通过PCR和RT-PCR进行了部分验证。同时,分析了在红光、蓝光和盐胁迫条件下accD、ndhB、ndhF和rpoB的RNA编辑效率和相对表达。总共预测了45个编辑站点,所有编辑站点都是C-to-U转换。对12个预测编辑位点进行了验证。accD的表达水平在红光下比蓝光下下调,在盐胁迫下比正常条件下下调(CK)。此外,accD-287在正常条件下的编辑效率为96.7%,高于盐胁迫下(93.3%),但低于蓝光和红光下(均为100%)。在ndhB中,ndhB-494在正常生长条件下被部分编辑,但在蓝光、红光和盐胁迫下被完全编辑,其他位点在所有条件下都被完全编辑。有人指出,编辑频率与转录水平没有正相关。此外,accD-287和ndhB-494可能参与了对盐胁迫的反应。
{"title":"RNA editing analysis of some chloroplast transcripts and its response to light and salt stress in Mesona chinensis Benth","authors":"Changqian Quan, Fan Wei, Su-Hang Huang, Kun-hua Wei, Shimin Chen, J. Miao, Danfeng Tang","doi":"10.1080/17429145.2022.2101700","DOIUrl":"https://doi.org/10.1080/17429145.2022.2101700","url":null,"abstract":"ABSTRACT To study the effects of light quality and salt stress on RNA editing of Mesona chinensis Benth (MCB) chloroplast genome, the RNA editing sites in the MCB chloroplast protein-coding genes were predicted and then partially verified by PCR and RT-PCR. Meanwhile, the RNA editing efficiency and relative expression of accD, ndhB, ndhF, and rpoB under red and blue light and salt stress conditions were analyzed. A total of 45 editing sites were predicted and all the editing sites were C-to-U conversion. 12 predicted editing sites were verified. The expression level of accD was down-regulated under red light compared with the blue light, as well as down-regulated under salt stress compared with the normal condition (CK). Additionally, the editing efficiency of accD-287 was 96.7% under normal condition, higher than that under salt stress (93.3%) but lower than those under blue and red light (both 100%). In ndhB, ndhB-494 was partially edited under normal growth condition but completely edited under blue and red light and salt stress, and other sites were completely edited under all conditions. It was indicated that the editing frequency was not positively relevant to the transcript level. Besides, accD-287 and ndhB-494 might be involved in response to salt stress.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42998799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Advances in heavy metals detoxification, tolerance, accumulation mechanisms, and properties enhancement of Leersia hexandra Swartz 六棱李对重金属的解毒、耐受、积累机制及性能增强研究进展
IF 3.2 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2022-07-14 DOI: 10.1080/17429145.2022.2096266
Mouyixing Chen, Xue-hong Zhang, P. Jiang, Jiun-Cheng Liu, Shaohong You, Youran Lv
ABSTRACT Heavy metal (HM) pollution is increasingly becoming a serious threat to public and environmental health with more-than-ever rapid industrialization and urbanization activities. Phytoremediation is a sustainable and largely accepted technology because of its low cost, simple operation, environmental safety and recognized as a promising approach for environmental remediation applications. Hyperaccumulator plants are the core of phytoremediation, and the study of their accumulation, detoxification, and HM tolerance mechanisms is fundamental to the progress of phytoremediation. In-depth investigations to understand the physiochemical and dissipation pathways of hyperaccumulators such as Leersia hexandra Swartz (L. hexandra) which can serve as a useful tool in environmental remediation applications. L. hexandra as a chromium hyperaccumulator plant, can also be a remarkable choice to remediate copper and nickel contaminated soils. Therefore, this article summarizes the previous studies on the detoxification strategies/tolerance mechanisms and the enhancement of the properties of L. hexandra, which will inspire its future applications in the sustainable environmental cleanup initiatives.
