首页 > 最新文献

Journal of Plant Interactions最新文献

英文 中文
Endophytic Klebsiella sp. San01 promotes growth performance and induces salinity and drought tolerance in sweet potato (Ipomoea batatas L.) 内生克雷伯氏菌(Klebsiella sp. San01)促进甘薯生长性能并诱导耐盐性和耐旱性
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-05-23 DOI: 10.1080/17429145.2022.2077464
Qing Li, Zhehong Huang, Caisheng Deng, K. Lin, Shumei Hua, Shi-Peng Chen
ABSTRACT Endophytic plant-growth-promoting bacteria help plants to cope with severe environmental stresses. A Klebsiella sp. strain San01 isolated from sweet potato roots exhibited diverse plant-growth-promoting activities, including indole acetic acid production, ammonia production, and phosphate solubilization. San01 inoculation significantly increased the growth characteristics of sweet potato. Moreover, the sweet potato inoculated with San01 resulted in the alleviation of drought and salinity stresses. In comparison with the non-inoculated plants, the wilting symptom and the inhibition of photochemical response were significantly diminished in San01-inoculated plants under stress conditions. In the presence of San01, the enhancement of 2,2-diphenyl-1-picrylhydrazyl radical scavenging ability and elevated activities of ascorbate peroxidase and superoxide dismutase were observed to combat the oxidative stress in sweet potato. Further investigation showed that the San01 inoculation enhanced the expression of the IbLEA gene in sweet potato under salinity and drought. These results confer a promising biotechnological approach through San01 interaction to develop stress-tolerant sweet potato plants.
摘要植物内生促生长细菌有助于植物应对严重的环境胁迫。从甘薯根中分离的克雷伯菌菌株San01表现出不同的植物生长促进活性,包括吲哚乙酸的产生、氨的产生和磷酸盐的溶解。San01接种显著提高了甘薯的生长特性。此外,接种San01的红薯还可以缓解干旱和盐度胁迫。与未接种的植物相比,在胁迫条件下,接种San01的植物的枯萎症状和对光化学反应的抑制作用显著减弱。在San01存在下,观察到2,2-二苯基-1-苦基肼自由基清除能力增强,抗坏血酸过氧化物酶和超氧化物歧化酶活性升高,以对抗红薯的氧化应激。进一步的研究表明,在盐度和干旱条件下,San01接种增强了IbLEA基因在甘薯中的表达。这些结果为通过San01相互作用开发耐胁迫甘薯植物提供了一种有前景的生物技术方法。
{"title":"Endophytic Klebsiella sp. San01 promotes growth performance and induces salinity and drought tolerance in sweet potato (Ipomoea batatas L.)","authors":"Qing Li, Zhehong Huang, Caisheng Deng, K. Lin, Shumei Hua, Shi-Peng Chen","doi":"10.1080/17429145.2022.2077464","DOIUrl":"https://doi.org/10.1080/17429145.2022.2077464","url":null,"abstract":"ABSTRACT Endophytic plant-growth-promoting bacteria help plants to cope with severe environmental stresses. A Klebsiella sp. strain San01 isolated from sweet potato roots exhibited diverse plant-growth-promoting activities, including indole acetic acid production, ammonia production, and phosphate solubilization. San01 inoculation significantly increased the growth characteristics of sweet potato. Moreover, the sweet potato inoculated with San01 resulted in the alleviation of drought and salinity stresses. In comparison with the non-inoculated plants, the wilting symptom and the inhibition of photochemical response were significantly diminished in San01-inoculated plants under stress conditions. In the presence of San01, the enhancement of 2,2-diphenyl-1-picrylhydrazyl radical scavenging ability and elevated activities of ascorbate peroxidase and superoxide dismutase were observed to combat the oxidative stress in sweet potato. Further investigation showed that the San01 inoculation enhanced the expression of the IbLEA gene in sweet potato under salinity and drought. These results confer a promising biotechnological approach through San01 interaction to develop stress-tolerant sweet potato plants.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"608 - 619"},"PeriodicalIF":3.2,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43717342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Photoperiod and water-deficient conditions differentially regulate structural flavonoid biosynthetic genes in peanuts 光周期和缺水条件对花生结构黄酮生物合成基因的差异调控
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-05-23 DOI: 10.1080/17429145.2022.2076940
Maryam Khan, Saman Taufiq, Irum Nauman, Norina Noor, Tooba Iqbal, H. Ali, R. Z. Paracha, Faiza Munir, A. Gul, Rabia Amir
ABSTRACT Peanut (Arachis hypogaea L.) harbors a plethora of flavonoids that impart its health-promoting properties. To understand its biosynthesis and accumulation, a comparative expression analysis of flavonoid biosynthetic genes encoding enzymes responsible for synthesizing the main structure of flavonoids has been conducted in two differentially performing peanut varieties (PG 1247 and Bari 2011) in response to photoperiod and water availability. Transcript profiling of flavonoid biosynthetic genes indicated time-dependent expression of genes except for AhFLS in selected varieties in response to photoperiod variation. Many genes depicted a low degree of variation within varieties and water-deficient treatments. However, AhANS showed the highest variation for stress duration and varieties. In conclusion, this study has characterized the role of flavonoid biosynthesis in peanuts in response to photoperiod and water availability. Moreover, correlation analysis unraveled the coordination among the expression of flavonoid biosynthetic genes.
