首页 > 最新文献

Journal of Quantitative Spectroscopy & Radiative Transfer最新文献

英文 中文
Preface to the HITRAN 2024: HITRAN special issue to celebrate the scientific contributions of Dr. Laurence Rothman HITRAN 2024的序言:HITRAN特刊庆祝劳伦斯·罗斯曼博士的科学贡献
IF 1.9 3区 物理与天体物理 Q2 OPTICS Pub Date : 2026-01-07 DOI: 10.1016/j.jqsrt.2026.109813
Iouli E. Gordon, Robert J. Hargreaves
{"title":"Preface to the HITRAN 2024: HITRAN special issue to celebrate the scientific contributions of Dr. Laurence Rothman","authors":"Iouli E. Gordon, Robert J. Hargreaves","doi":"10.1016/j.jqsrt.2026.109813","DOIUrl":"10.1016/j.jqsrt.2026.109813","url":null,"abstract":"","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"352 ","pages":"Article 109813"},"PeriodicalIF":1.9,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145956757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global analyses of rotational transitions of CH2Cl2 up into the THz frequency region CH2Cl2向上进入太赫兹频率区的旋转跃迁的全局分析
IF 1.9 3区 物理与天体物理 Q2 OPTICS Pub Date : 2026-01-06 DOI: 10.1016/j.jqsrt.2025.109806
Zbigniew Kisiel , Brian J. Esselman , Maria A. Zdanovskaia , R. Claude Woods , Robert J. McMahon , Manamu Kobayashi , Kaori Kobayashi
The present work expands the experimental coverage and analysis of the rotational spectrum for many spectroscopic species of the methylene chloride molecule based on new measurements at 8–750 GHz. Global analyses of measured chlorine nuclear quadrupole hyperfine resolved and hyperfine unresolved transitions are reported for v4=3, v3=1, v9=1, v7=1 excited vibrational states in CH2 35Cl2, g.s., v4=1, v4=2, v4=3, v3=1, and v9=1 in CH2 35Cl37Cl, g.s. and v4=1 in CH2 37Cl2, and g.s. in 13CH2 35Cl2. Coriolis coupling between the ν3 and ν9 fundamentals at 713 and 760 cm−1 has been explicitly treated for the two most abundant isotopic species.
基于8-750 GHz的新测量,本工作扩展了对二氯甲烷分子的许多光谱物种的旋转光谱的实验覆盖范围和分析。本文报道了CH2 35Cl2中v4=3, v3=1, v9=1, v7=1激发振动态的氯核四极子超精细解析跃迁和超精细未解析跃迁的全局分析,g.s., CH2 35Cl37Cl中v4=1, v4=2, v4=3, v3=1, v9=1, CH2 37Cl2中v4=1,以及13CH2 35Cl2中g.s.。在713和760 cm−1处ν3和ν9基元之间的科里奥利耦合已经明确地处理了两种最丰富的同位素。
{"title":"Global analyses of rotational transitions of CH2Cl2 up into the THz frequency region","authors":"Zbigniew Kisiel ,&nbsp;Brian J. Esselman ,&nbsp;Maria A. Zdanovskaia ,&nbsp;R. Claude Woods ,&nbsp;Robert J. McMahon ,&nbsp;Manamu Kobayashi ,&nbsp;Kaori Kobayashi","doi":"10.1016/j.jqsrt.2025.109806","DOIUrl":"10.1016/j.jqsrt.2025.109806","url":null,"abstract":"<div><div>The present work expands the experimental coverage and analysis of the rotational spectrum for many spectroscopic species of the methylene chloride molecule based on new measurements at 8–750 GHz. Global analyses of measured chlorine nuclear quadrupole hyperfine resolved and hyperfine unresolved transitions are reported for <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>=</mo><mn>3</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>=</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mn>9</mn></mrow></msub><mo>=</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>=</mo><mn>1</mn></mrow></math></span> excited vibrational states in CH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> <span><math><msup><mrow></mrow><mrow><mn>35</mn></mrow></msup></math></span>Cl<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, g.s., <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>=</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>=</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>=</mo><mn>3</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>=</mo><mn>1</mn></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mn>9</mn></mrow></msub><mo>=</mo><mn>1</mn></mrow></math></span> in CH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> <span><math><msup><mrow></mrow><mrow><mn>35</mn></mrow></msup></math></span>Cl<sup>37</sup>Cl, g.s. and <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>=</mo><mn>1</mn></mrow></math></span> in CH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> <span><math><msup><mrow></mrow><mrow><mn>37</mn></mrow></msup></math></span>Cl<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and g.s. in <sup>13</sup>CH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> <span><math><msup><mrow></mrow><mrow><mn>35</mn></mrow></msup></math></span>Cl<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Coriolis coupling between the <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mn>9</mn></mrow></msub></math></span> fundamentals at 713 and 760 cm<sup>−1</sup> has been explicitly treated for the two most abundant isotopic species.