摘要随着工业化和城市化进程的加快,重金属污染日益成为公众健康和环境健康的严重威胁。植物修复是一种可持续的、被广泛接受的技术,因为它成本低、操作简单、环境安全,被认为是一种很有前途的环境修复应用方法。超积累植物是植物修复的核心,研究其积累、解毒和HM耐受机制是植物修复进展的基础。深入研究以了解超积累植物的理化和耗散途径,如Leersia hexandra Swartz(L.hexandr),这可以作为环境修复应用中的有用工具。L.hexandra作为一种铬超积累植物,也是修复铜和镍污染土壤的一个显著选择。因此,本文总结了以往关于L.hexandra解毒策略/耐受机制和增强其特性的研究,这将启发其未来在可持续环境清理倡议中的应用。
{"title":"Advances in heavy metals detoxification, tolerance, accumulation mechanisms, and properties enhancement of Leersia hexandra Swartz","authors":"Mouyixing Chen, Xue-hong Zhang, P. Jiang, Jiun-Cheng Liu, Shaohong You, Youran Lv","doi":"10.1080/17429145.2022.2096266","DOIUrl":"https://doi.org/10.1080/17429145.2022.2096266","url":null,"abstract":"ABSTRACT Heavy metal (HM) pollution is increasingly becoming a serious threat to public and environmental health with more-than-ever rapid industrialization and urbanization activities. Phytoremediation is a sustainable and largely accepted technology because of its low cost, simple operation, environmental safety and recognized as a promising approach for environmental remediation applications. Hyperaccumulator plants are the core of phytoremediation, and the study of their accumulation, detoxification, and HM tolerance mechanisms is fundamental to the progress of phytoremediation. In-depth investigations to understand the physiochemical and dissipation pathways of hyperaccumulators such as Leersia hexandra Swartz (L. hexandra) which can serve as a useful tool in environmental remediation applications. L. hexandra as a chromium hyperaccumulator plant, can also be a remarkable choice to remediate copper and nickel contaminated soils. Therefore, this article summarizes the previous studies on the detoxification strategies/tolerance mechanisms and the enhancement of the properties of L. hexandra, which will inspire its future applications in the sustainable environmental cleanup initiatives.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45531131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Molybdenum-induced effects on nitrogen absorption and utilization under different nitrogen sources in Vitis vinifera 不同氮源条件下钼对葡萄氮素吸收利用的影响
IF 3.2 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2022-07-07 DOI: 10.1080/17429145.2022.2089752
Li Liu, Mengjiao An, Xiu-jie Li, Zhen Han, Shao-xuan Li, Bo Li
ABSTRACT Nitrogen (N) in different forms has been demonstrated to play significant roles in plants. However, little is known about molybdenum (Mo) effects on N absorption and utilization in grapevine seedlings grown under different N sources. The present study used a sand culture system to analyze the impact of Mo application (0 μM; 1 μM) on N absorption and utilization in grapevine (Vitislabrusca × V. vinifera ‘Shine Muscat’ (rootstock 3309 m)) young potted seedlings under different N sources (NO3 −, NH4NO3 and NH4 +). The different N forms and Mo application significantly influenced dry matter accumulation, and root architecture and activity. The effects of Mo on total N content followed the order of (NH4NO3 > NO3 − > NH4 +). Moreover, Mo and N induced VvMOT1 and VvNRT1.1 expression synergistically. Mo supply altered the utilization of NO3 −, NO2 −, and NH4 + in grapevines under different N sources. NH4NO3 showed the highest effect while NH4 + the least. Furthermore, the 15N-labeling experiment showed that the 15N content in shoot and root and the 15N-use efficiency were the highest after Mo application under NH4NO3 source, indicating the synergistic effects of Mo with the co-application of NO3 − and NH4 + sources. The study’s findings provide insights on Mo and N fertilizer utilization for cultivation and production practices in fruits.