花生(Arachis hypogaea L.)含有大量黄酮类化合物,具有促进健康的特性。为了了解其生物合成和积累,对编码负责合成类黄酮主要结构的酶的类黄酮生物合成基因在两个表现不同的花生品种(PG 1247和Bari 2011)中对光周期和水分有效性的反应进行了比较表达分析。类黄酮生物合成基因的转录谱分析表明,在所选品种中,除了AhFLS外,其他基因的表达与光周期变化有关。许多基因在品种和缺水处理中的变异程度很低。然而,AhANS在胁迫持续时间和品种上表现出最高的变化。总之,本研究表征了花生类黄酮生物合成对光周期和水分有效性的反应。此外,相关分析揭示了类黄酮生物合成基因表达之间的协调性。
{"title":"Photoperiod and water-deficient conditions differentially regulate structural flavonoid biosynthetic genes in peanuts","authors":"Maryam Khan, Saman Taufiq, Irum Nauman, Norina Noor, Tooba Iqbal, H. Ali, R. Z. Paracha, Faiza Munir, A. Gul, Rabia Amir","doi":"10.1080/17429145.2022.2076940","DOIUrl":"https://doi.org/10.1080/17429145.2022.2076940","url":null,"abstract":"ABSTRACT Peanut (Arachis hypogaea L.) harbors a plethora of flavonoids that impart its health-promoting properties. To understand its biosynthesis and accumulation, a comparative expression analysis of flavonoid biosynthetic genes encoding enzymes responsible for synthesizing the main structure of flavonoids has been conducted in two differentially performing peanut varieties (PG 1247 and Bari 2011) in response to photoperiod and water availability. Transcript profiling of flavonoid biosynthetic genes indicated time-dependent expression of genes except for AhFLS in selected varieties in response to photoperiod variation. Many genes depicted a low degree of variation within varieties and water-deficient treatments. However, AhANS showed the highest variation for stress duration and varieties. In conclusion, this study has characterized the role of flavonoid biosynthesis in peanuts in response to photoperiod and water availability. Moreover, correlation analysis unraveled the coordination among the expression of flavonoid biosynthetic genes.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"620 - 631"},"PeriodicalIF":3.2,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47343644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gall-inducing Psylloidea (Insecta: Hemiptera) – plant interactions 生瘿木科(昆虫纲:半翅目)-植物间的相互作用
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-05-23 DOI: 10.1080/17429145.2022.2065371
Anamika Sharma, A. Raman
ABSTRACT The Psylloidea, >4000 named species known today, are plant-feeding, sap-sucking insects sleeved under the Sternorrhyncha. Most species of Psylloidea are confined to the tropics. They occur as gall-inducing, free-living, and lerp-forming taxa. Lifecycles and generations of gall-inducing Psylloidea vary in temperate and tropical worlds. The Triozidae, Aphalaridae, and Calophyidae include several taxa that induce galls of diverse morphologies, from simple pits and leaf-margin rolls to complex pouches and of two-tier structures. The feeding mechanism and nutritional physiology of the gall-inducing taxa of the Psylloidea differ from those of the free-living and lerp-forming species. A majority of the gall-inducing Psylloidea are associated with the dicotyledons and a small number with the monocotyledons. The gall-inducing Psylloidea are specific to certain plants. Their host specificity is regulated by specific lipids and sterols. The gall-inducing Psylloidea show conservative behavior in terms of geographical distribution. Although the life histories of several gall-inducing Psylloidea are known today, aspects explaining their association with host plants are little known. Details of nutritional physiology of gall-inducing Psylloidea are less known presently compared with that of the free-living species. A better understanding of the association and level of relationship between gall-inducing Psylloidea and their host plants is necessary.