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"352 ","pages":"Article 109806"},"PeriodicalIF":1.9,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145928116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of the avoided crossing on the rovibrational energy levels, resonances, and predissociation lifetimes within the ground and first excited electronic states of lithium fluoride 避免交叉对氟化锂基态和第一激发态内旋转振动能级、共振和预解离寿命的影响
IF 1.9 3区 物理与天体物理 Q2 OPTICS Pub Date : 2026-01-06 DOI: 10.1016/j.jqsrt.2026.109811
V.G. Ushakov , A. Yu. Ermilov , E.S. Medvedev
We investigate the LiF spectrum up to 7800 cm−1 above the first dissociation limit. The ab initio calculations of the adiabatic potentials and other molecular functions are performed in a wide range of interatomic separations, r=1-17 bohr. We consider the model of two interacting electronic states including both the bound states and the resonances of two kinds, the tunneling resonances and the predissociative ones. The Born–Oppenheimer potentials are modeled with use of two auxiliary functions containing 15 variable parameters each, whose values are defined by least-squares fitting for the best reproduction of the adiabatic potentials calculated ab initio, as well as the experimental rovibrational transition frequencies. Then we determine the diabatic potentials and the diabatic coupling via the adiabatic potentials and the angle of the adiabatic-to-diabatic basis rotation obtained by integration of the nonadiabatic coupling matrix element. The energies of the bound states, as well as the positions and widths of the resonances are calculated. The observed transition frequencies are reproduced with the standard deviation of 0.0009 cm−1 for 7LiF, 0.0006 cm−1 for 6LiF, and within the experimental uncertainties for the most of the lines. The line lists for the bound-bound X-X rovibrational transitions are calculated for quantum numbers v50,Δv15,J170 (J200 for the 0-0 and 1-0 bands).
我们研究了超过第一解离极限7800 cm−1的LiF谱。在r=1-17玻尔的大范围原子间分离中,进行了绝热势和其他分子函数的从头计算。我们考虑了两种相互作用的电子态模型,包括束缚态和两种共振,隧道共振和预解离共振。Born-Oppenheimer势用两个辅助函数建模,每个辅助函数包含15个可变参数,其值由最小二乘拟合定义,以最佳再现从头计算的绝热势,以及实验转振跃迁频率。然后通过对非绝热耦合矩阵元的积分得到绝热势和绝热基与绝热基的旋转角度,确定绝热势和绝热耦合。计算了束缚态的能量,以及共振的位置和宽度。观测到的跃迁频率在7LiF的标准偏差为0.0009 cm−1,6LiF的标准偏差为0.0006 cm−1,并且在大多数谱线的实验不确定度范围内重现。当量子数v≤50,Δv≤15,J≤170(0-0和1-0波段J≤200)时,计算了结合-结合X-X旋转振动跃迁的行表。
{"title":"Effect of the avoided crossing on the rovibrational energy levels, resonances, and predissociation lifetimes within the ground and first excited electronic states of lithium fluoride","authors":"V.G. Ushakov ,&nbsp;A. Yu. Ermilov ,&nbsp;E.S. Medvedev","doi":"10.1016/j.jqsrt.2026.109811","DOIUrl":"10.1016/j.jqsrt.2026.109811","url":null,"abstract":"<div><div>We investigate the LiF spectrum up to 7800 cm<sup>−1</sup> above the first dissociation limit. The <em>ab initio</em> calculations of the adiabatic potentials and other molecular functions are performed in a wide range of interatomic separations, <span><math><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow></math></span>-17 bohr. We consider the model of two interacting electronic states including both the bound states and the resonances of two kinds, the tunneling resonances and the predissociative ones. The Born–Oppenheimer potentials are modeled with use of two auxiliary functions containing 15 variable parameters each, whose values are defined by least-squares fitting for the best reproduction of the adiabatic potentials calculated <em>ab initio</em>, as well as the experimental rovibrational transition frequencies. Then we determine the diabatic potentials and the diabatic coupling <em>via</em> the adiabatic potentials and the angle of the adiabatic-to-diabatic