摘要不同形态的氮已被证明在植物中发挥着重要作用。然而,钼对不同氮源下葡萄幼苗氮吸收和利用的影响却知之甚少。本研究采用砂培系统,分析了在不同氮源(NO3−、NH4NO3和NH4+)条件下施钼(0μM;1μM)对葡萄(Vitislabrusca×V.vinifera‘Shine Muscat’(砧木3309m))幼盆栽幼苗氮吸收和利用的影响。不同的N形态和Mo施用对干物质积累、根系结构和活性有显著影响。Mo对总氮含量的影响顺序为(NH4NO3) > NO3− > NH4+)。此外,Mo和N协同诱导VvMOT1和VvNRT1.1的表达。钼的供应改变了不同氮源下葡萄对NO3−、NO2−和NH4+的利用。NH4NO3效果最好,NH4+效果最低。此外,15N标记实验表明,在NH4NO3源下施用Mo后,地上部和根部的15N含量和15N利用效率最高,表明Mo与NO3−和NH4+源的共同施用具有协同作用。这项研究的结果为钼和氮肥料在水果种植和生产实践中的应用提供了见解。
{"title":"Molybdenum-induced effects on nitrogen absorption and utilization under different nitrogen sources in Vitis vinifera","authors":"Li Liu, Mengjiao An, Xiu-jie Li, Zhen Han, Shao-xuan Li, Bo Li","doi":"10.1080/17429145.2022.2089752","DOIUrl":"https://doi.org/10.1080/17429145.2022.2089752","url":null,"abstract":"ABSTRACT\u0000 Nitrogen (N) in different forms has been demonstrated to play significant roles in plants. However, little is known about molybdenum (Mo) effects on N absorption and utilization in grapevine seedlings grown under different N sources. The present study used a sand culture system to analyze the impact of Mo application (0 μM; 1 μM) on N absorption and utilization in grapevine (Vitislabrusca × V. vinifera ‘Shine Muscat’ (rootstock 3309 m)) young potted seedlings under different N sources (NO3 −, NH4NO3 and NH4 +). The different N forms and Mo application significantly influenced dry matter accumulation, and root architecture and activity. The effects of Mo on total N content followed the order of (NH4NO3 > NO3 − > NH4 +). Moreover, Mo and N induced VvMOT1 and VvNRT1.1 expression synergistically. Mo supply altered the utilization of NO3 −, NO2 −, and NH4 + in grapevines under different N sources. NH4NO3 showed the highest effect while NH4 + the least. Furthermore, the 15N-labeling experiment showed that the 15N content in shoot and root and the 15N-use efficiency were the highest after Mo application under NH4NO3 source, indicating the synergistic effects of Mo with the co-application of NO3 − and NH4 + sources. The study’s findings provide insights on Mo and N fertilizer utilization for cultivation and production practices in fruits.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43204374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Genome-wide identification of the LBD transcription factor genes in common bean (Phaseolus vulgaris L.) and expression analysis under different abiotic stresses 菜豆LBD转录因子基因的全基因组鉴定及在不同非生物胁迫下的表达分析
IF 3.2 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2022-07-04 DOI: 10.1080/17429145.2022.2095449
Yanli Du, Qiang Zhao, Weijia Li, Jing Geng, Siqi Li, Xiankai Yuan, Yanhua Gu, Jingwen Zhong, Yuxian Zhang, Jidao Du
ABSTRACT Lateral organ boundary Domain (LBD) proteins are plant-specific transcription factors that play a key role in plant lateral organ development and stress tolerance. However, LBD gene has not been identified in the common bean (Phaseolus vulgaris L.). Here, a total of 47 common bean LBD genes (PvLBDs) were identified. Members of the same subfamily had similar genetic structures. Synteny analysis indicated that LBDs in the common bean genome have greater collinearity with soybean (Glycine max L.) than with Arabidopsis and rice (Oryza sativa L.). Additionally, 9 pair of segmental duplication genes were identified by collinearity analysis. Phytozome data analysis showed significant differences in PvLBD gene expression abundance between different developmental stages of the same tissue. The qRT-PCR results showed that NaCl, CdCl2, and HgCl2 stresses up-regulated 19% and down-regulated 81% of the PvLBD genes. This study provides a basis for further analysis of the function of the PvLBD gene family.