木科是一种以植物为食、吸吮汁液的昆虫,目前已知有近4000种。木科的大多数种类都局限于热带地区。它们以诱导胆囊、自由生活和形成息肉的分类群出现。在温带和热带世界,引起胆病的木科植物的生命周期和世代各不相同。三足虫科、棘足虫科和刺足虫科包括几种不同形态的瘿,从简单的坑状和叶缘卷状到复杂的袋状和双层结构。木科产胆分类群的摄食机制和营养生理与自由生活和产胆分类群不同。大部分生瘿木总科与双子叶有关,少数与单子叶有关。产生胆管的木科是某些植物所特有的。它们的宿主特异性是由特定的脂质和固醇调节的。产胆的木科在地理分布上表现出保守性。虽然几种诱导胆的木科植物的生活史今天是已知的,但解释它们与寄主植物的关系的方面却鲜为人知。与自由生活的种相比,目前对诱导胆的木科植物的营养生理细节知之甚少。更好地了解诱导胆病的木科植物与其寄主植物之间的关系及其水平是必要的。
{"title":"Gall-inducing Psylloidea (Insecta: Hemiptera) – plant interactions","authors":"Anamika Sharma, A. Raman","doi":"10.1080/17429145.2022.2065371","DOIUrl":"https://doi.org/10.1080/17429145.2022.2065371","url":null,"abstract":"ABSTRACT The Psylloidea, >4000 named species known today, are plant-feeding, sap-sucking insects sleeved under the Sternorrhyncha. Most species of Psylloidea are confined to the tropics. They occur as gall-inducing, free-living, and lerp-forming taxa. Lifecycles and generations of gall-inducing Psylloidea vary in temperate and tropical worlds. The Triozidae, Aphalaridae, and Calophyidae include several taxa that induce galls of diverse morphologies, from simple pits and leaf-margin rolls to complex pouches and of two-tier structures. The feeding mechanism and nutritional physiology of the gall-inducing taxa of the Psylloidea differ from those of the free-living and lerp-forming species. A majority of the gall-inducing Psylloidea are associated with the dicotyledons and a small number with the monocotyledons. The gall-inducing Psylloidea are specific to certain plants. Their host specificity is regulated by specific lipids and sterols. The gall-inducing Psylloidea show conservative behavior in terms of geographical distribution. Although the life histories of several gall-inducing Psylloidea are known today, aspects explaining their association with host plants are little known. Details of nutritional physiology of gall-inducing Psylloidea are less known presently compared with that of the free-living species. A better understanding of the association and level of relationship between gall-inducing Psylloidea and their host plants is necessary.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"580 - 594"},"PeriodicalIF":3.2,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47538934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Combination of the Systemin peptide with the beneficial fungus Trichoderma afroharzianum T22 improves plant defense responses against pests and diseases Systemin肽与有益真菌非洲木霉T22的结合提高了植物对病虫害的防御反应
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-05-16 DOI: 10.1080/17429145.2022.2072528
Anna Maria Aprile, M. Coppola, David Turrà, S. Vitale, P. Cascone, G. Diretto, A. Fiore, Valeria Castaldi, A. Romanelli, C. Avitabile, E. Guerrieri, S. Woo, R. Rao
ABSTRACT Trichoderma spp. are among the most widely used plant beneficial fungi in agriculture. Its interaction with the plant triggers resistance responses by the activation of Induced Systemic Resistance mediated by Jasmonic acid and Ethylene and/or Systemic Acquired Resistance, which involves Salicylic acid, with the consequent control of a wide range of plant parasites. However, the benefit they can confer to plants may be reduced or nullified by environmental conditions or fungal ecological fitness. A novel approach to enhance their effectiveness in plant defense is to combine them with bioactive molecules including plant-derived compounds. Here, we show that plant treatment with Trichoderma afroharzianum (strain T22) and Systemin, a tomato peptide active in triggering plant defense, confers protection against the fungal pathogens Fusarium oxysporum, Botrytis cinerea and the insect pest Tuta absoluta. The observed defensive response was associated with an increase of Jasmonic acid and related metabolites and a decrease of Salicylic acid.