basis rotation obtained by integration of the nonadiabatic coupling matrix element. The energies of the bound states, as well as the positions and widths of the resonances are calculated. The observed transition frequencies are reproduced with the standard deviation of 0.0009 cm<sup>−1</sup> for <span><math><msup><mrow></mrow><mrow><mn>7</mn></mrow></msup></math></span>LiF, 0.0006 cm<sup>−1</sup> for <span><math><msup><mrow></mrow><mrow><mn>6</mn></mrow></msup></math></span>LiF, and within the experimental uncertainties for the most of the lines. The line lists for the bound-bound <span><math><mi>X</mi></math></span>-<span><math><mi>X</mi></math></span> rovibrational transitions are calculated for quantum numbers <span><math><mrow><mi>v</mi><mo>≤</mo><mn>50</mn><mo>,</mo><mi>Δ</mi><mi>v</mi><mo>≤</mo><mn>15</mn><mo>,</mo><mi>J</mi><mo>≤</mo><mn>170</mn></mrow></math></span> (<span><math><mrow><mi>J</mi><mo>≤</mo><mn>200</mn></mrow></math></span> for the 0-0 and 1-0 bands).</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"352 ","pages":"Article 109811"},"PeriodicalIF":1.9,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145928717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mikhail Tretyakov’s scientific legacy 米哈伊尔·特列季亚科夫的科学遗产
IF 1.9 3区 物理与天体物理 Q2 OPTICS Pub Date : 2026-01-05 DOI: 10.1016/j.jqsrt.2025.109803
Andrei A. Vigasin , Jonathan Tennyson , Oleg L. Polyansky
Mikhail Yurievich Tretyakov (1958–2024) was a leading spectroscopist working at terahertz and microwave wavelengths. He made substantial advances in sub-millimeter spectrometers and performed spectroscopic studies on isolated gaseous, molecular complexes and, in particular, the water dimer. He also studied molecular interactions and line shapes, using them to develop ideas about the physics of the water continuum. In this memorial paper, we review Mikail Tretyakov’s life and his major scientific achievements.
米哈伊尔·尤里耶维奇·特列季亚科夫(1958-2024)是研究太赫兹和微波波长的主要光谱学家。他在亚毫米光谱仪方面取得了重大进展,并对分离的气体、分子复合物,特别是水二聚体进行了光谱研究。他还研究了分子间的相互作用和线条的形状,并用它们来发展关于水连续体物理学的想法。本文回顾了特列季亚科夫的一生和他的主要科学成就。
{"title":"Mikhail Tretyakov’s scientific legacy","authors":"Andrei A. Vigasin ,&nbsp;Jonathan Tennyson ,&nbsp;Oleg L. Polyansky","doi":"10.1016/j.jqsrt.2025.109803","DOIUrl":"10.1016/j.jqsrt.2025.109803","url":null,"abstract":"<div><div>Mikhail Yurievich Tretyakov (1958–2024) was a leading spectroscopist working at terahertz and microwave wavelengths. He made substantial advances in sub-millimeter spectrometers and performed spectroscopic studies on isolated gaseous, molecular complexes and, in particular, the water dimer. He also studied molecular interactions and line shapes, using them to develop ideas about the physics of the water continuum. In this memorial paper, we review Mikail Tretyakov’s life and his major scientific achievements.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"352 ","pages":"Article 109803"},"PeriodicalIF":1.9,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145902339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature dependence of line shape parameters from the kinetic energy dependence of spectroscopic cross sections 从光谱截面的动能依赖性看线形参数的温度依赖性
IF 1.9 3区 物理与天体物理 Q2 OPTICS Pub Date : 2026-01-02 DOI: 10.1016/j.jqsrt.2025.109798
Franck Thibault, Kevin M. Dunseath
We use previously calculated generalized spectroscopic cross sections over a grid of relative collisional kinetic energies to investigate the temperature dependence of line shape parameters. This dependence, for the thermally averaged pressure broadening and shift parameters and also for the complex Dicke diffusion-type collision integral, is readily obtained by fitting the relevant quantities using a polynomial expansion in kinetic energy. Using a simple or double power law in kinetic energy we also investigate the general speed dependence of the pressure broadening and shift coefficients. In addition, we study the temperature dependence of the line shape parameters which characterize an assumed quadratic speed dependence of these coefficients, as implemented in the modified Hartmann–Tran profile and recommended by the HITRAN database.