摘要侧方器官边界结构域(LBD)蛋白是一种植物特异性转录因子,在植物侧方器官发育和抗逆性中起着关键作用。然而,在普通菜豆(Phaseolus vulgaris L.)中尚未鉴定出LBD基因。本文共鉴定出47个普通菜豆LBD基因(PvLBD)。同一亚科的成员具有相似的遗传结构。Synteny分析表明,普通大豆基因组中的LBD与大豆(Glycine max L.)的共线性大于与拟南芥(Arabidopsis)和水稻(Oryza sativa L.)的同线性。Phytozome数据分析显示,同一组织不同发育阶段的PvLBD基因表达丰度存在显著差异。qRT-PCR结果显示,NaCl、CdCl2和HgCl2胁迫上调和下调了19%的PvLBD基因。本研究为进一步分析PvLBD基因家族的功能提供了基础。
{"title":"Genome-wide identification of the LBD transcription factor genes in common bean (Phaseolus vulgaris L.) and expression analysis under different abiotic stresses","authors":"Yanli Du, Qiang Zhao, Weijia Li, Jing Geng, Siqi Li, Xiankai Yuan, Yanhua Gu, Jingwen Zhong, Yuxian Zhang, Jidao Du","doi":"10.1080/17429145.2022.2095449","DOIUrl":"https://doi.org/10.1080/17429145.2022.2095449","url":null,"abstract":"ABSTRACT Lateral organ boundary Domain (LBD) proteins are plant-specific transcription factors that play a key role in plant lateral organ development and stress tolerance. However, LBD gene has not been identified in the common bean (Phaseolus vulgaris L.). Here, a total of 47 common bean LBD genes (PvLBDs) were identified. Members of the same subfamily had similar genetic structures. Synteny analysis indicated that LBDs in the common bean genome have greater collinearity with soybean (Glycine max L.) than with Arabidopsis and rice (Oryza sativa L.). Additionally, 9 pair of segmental duplication genes were identified by collinearity analysis. Phytozome data analysis showed significant differences in PvLBD gene expression abundance between different developmental stages of the same tissue. The qRT-PCR results showed that NaCl, CdCl2, and HgCl2 stresses up-regulated 19% and down-regulated 81% of the PvLBD genes. This study provides a basis for further analysis of the function of the PvLBD gene family.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47692872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
OsMATE6 gene putatively involved in host defense response toward susceptibility against Rhizoctonia solani in rice OsMATE6基因可能参与水稻对丝核菌易感性的宿主防御反应
IF 3.2 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2022-07-04 DOI: 10.1080/17429145.2022.2094003
Rupnaz Kaur, Pankaj Kumar, Arun Kumar, Umesh Preethi Praba, Rancy Birdi, Rajveer Singh, G. Kaur, J. S. Lore, K. Neelam, Y. Vikal
ABSTRACT Sheath blight caused by Rhizoctonia solani AG1-IA is the second most serious disease of rice worldwide. Elucidating the role of multi-drug and toxic compound extrusion (MATE) gene family in host-pathogens interactions may uncover a new possible way to comprehend the mechanism of sheath blight resistance in rice. We foremost explored the role of OsMATE genes against R. solani resistance through comparative transcriptomics in PR114 (susceptible) and ShB-8 (moderately resistant) at 24 and 48 hpi (hours post-inoculation) of R. solani infection, respectively. Six OsMATE genes were differentially expressed and further validated through qRT-PCR. OsMATE6 gene was identified as a potential candidate for sheath blight susceptibility as it was significantly up-regulated in PR114. OsMATE6 is conserved within the wild relatives and might be translocated from Oryza nivara during the domestication of rice. Further studies are focused to verify its role by overexpression and protein interactions to understand the molecular mechanism of sheath blight resistance.