木霉(Trichoderma spp.)是农业上应用最广泛的植物有益真菌之一。它与植物的相互作用通过激活茉莉酸和乙烯介导的诱导系统性抗性和/或系统性获得性抗性(包括水杨酸)来触发抗性反应,从而控制广泛的植物寄生虫。然而,它们给植物带来的益处可能会因环境条件或真菌生态适应性而减少或无效。将其与生物活性分子(包括植物源性化合物)结合是提高其在植物防御中的有效性的新途径。在这里,我们展示了用菌株T22和Systemin(一种激活植物防御的番茄肽)处理植物,可以保护植物免受真菌病原体尖孢镰刀菌、灰霉病菌和虫害。观察到的防御反应与茉莉酸和相关代谢物的增加和水杨酸的减少有关。
{"title":"Combination of the Systemin peptide with the beneficial fungus Trichoderma afroharzianum T22 improves plant defense responses against pests and diseases","authors":"Anna Maria Aprile, M. Coppola, David Turrà, S. Vitale, P. Cascone, G. Diretto, A. Fiore, Valeria Castaldi, A. Romanelli, C. Avitabile, E. Guerrieri, S. Woo, R. Rao","doi":"10.1080/17429145.2022.2072528","DOIUrl":"https://doi.org/10.1080/17429145.2022.2072528","url":null,"abstract":"ABSTRACT Trichoderma spp. are among the most widely used plant beneficial fungi in agriculture. Its interaction with the plant triggers resistance responses by the activation of Induced Systemic Resistance mediated by Jasmonic acid and Ethylene and/or Systemic Acquired Resistance, which involves Salicylic acid, with the consequent control of a wide range of plant parasites. However, the benefit they can confer to plants may be reduced or nullified by environmental conditions or fungal ecological fitness. A novel approach to enhance their effectiveness in plant defense is to combine them with bioactive molecules including plant-derived compounds. Here, we show that plant treatment with Trichoderma afroharzianum (strain T22) and Systemin, a tomato peptide active in triggering plant defense, confers protection against the fungal pathogens Fusarium oxysporum, Botrytis cinerea and the insect pest Tuta absoluta. The observed defensive response was associated with an increase of Jasmonic acid and related metabolites and a decrease of Salicylic acid.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"569 - 579"},"PeriodicalIF":3.2,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41675709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
EWR1 as a SCOOP peptide activates MIK2-dependent immunity in Arabidopsis EWR1作为SCOOP肽激活拟南芥的MIK2依赖性免疫
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-05-12 DOI: 10.1080/17429145.2022.2070292
J Zhang, Jinxiu Zhao, Yifei Yang, Qixin Bao, Yuxi Li, Hongbo Wang, Shuguo Hou
ABSTRACT Phytocytokines are plant peptide signals perceived by plasma membrane-localized receptors in regulating plant immunity. It was recently reported that the phytocytokine SERINE-RICH ENDOGENOUS PEPTIDE12 (SCOOP12) is recognized by the receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2) and activates plant immune responses and resistance to pathogens in Arabidopsis. Here, we show that Arabidopsis ENHANCER OF VASCULAR WILT RESISTANCE 1 (EWR1) and four EWR1 close propeptide homologs encode functional SCOOP peptides, which are able to activate immune responses via MIK2 and BRASSINOSTEROID INSENSITVE 1 (BRI1)-ASSOCIATED RECEPTOR KINASE 1 (BAK1) and SOMATIC EMBRYOGENESIS RECEPTOR KINASE 4 (SERK4).
摘要植物细胞因子是质膜定位受体在调节植物免疫过程中感知的植物肽信号。最近有报道称,富含丝氨酸的植物细胞因子内源性肽12(SCOOP12)被受体激酶雄性发现者1相互作用受体样激酶2(MIK2)识别,并激活拟南芥中的植物免疫反应和对病原体的抗性。在这里,我们发现拟南芥血管野生抗性增强因子1(EWR1)和四个EWR1紧密前肽同源物编码功能性SCOOP肽,这些肽能够通过MIK2和类BRASSINOSTEROID INSENSIVE 1(BRI1)-相关受体激酶1(BAK1)和体细胞胚胎发生受体激酶4(SERK4)激活免疫反应。
{"title":"EWR1 as a SCOOP peptide activates MIK2-dependent immunity in Arabidopsis","authors":"J Zhang, Jinxiu Zhao, Yifei Yang, Qixin Bao, Yuxi Li, Hongbo Wang, Shuguo Hou","doi":"10.1080/17429145.2022.2070292","DOIUrl":"https://doi.org/10.1080/17429145.2022.2070292","url":null,"abstract":"ABSTRACT Phytocytokines are plant peptide signals perceived by plasma membrane-localized receptors in regulating plant immunity. It was recently reported that the phytocytokine SERINE-RICH ENDOGENOUS PEPTIDE12 (SCOOP12) is recognized by the receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2) and activates plant immune responses and resistance to pathogens in Arabidopsis. Here, we show that Arabidopsis ENHANCER OF VASCULAR WILT RESISTANCE 1 (EWR1) and four EWR1 close propeptide homologs encode functional SCOOP peptides, which are able to activate immune responses via MIK2 and BRASSINOSTEROID INSENSITVE 1 (BRI1)-ASSOCIATED RECEPTOR KINASE 1 (BAK1) and SOMATIC EMBRYOGENESIS RECEPTOR KINASE 4 (SERK4).","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"562 - 568"},"PeriodicalIF":3.2,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47956246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Molecular mechanism of the parasitic interaction between Orobanche cumana wallr. and sunflowers 寄生虫与人体壁面相互作用的分子机制。和向日葵
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-05-10 DOI: 10.1080/17429145.2022.2062061
Yixiao Zhang, Jietian Su, X. Yun, Wenlong Wu, Shouhui Wei, Zhaofeng Huang, Chaoxian Zhang, Q. Bai, Hong-juan Huang
ABSTRACT Orobanche cumana Wallr. is the most serious parasitic weed that threatens sunflower production in China, it infects sunflower roots and causes severe yield and economic losses. This study determined the effects of O. cumana infection on sunflower growth, physiological, biochemical, photosynthesis indexes and used RNA-Seq to investigate the potential regulatory factors involved in the parasitic interaction. Results showed that O. cumana infestation significantly inhibited sunflower height, fresh weight, chlorophyl contents, photosynthetic and the MDA content, SOD and POD activities were increased in different degrees, which might be related to sunflower resistance to O. cumana infestation. Additionally, six parasite-related genes were selected, which markedly enriched in plant hormone signal transduction, photorespiration and phenylpropanoid metabolism pathway. Among these genes, HsP90A, MYC2 and HAO were discovered for the first time in sunflowers and O. cumana parasitic interaction. Undoubtedly, the results lay a foundation for revealing the parasitic interactions molecular mechanism of O. cumana and sunflowers.