我们使用先前计算的相对碰撞动能网格上的广义光谱截面来研究线形参数对温度的依赖性。对于热平均压力展宽和位移参数以及复杂的Dicke扩散型碰撞积分,这种依赖关系很容易通过使用动能的多项式展开拟合相关量来获得。利用动能的简单幂律或双幂律,我们还研究了压力展宽系数和位移系数对速度的一般依赖关系。此外,我们研究了线形参数的温度依赖性,这些参数表征了假设的二次速度依赖性,如在改进的Hartmann-Tran剖面中实现并由HITRAN数据库推荐。
{"title":"Temperature dependence of line shape parameters from the kinetic energy dependence of spectroscopic cross sections","authors":"Franck Thibault,&nbsp;Kevin M. Dunseath","doi":"10.1016/j.jqsrt.2025.109798","DOIUrl":"10.1016/j.jqsrt.2025.109798","url":null,"abstract":"<div><div>We use previously calculated generalized spectroscopic cross sections over a grid of relative collisional kinetic energies to investigate the temperature dependence of line shape parameters. This dependence, for the thermally averaged pressure broadening and shift parameters and also for the complex Dicke diffusion-type collision integral, is readily obtained by fitting the relevant quantities using a polynomial expansion in kinetic energy. Using a simple or double power law in kinetic energy we also investigate the general speed dependence of the pressure broadening and shift coefficients. In addition, we study the temperature dependence of the line shape parameters which characterize an assumed quadratic speed dependence of these coefficients, as implemented in the modified Hartmann–Tran profile and recommended by the HITRAN database.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"352 ","pages":"Article 109798"},"PeriodicalIF":1.9,"publicationDate":"2026-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145894097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iterative method for reflection and transmission from multilayered chiral slabs 多层手性板反射与透射的迭代方法
IF 1.9 3区 物理与天体物理 Q2 OPTICS Pub Date : 2025-12-30 DOI: 10.1016/j.jqsrt.2025.109804
Qing-Chao Shang, Lu Bai, Hai-Ying Li, Yuan-Yuan Zhang, Zhen-Sen Wu
An iterative method is proposed in this paper for calculating the reflection and transmission of a plane electromagnetic wave incident on multilayered chiral slabs. The waves in each region are decomposed into upward and downward left-circularly polarized (LCP) waves and right-circularly polarized (RCP) waves, respectively. Field relations in adjacent regions of the chiral multilayers are established according to electromagnetic field boundary conditions. By introducing ratio relations between upward and downward waves, an iterative relation is constructed. The iterative relation is represented by matrices of size 2 × 2, to avoid lengthy analytical expressions. Finally, the reflected and transmitted waves can be calculated by using the incident RCP or LCP wave. The method provides a new route for reflection and transmission problems of chiral multilayers. And the idea may offer inspiration to research on other cases such as bi-isotropic and anisotropic multilayers.