摘要水稻纹章枯病是由茄核菌AG1-IA引起的世界第二大水稻病害。阐明多药和有毒化合物挤压(MATE)基因家族在寄主-病原体相互作用中的作用,可能为理解水稻抗纹叶枯病机制开辟一条新的途径。我们首先通过分别在R.solani感染24和48 hpi(接种后数小时)的PR114(易感)和ShB-8(中度抗性)中的比较转录组学,探讨了OsMATE基因对R.solani抗性的作用。6个OsMATE基因被差异表达,并通过qRT-PCR进一步验证。OsMATE6基因在PR114中被显著上调,因此被鉴定为纹叶枯病易感性的潜在候选基因。OsMATE6在野生亲缘关系中是保守的,可能在水稻驯化过程中从水稻中转移。进一步的研究重点是通过过表达和蛋白质相互作用来验证其作用,以了解抗纹叶枯病的分子机制。
{"title":"OsMATE6 gene putatively involved in host defense response toward susceptibility against Rhizoctonia solani in rice","authors":"Rupnaz Kaur, Pankaj Kumar, Arun Kumar, Umesh Preethi Praba, Rancy Birdi, Rajveer Singh, G. Kaur, J. S. Lore, K. Neelam, Y. Vikal","doi":"10.1080/17429145.2022.2094003","DOIUrl":"https://doi.org/10.1080/17429145.2022.2094003","url":null,"abstract":"ABSTRACT Sheath blight caused by Rhizoctonia solani AG1-IA is the second most serious disease of rice worldwide. Elucidating the role of multi-drug and toxic compound extrusion (MATE) gene family in host-pathogens interactions may uncover a new possible way to comprehend the mechanism of sheath blight resistance in rice. We foremost explored the role of OsMATE genes against R. solani resistance through comparative transcriptomics in PR114 (susceptible) and ShB-8 (moderately resistant) at 24 and 48 hpi (hours post-inoculation) of R. solani infection, respectively. Six OsMATE genes were differentially expressed and further validated through qRT-PCR. OsMATE6 gene was identified as a potential candidate for sheath blight susceptibility as it was significantly up-regulated in PR114. OsMATE6 is conserved within the wild relatives and might be translocated from Oryza nivara during the domestication of rice. Further studies are focused to verify its role by overexpression and protein interactions to understand the molecular mechanism of sheath blight resistance.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42413450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Azotobacter chroococcum F8/2: a multitasking bacterial strain in sugar beet biopriming 固氮细菌choococcus F8/2:一种在甜菜生物发酵中的多任务菌株
IF 3.2 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2022-06-30 DOI: 10.1080/17429145.2022.2091802
Slavica Kerečki, I. Pećinar, Vera Karličić, N. Mirković, I. Kljujev, V. Raičević, Jelena Jovičić-Petrović
ABSTRACT This study assesses the effects of Azotobacter biopriming on the early development of sugar beet. Azotobacter chroococcum F8/2 was screened for plant growth promoting characteristics and biopriming effects were estimated through germination parameters and the structural changes of the root tissues. A. chroococcum F8/2 was characterized as a contributor to nitrogen, iron, and potassium availability, as well as a producer of auxin and 1-aminocyclopropane-1-carboxilic acid deaminase. Applied biopriming had reduced mean germination time by 34.44% and increased vigor I by 90.99% compared to control. Volatile blend comprised 47.67% ethanol, 32.01% 2-methyl-propanol, 17.32% 3-methyl-1-butanol, and a trace of 2,3-butanedione. Root micromorphological analysis of bioprimed sugar beet revealed a considerable increase in primary, secondary xylem area, and vessels size. Obtained results determine A. chroococcum F8/2 as a successful biopriming agent, and active participant in nutrient availability and hormonal status modulation affecting root vascular tissue.
摘要本研究评估了固氮菌生物农药对甜菜早期发育的影响。筛选了慢球菌(Azotobacter chroococcum)F8/2的促生长特性,并通过发芽参数和根组织结构变化来评价其生物鉴别效果。A.chroococcum F8/2被表征为氮、铁和钾有效性的贡献者,以及生长素和1-氨基环丙烷-1-羧酸脱氨酶的产生者。与对照组相比,应用生物农药使平均发芽时间缩短了34.44%,活力I提高了90.99%。挥发性混合物包括47.67%的乙醇、32.01%的2-甲基丙醇、17.32%的3-甲基-1-丁醇和痕量的2,3-丁二酮。生物聚合甜菜根的微观形态分析显示,初级、次级木质部面积和导管大小显著增加。所获得的结果确定A.chroococcumF8/2是一种成功的生物农药,也是影响根血管组织的营养物质可用性和激素状态调节的积极参与者。