【摘要】山核桃。是威胁中国向日葵生产最严重的寄生杂草,它侵染向日葵根部,造成严重的产量和经济损失。本研究确定了O. cumana侵染对向日葵生长、生理生化、光合等指标的影响,并利用RNA-Seq分析了寄生互作的潜在调控因子。结果表明,侵染对向日葵株高、鲜重、叶绿素含量、光合作用及MDA含量均有显著抑制,SOD和POD活性均有不同程度提高,这可能与向日葵抗侵染有关。此外,还筛选出6个与寄生虫相关的基因,这些基因在植物激素信号转导、光呼吸和苯丙素代谢途径中显著富集。其中,HsP90A、MYC2和HAO基因为首次在向日葵与古麻寄生互作中发现。研究结果为揭示古麻与向日葵寄生相互作用的分子机制奠定了基础。
{"title":"Molecular mechanism of the parasitic interaction between Orobanche cumana wallr. and sunflowers","authors":"Yixiao Zhang, Jietian Su, X. Yun, Wenlong Wu, Shouhui Wei, Zhaofeng Huang, Chaoxian Zhang, Q. Bai, Hong-juan Huang","doi":"10.1080/17429145.2022.2062061","DOIUrl":"https://doi.org/10.1080/17429145.2022.2062061","url":null,"abstract":"ABSTRACT Orobanche cumana Wallr. is the most serious parasitic weed that threatens sunflower production in China, it infects sunflower roots and causes severe yield and economic losses. This study determined the effects of O. cumana infection on sunflower growth, physiological, biochemical, photosynthesis indexes and used RNA-Seq to investigate the potential regulatory factors involved in the parasitic interaction. Results showed that O. cumana infestation significantly inhibited sunflower height, fresh weight, chlorophyl contents, photosynthetic and the MDA content, SOD and POD activities were increased in different degrees, which might be related to sunflower resistance to O. cumana infestation. Additionally, six parasite-related genes were selected, which markedly enriched in plant hormone signal transduction, photorespiration and phenylpropanoid metabolism pathway. Among these genes, HsP90A, MYC2 and HAO were discovered for the first time in sunflowers and O. cumana parasitic interaction. Undoubtedly, the results lay a foundation for revealing the parasitic interactions molecular mechanism of O. cumana and sunflowers.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"549 - 561"},"PeriodicalIF":3.2,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42539705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Transcriptome and biochemical analyses of glutathione-dependent regulation of tomato fruit ripening 谷胱甘肽依赖性调控番茄果实成熟的转录组和生化分析
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-04-30 DOI: 10.1080/17429145.2022.2069296
Yan Zhou, Xianglan Huang, Rui Li, Hongshi Lin, Yan Huang, Tao Zhang, Yuxing Mo, Kaidong Liu
ABSTRACT Delay the ripening can improve fruit shelf life. Reduced glutathione (GSH) is an antioxidant that delays the ripening of fruits, though the GSH-mediated mechanism involved in fruit-ripening processes is currently unclear. This study used RNA sequencing to assess the GSH-induced transcriptional and biochemical alterations observed in tomato fruit during the post-harvest process. We found 970 differentially expressed genes (DEGs) after GSH treatment, and 124 were found to be candidate genes related to the ripening of GSH-mediated fruit. In addition, the expression levels of several candidate DEGs observed in ripe tomato fruit after GSH treatments were confirmed using quantitative real-time PCR. Biochemical analyses revealed that the GSH treatment decreased the proline content and the lipid peroxidation and ascorbate peroxidase activity levels. In contrast, it increased the superoxide dismutase, peroxidase, and catalase activity levels, as well as endogenous glutathione and ascorbic acid contents. These results confirm the important role played by GSH during the process of ripening tomato fruit.