本文提出了一种计算平面电磁波在多层手性板上的反射和透射的迭代方法。每个区域的波分别分解为向上和向下的左圆极化(LCP)波和右圆极化(RCP)波。根据电磁场边界条件,建立了手性多层膜相邻区域的场关系。通过引入上下波之间的比值关系,构造了一种迭代关系。迭代关系用大小为2 × 2的矩阵表示,以避免冗长的解析表达式。最后,利用入射RCP或LCP波可以计算出反射波和透射波。该方法为研究手性多层材料的反射和透射问题提供了一条新的途径。同时,该思想也为双各向同性和各向异性多层材料的研究提供了启示。
{"title":"Iterative method for reflection and transmission from multilayered chiral slabs","authors":"Qing-Chao Shang,&nbsp;Lu Bai,&nbsp;Hai-Ying Li,&nbsp;Yuan-Yuan Zhang,&nbsp;Zhen-Sen Wu","doi":"10.1016/j.jqsrt.2025.109804","DOIUrl":"10.1016/j.jqsrt.2025.109804","url":null,"abstract":"<div><div>An iterative method is proposed in this paper for calculating the reflection and transmission of a plane electromagnetic wave incident on multilayered chiral slabs. The waves in each region are decomposed into upward and downward left-circularly polarized (LCP) waves and right-circularly polarized (RCP) waves, respectively. Field relations in adjacent regions of the chiral multilayers are established according to electromagnetic field boundary conditions. By introducing ratio relations between upward and downward waves, an iterative relation is constructed. The iterative relation is represented by matrices of size 2 × 2, to avoid lengthy analytical expressions. Finally, the reflected and transmitted waves can be calculated by using the incident RCP or LCP wave. The method provides a new route for reflection and transmission problems of chiral multilayers. And the idea may offer inspiration to research on other cases such as bi-isotropic and anisotropic multilayers.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"352 ","pages":"Article 109804"},"PeriodicalIF":1.9,"publicationDate":"2025-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145894105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploration of coherent backscattering mechanisms for nonspherical particles in geometric optics regime 几何光学条件下非球面粒子相干后向散射机制的探索
IF 1.9 3区 物理与天体物理 Q2 OPTICS Pub Date : 2025-12-29 DOI: 10.1016/j.jqsrt.2025.109805
Masanori Saito , Ping Yang , Leung Tsang , Hajime Okamoto , Jiachen Ding
Coherent backscattering enhancement (CBE) is critical to the quasi-backscattering (i.e., close to 180° scattering angle) properties of a nonspherical particle. However, the conventional geometric optics method (GOM) does not account for CBE in computing the single-scattering properties of nonspherical particles, leading to systematic biases in the phase function at quasi-backscattering angles. To mitigate the biases, this study explores the mechanisms of CBE in the geometric optics regime and derives a correction formula to approximately account for the CBE effect in the phase functions computed with the principles of geometric optics. In particular, the enhancement of the scattering intensity at quasi-backscattering angles can be explained by the CBE mechanisms associated with constructive interference due to mutual pairs of transmitted rays going through internal reflection-refraction events within a particle. The present CBE correction is obtained based on physical rationales about the CBE mechanisms and substantially improves the consistency of the computed phase functions of an ensemble of randomly oriented nonspherical particles, including droxtals and conical hydrometeors, between numerically rigorous methods and GOMs with the CBE correction. The applicability and limitations of the present CBE correction formula are also discussed.
相干后向散射增强(CBE)对于非球形粒子的准后向散射(即接近180°散射角)特性至关重要。然而,传统的几何光学方法(GOM)在计算非球形粒子的单散射特性时没有考虑CBE,导致在准后向散射角处相函数存在系统偏差。为了减轻这种偏差,本研究探讨了几何光学体系中CBE效应的机制,并推导了一个修正公式,以近似地解释用几何光学原理计算的相函数中的CBE效应。特别是,在准后向散射角处散射强度的增强可以用CBE机制来解释,这种机制与粒子内部反射-折射事件中透射光线的相互对所产生的相长干涉有关。本文的CBE修正是基于CBE机制的物理原理得到的,它大大提高了数值严格方法与GOMs计算的随机取向非球形粒子(包括柱面和锥形水成物)相函数的一致性。本文还讨论了CBE修正公式的适用性和局限性。
{"title":"Exploration of coherent backscattering mechanisms for nonspherical particles in geometric optics regime","authors":"Masanori Saito ,&nbsp;Ping Yang ,&nbsp;Leung Tsang ,&nbsp;Hajime Okamoto ,&nbsp;Jiachen Ding","doi":"10.1016/j.jqsrt.2025.109805","DOIUrl":"10.1016/j.jqsrt.2025.109805","url":null,"abstract":"<div><div>Coherent backscattering enhancement (CBE) is critical to the quasi-backscattering (i.e., close to 180° scattering angle) properties of a nonspherical particle. However, the conventional geometric optics method (GOM) does not account for CBE in computing the single-scattering properties of nonspherical particles, leading to systematic