{"title":"Azotobacter chroococcum F8/2: a multitasking bacterial strain in sugar beet biopriming","authors":"Slavica Kerečki, I. Pećinar, Vera Karličić, N. Mirković, I. Kljujev, V. Raičević, Jelena Jovičić-Petrović","doi":"10.1080/17429145.2022.2091802","DOIUrl":"https://doi.org/10.1080/17429145.2022.2091802","url":null,"abstract":"ABSTRACT This study assesses the effects of Azotobacter biopriming on the early development of sugar beet. Azotobacter chroococcum F8/2 was screened for plant growth promoting characteristics and biopriming effects were estimated through germination parameters and the structural changes of the root tissues. A. chroococcum F8/2 was characterized as a contributor to nitrogen, iron, and potassium availability, as well as a producer of auxin and 1-aminocyclopropane-1-carboxilic acid deaminase. Applied biopriming had reduced mean germination time by 34.44% and increased vigor I by 90.99% compared to control. Volatile blend comprised 47.67% ethanol, 32.01% 2-methyl-propanol, 17.32% 3-methyl-1-butanol, and a trace of 2,3-butanedione. Root micromorphological analysis of bioprimed sugar beet revealed a considerable increase in primary, secondary xylem area, and vessels size. Obtained results determine A. chroococcum F8/2 as a successful biopriming agent, and active participant in nutrient availability and hormonal status modulation affecting root vascular tissue.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42876331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Pragmatic role of microbial plant biostimulants in abiotic stress relief in crop plants 微生物植物生物刺激剂在作物非生物胁迫缓解中的实用作用
IF 3.2 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2022-06-22 DOI: 10.1080/17429145.2022.2091801
Sajid Ali, Y. Moon, M. Hamayun, M. Khan, K. Bibi, In-Jung Lee
ABSTRACT Abiotic stresses lead to excessive crop yield losses and are a major threat to agriculture. It is essential to equip crops with multi-stress tolerance to mitigate the adverse effects of abiotic stressors and meet the demands of the increasing global population. The association between plants and symbiotic microorganisms is involved in key functions at the ecosystem and plant levels, and the application of microbial plant biostimulants (MPBs) is a sustainable strategy to augment plant growth and productivity, even under abiotic stress conditions. Several different microorganisms can be used as MPBs to enhance plant growth and produce progressive and reproducible effects on crops. In the present review, we assessed the current knowledge on the use of MPBs, discuss the diversity and characteristics of MPBs, and provide a meticulous assessment of the possible applications of MPBs in abiotic stress relief in crops.
摘要:非生物胁迫导致作物产量损失过大,是对农业的主要威胁。至关重要的是,为作物配备耐多种胁迫的能力,以减轻非生物胁迫的不利影响,满足日益增长的全球人口的需求。植物和共生微生物之间的联系涉及生态系统和植物层面的关键功能,即使在非生物胁迫条件下,微生物植物生物刺激剂(MPBs)的应用也是提高植物生长和生产力的可持续策略。几种不同的微生物可以用作MPB来促进植物生长,并对作物产生渐进和可再生的影响。在本综述中,我们评估了目前关于多溴联苯使用的知识,讨论了多溴联苯的多样性和特征,并对多溴联苯在作物非生物胁迫缓解中的可能应用进行了细致的评估。
{"title":"Pragmatic role of microbial plant biostimulants in abiotic stress relief in crop plants","authors":"Sajid Ali, Y. Moon, M. Hamayun, M. Khan, K. Bibi, In-Jung Lee","doi":"10.1080/17429145.2022.2091801","DOIUrl":"https://doi.org/10.1080/17429145.2022.2091801","url":null,"abstract":"ABSTRACT Abiotic stresses lead to excessive crop yield losses and are a major threat to agriculture. It is essential to equip crops with multi-stress tolerance to mitigate the adverse effects of abiotic stressors and meet the demands of the increasing global population. The association between plants and symbiotic microorganisms is involved in key functions at the ecosystem and plant levels, and the application of microbial plant biostimulants (MPBs) is a sustainable strategy to augment plant growth and productivity, even under abiotic stress conditions. Several different microorganisms can be used as MPBs to enhance plant growth and produce progressive and reproducible effects on crops. In the present review, we assessed the current knowledge on the use of MPBs, discuss the diversity and characteristics of MPBs, and provide a meticulous assessment of the possible applications of MPBs in abiotic stress relief in crops.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42748571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 34
期刊
Journal of Plant Interactions
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1