延迟成熟可以延长水果的保质期。还原型谷胱甘肽(GSH)是一种延缓水果成熟的抗氧化剂,尽管GSH介导的水果成熟过程的机制目前尚不清楚。本研究使用RNA测序技术来评估gsh诱导的番茄果实在收获后过程中观察到的转录和生化变化。在GSH处理后,我们发现970个差异表达基因(deg),其中124个是GSH介导的果实成熟相关的候选基因。此外,利用实时荧光定量PCR技术对GSH处理后成熟番茄果实中几种候选deg的表达水平进行了验证。生化分析表明,GSH处理降低了脯氨酸含量、脂质过氧化和抗坏血酸过氧化物酶活性水平。相反,它增加了超氧化物歧化酶、过氧化物酶和过氧化氢酶的活性水平,以及内源性谷胱甘肽和抗坏血酸的含量。这些结果证实了谷胱甘肽在番茄果实成熟过程中发挥的重要作用。
{"title":"Transcriptome and biochemical analyses of glutathione-dependent regulation of tomato fruit ripening","authors":"Yan Zhou, Xianglan Huang, Rui Li, Hongshi Lin, Yan Huang, Tao Zhang, Yuxing Mo, Kaidong Liu","doi":"10.1080/17429145.2022.2069296","DOIUrl":"https://doi.org/10.1080/17429145.2022.2069296","url":null,"abstract":"ABSTRACT Delay the ripening can improve fruit shelf life. Reduced glutathione (GSH) is an antioxidant that delays the ripening of fruits, though the GSH-mediated mechanism involved in fruit-ripening processes is currently unclear. This study used RNA sequencing to assess the GSH-induced transcriptional and biochemical alterations observed in tomato fruit during the post-harvest process. We found 970 differentially expressed genes (DEGs) after GSH treatment, and 124 were found to be candidate genes related to the ripening of GSH-mediated fruit. In addition, the expression levels of several candidate DEGs observed in ripe tomato fruit after GSH treatments were confirmed using quantitative real-time PCR. Biochemical analyses revealed that the GSH treatment decreased the proline content and the lipid peroxidation and ascorbate peroxidase activity levels. In contrast, it increased the superoxide dismutase, peroxidase, and catalase activity levels, as well as endogenous glutathione and ascorbic acid contents. These results confirm the important role played by GSH during the process of ripening tomato fruit.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"537 - 547"},"PeriodicalIF":3.2,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43978993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Constitutive expression of SlMX1 gene improves fruit yield and quality, health-promoting compounds, fungal resistance and delays ripening in transgenic tomato plants SlMX1基因的组成性表达提高了转基因番茄的产量和品质,增加了促进健康的化合物,提高了对真菌的抗性,并延缓了番茄的成熟
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-04-27 DOI: 10.1080/17429145.2022.2066730
M. Ewas, P. W. Harlina, R. Shahzad, E. Khames, F. Ali, E. Nishawy, Nagwa Elsafty, H. Ibrahim, P. Gallego
ABSTRACT Tomato is one of the major economically domesticated crops, and it is extensively used in different ways and purposes worldwide. Cell metabolism is the central core of all the biological processes to sustain life including cell growth, differentiation, maintenance, and response to environmental stress. To evaluate how genetic engineering can improve tomato fruit metabolome, the transcriptomic and metabolomic datasets of two transgenic tomatoes (SlMX1 overexpression and RNAi lines) have been compared with wild-type. The combined results demonstrated that the constitutive expression of SlMX1 not only increased trichome formation, carotenoids, and terpenoids as has been stated in several studies, but has also up- and down-regulated the expression of multiple genes related to cell growth (cell wall turnover), primary (carbohydrates, vitamins, and phytohormones), and secondary (phenylpropanoids, carotenoids, and terpenoids) metabolism, cell signaling, and stress responses. These changes in gene expression due to the constitutive expression of SlMX1 promote the most important agroeconomic traits such as fruit yield and quality, biosynthesis of health-promoting phytochemicals (including phenolic acids, flavonoids, and anthocyanins), and finally, activate resistance to Botrytis cinerea and repress the expression of over-ripening-related genes, thus extending the fruit shelf-life. In conclusion, the traits improvement achieved by SlMX1 overexpression can be harnessed in molecular breeding programs to engineer fruit size and yield, induce health-promoting secondary metabolites, promote fungal resistance, and finally extend the fruit shelf-life.
番茄是主要的经济驯化作物之一,在世界范围内以不同的方式和目的得到广泛的应用。细胞代谢是维持生命的所有生物过程的核心,包括细胞生长、分化、维持和对环境应激的反应。为了评估基因工程如何改善番茄果实代谢组,我们将两种转基因番茄(SlMX1过表达系和RNAi系)的转录组学和代谢组学数据集与野生型进行了比较。综合结果表明,SlMX1的组成性表达不仅增加了几项研究中所述的毛状体形成、类胡萝卜素和萜类,而且还上调和下调了与细胞生长(细胞壁更新)、初级(碳水化合物、维生素和植物激素)和次级(苯丙素、类胡萝卜素和萜类)代谢、细胞信号传导和应激反应相关的多种基因的表达。这些由SlMX1组成性表达引起的基因表达变化促进了果实产量和品质等最重要的农业经济性状,促进了促进健康的植物化学物质(包括酚酸、黄酮类和花青素)的生物合成,并最终激活了对葡萄灰霉病的抗性,抑制了过熟相关基因的表达,从而延长了果实的保质期。综上所述,SlMX1过表达所实现的性状改良可以在分子育种计划中加以利用,以改造果实的大小和产量,诱导促进健康的次生代谢产物,提高真菌抗性,最终延长果实的货架期。
{"title":"Constitutive expression of SlMX1 gene improves fruit yield and quality, health-promoting compounds, fungal resistance and delays ripening in transgenic tomato plants","authors":"M. Ewas, P. W. Harlina, R. Shahzad, E. Khames, F. Ali, E. Nishawy, Nagwa Elsafty, H. Ibrahim, P. Gallego","doi":"10.1080/17429145.2022.2066730","DOIUrl":"https://doi.org/10.1080/17429145.2022.2066730","url":null,"abstract":"ABSTRACT Tomato is one of the major economically domesticated crops, and it is extensively used in different ways and purposes worldwide. Cell metabolism is the central core of all the biological processes to sustain life including cell growth, differentiation, maintenance, and response to environmental stress. To evaluate how genetic engineering can improve tomato fruit metabolome, the transcriptomic and metabolomic datasets of two transgenic tomatoes (SlMX1 overexpression and RNAi lines) have been compared with wild-type. The combined results demonstrated that the constitutive expression of SlMX1 not only increased trichome formation, carotenoids, and terpenoids as has been stated in several studies, but has also up- and down-regulated the expression of multiple genes related to cell growth (cell wall turnover), primary (carbohydrates, vitamins, and phytohormones), and secondary (phenylpropanoids, carotenoids, and terpenoids) metabolism, cell signaling, and stress responses. These changes in gene expression due to the constitutive expression of SlMX1 promote the most important agroeconomic traits such as fruit yield and quality, biosynthesis of health-promoting phytochemicals (including phenolic acids, flavonoids, and anthocyanins), and finally, activate resistance to Botrytis cinerea and repress the expression of over-ripening-related genes, thus extending the fruit shelf-life. In conclusion, the traits improvement achieved by SlMX1 overexpression can be harnessed in molecular breeding programs to engineer fruit size and yield, induce health-promoting secondary metabolites, promote fungal resistance, and finally extend the fruit shelf-life.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"517 - 536"},"PeriodicalIF":3.2,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44811684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Phenotypic and transcriptomic characterization of an ABA-sensitive mutant generated by microspore embryogenesis in barley 大麦小孢子胚发生产生的aba敏感突变体的表型和转录组学特征
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-04-05 DOI: 10.1080/17429145.2022.2056250
Yingbo Li, G. Guo, Hongwei Xu, Yingjie Zong, Shuwei Zhang, Linli Huang, R. Gao, R. Lu, Longhua Zhou, Chenghong Liu
ABSTRACT Barley (Hordeum vulgare L.) has been recognized as an ideal model plant to study the mechanism of environmental adaptation for crop improvement owing to its wide adaption to abiotic stresses. Abscisic acid is an essential hormone involved in many abiotic stresses. Here, an ABA-sensitive barley mutant (abas1) was generated by microspore embryogenesis. On exogenous ABA treatment, the seedlings of abas1 presented less plant height, root length, shoot and root dry matter than the wild type, and more genes showedigher expressional intensity and up-regulation models by RNA-Seq profiling. The gene ontology analysis revealed that the regulation of DEGs may lead to the activation of the ROS pathway and consumption of more energy in abas1, specifically. Furthermore, the up-regulation of two candidate genes (P450 and NsLTP) in abas1 may contribute to the variation of ABA sensitivity. Our findings provide more valuable material and information toward the understanding of the mechanism of ABA response in barley.
大麦(Hordeum vulgare L.)对非生物胁迫具有广泛的适应性,是研究作物改良环境适应机制的理想模式植物。脱落酸是一种与许多非生物胁迫有关的必需激素。本文通过小孢子胚胎发生产生了对ABA敏感的大麦突变体(abas1)。在外源ABA处理下,abas1的幼苗比野生型表现出更少的株高、根长、地上部和根干物质,并且更多的基因表现出更高的表达强度和RNA-Seq图谱的上调模型。基因本体论分析表明,DEGs的调节可能导致ROS途径的激活,并消耗更多的能量。此外,abas1中两个候选基因(P450和NsLTP)的上调可能有助于ABA敏感性的变化。我们的发现为理解大麦ABA反应机制提供了更有价值的材料和信息。
{"title":"Phenotypic and transcriptomic characterization of an ABA-sensitive mutant generated by microspore embryogenesis in barley","authors":"Yingbo Li, G. Guo, Hongwei Xu, Yingjie Zong, Shuwei Zhang, Linli Huang, R. Gao, R. Lu, Longhua Zhou, Chenghong Liu","doi":"10.1080/17429145.2022.2056250","DOIUrl":"https://doi.org/10.1080/17429145.2022.2056250","url":null,"abstract":"ABSTRACT Barley (Hordeum vulgare L.) has been recognized as an ideal model plant to study the mechanism of environmental adaptation for crop improvement owing to its wide adaption to abiotic stresses. Abscisic acid is an essential hormone involved in many abiotic stresses. Here, an ABA-sensitive barley mutant (abas1) was generated by microspore embryogenesis. On exogenous ABA treatment, the seedlings of abas1 presented less plant height, root length, shoot and root dry matter than the wild type, and more genes showedigher expressional intensity and up-regulation models by RNA-Seq profiling. The gene ontology analysis revealed that the regulation of DEGs may lead to the activation of the ROS pathway and consumption of more energy in abas1, specifically. Furthermore, the up-regulation of two candidate genes (P450 and NsLTP) in abas1 may contribute to the variation of ABA sensitivity. Our findings provide more valuable material and information toward the understanding of the mechanism of ABA response in barley.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"507 - 516"},"PeriodicalIF":3.2,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43162796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptomic insights into the regulatory networks of chilling-induced early flower in tobacco (Nicotiana tabacum L.) 烟草(Nicotiana tabacum L.)低温诱导早花调控网络的转录组学研究
IF 3.2 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2022-04-05 DOI: 10.1080/17429145.2022.2055175
Guoyun Xu, Wuxia Guo, Zunqiang Li, Chen Wang, Yalong Xu, Jingjing Jin, Huina Zhou, Shulin Deng
ABSTRACT Appropriate timing of flowering is pivotal for tobacco, while chilling stress occurring at the seedling stage often undesirably leads to early flowering. However, the potential mechanism underlying chilling-induced early flowering remains unknown. Here, transcriptome sequencing was performed in tobacco with or without chilling at both seedling and budding stages. Chilling affected the expression of numerous genes at the seedling stage, while these dramatic expression changes were largely eliminated at the budding stage. A small number of genes related to metabolism, flower development, and stress tolerance continued to keep their altered expression patterns from the seedling stage to the budding stage. Many potential flowering-related genes involved in flowering pathways were identified and over half of them were differentially expressed. Functional analysis revealed that the down-regulation of NbXTH22 rendered tobacco less sensitive to chilling-induced early flowering. These results provide valuable resources for the investigation of flowering regulatory mechanisms and contribute to the genetic improvement of crops.
摘要适当的开花时间对烟草来说至关重要,而幼苗期发生的低温胁迫往往会导致提前开花。然而,低温诱导早花的潜在机制仍然未知。在这里,转录组测序是在有或没有冷藏的烟草幼苗和出芽阶段进行的。低温在幼苗期影响了许多基因的表达,而这些显著的表达变化在萌芽期基本上被消除了。从幼苗期到萌芽期,少数与代谢、花发育和耐逆性相关的基因继续保持其改变的表达模式。许多潜在的与开花途径有关的基因被鉴定出来,其中超过一半的基因被差异表达。功能分析表明,NbXTH22的下调使烟草对低温诱导的早花不太敏感。这些结果为研究开花调控机制提供了宝贵的资源,有助于作物的遗传改良。
{"title":"Transcriptomic insights into the regulatory networks of chilling-induced early flower in tobacco (Nicotiana tabacum L.)","authors":"Guoyun Xu, Wuxia Guo, Zunqiang Li, Chen Wang, Yalong Xu, Jingjing Jin, Huina Zhou, Shulin Deng","doi":"10.1080/17429145.2022.2055175","DOIUrl":"https://doi.org/10.1080/17429145.2022.2055175","url":null,"abstract":"ABSTRACT Appropriate timing of flowering is pivotal for tobacco, while chilling stress occurring at the seedling stage often undesirably leads to early flowering. However, the potential mechanism underlying chilling-induced early flowering remains unknown. Here, transcriptome sequencing was performed in tobacco with or without chilling at both seedling and budding stages. Chilling affected the expression of numerous genes at the seedling stage, while these dramatic expression changes were largely eliminated at the budding stage. A small number of genes related to metabolism, flower development, and stress tolerance continued to keep their altered expression patterns from the seedling stage to the budding stage. Many potential flowering-related genes involved in flowering pathways were identified and over half of them were differentially expressed. Functional analysis revealed that the down-regulation of NbXTH22 rendered tobacco less sensitive to chilling-induced early flowering. These results provide valuable resources for the investigation of flowering regulatory mechanisms and contribute to the genetic improvement of crops.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"496 - 506"},"PeriodicalIF":3.2,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44364354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Journal of Plant Interactions
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1