biases in the phase function at quasi-backscattering angles. To mitigate the biases, this study explores the mechanisms of CBE in the geometric optics regime and derives a correction formula to approximately account for the CBE effect in the phase functions computed with the principles of geometric optics. In particular, the enhancement of the scattering intensity at quasi-backscattering angles can be explained by the CBE mechanisms associated with constructive interference due to mutual pairs of transmitted rays going through internal reflection-refraction events within a particle. The present CBE correction is obtained based on physical rationales about the CBE mechanisms and substantially improves the consistency of the computed phase functions of an ensemble of randomly oriented nonspherical particles, including droxtals and conical hydrometeors, between numerically rigorous methods and GOMs with the CBE correction. The applicability and limitations of the present CBE correction formula are also discussed.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"352 ","pages":"Article 109805"},"PeriodicalIF":1.9,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145894106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-lying states and total internal partition sums of CH CH的低洼状态与总内分割和
IF 1.9 3区 物理与天体物理 Q2 OPTICS Pub Date : 2025-12-27 DOI: 10.1016/j.jqsrt.2025.109800
Alexandros Androutsopoulos , Isuru R. Ariyarathna , Mark C. Zammit , Evangelos Miliordos , Amanda J. Neukirch , Jeffery A. Leiding
<div><div>The electronic structure and spin-orbit states of the CH radical have been systematically investigated using multi-reference configuration interaction (MRCI) and single-reference coupled-cluster (CC) methods. These calculations were performed in conjunction with large correlation-consistent basis sets of quadruple-, quintuple-, and sextuple-ζ quality. To achieve high accuracy, electronic energies for all states were extrapolated to the complete basis set (CBS) limit, enabling the detailed construction of potential energy curves and determination of reliable spectroscopic constants. Spin-orbit coupling effects were explicitly incorporated, and vibrational energy levels were computed via Numerov analysis. The resulting values exhibit good to excellent agreement with available experimental data. Dipole moment and transition dipole moment curves were evaluated to assess the opacity characteristics of CH, revealing that transitions such as <span><math><mrow><mi>X</mi><msup><mrow></mrow><mn>2</mn></msup><mstyle><mi>Π</mi></mstyle><mspace></mspace><mrow><mo>(</mo><mrow><msup><mi>u</mi><mrow><mo>″</mo></mrow></msup><mo>=</mo><mn>0</mn></mrow><mo>)</mo></mrow><mo>→</mo><mspace></mspace><mi>A</mi><msup><mrow></mrow><mn>2</mn></msup><mrow><mstyle><mi>Δ</mi></mstyle><mspace></mspace></mrow><mrow><mo>(</mo><mrow><msup><mi>u</mi><mo>′</mo></msup><mo>=</mo><mn>0</mn></mrow><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>X</mi><msup><mrow></mrow><mn>2</mn></msup><mstyle><mi>Π</mi></mstyle><mspace></mspace><mrow><mo>(</mo><mrow><msup><mi>u</mi><mrow><mo>″</mo></mrow></msup><mo>=</mo><mn>0</mn></mrow><mo>)</mo></mrow><mspace></mspace><mo>→</mo><mspace></mspace><mi>B</mi><msup><mrow></mrow><mn>2</mn></msup><msup><mrow><mstyle><mi>Σ</mi></mstyle></mrow><mo>−</mo></msup><mspace></mspace><mrow><mo>(</mo><mrow><msup><mi>u</mi><mo>′</mo></msup><mo>=</mo><mn>0</mn></mrow><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>X</mi><msup><mrow></mrow><mn>2</mn></msup><mstyle><mi>Π</mi></mstyle><mspace></mspace><mrow><mo>(</mo><mrow><msup><mi>u</mi><mrow><mo>″</mo></mrow></msup><mo>=</mo><mn>0</mn></mrow><mo>)</mo></mrow><mspace></mspace><mo>→</mo><mspace></mspace><mi>C</mi><msup><mrow></mrow><mn>2</mn></msup><msup><mrow><mstyle><mi>Σ</mi></mstyle></mrow><mo>+</mo></msup><mspace></mspace><mrow><mo>(</mo><mrow><msup><mi>u</mi><mo>′</mo></msup><mo>=</mo><mn>0</mn></mrow><mo>)</mo></mrow></mrow></math></span>, and <span><math><mrow><mi>X</mi><msup><mrow></mrow><mn>2</mn></msup><mstyle><mi>Π</mi></mstyle><mspace></mspace><mrow><mo>(</mo><mrow><msup><mi>u</mi><mrow><mo>″</mo></mrow></msup><mo>=</mo><mn>0</mn></mrow><mo>)</mo></mrow><mspace></mspace><mo>→</mo><mspace></mspace><mi>D</mi><msup><mrow></mrow><mn>2</mn></msup><msup><mrow><mstyle><mi>Σ</mi></mstyle></mrow><mo>+</mo></msup><mrow><mo>(</mo><mrow><msup><mi>u</mi><mo>′</mo></msup><mo>=</mo><mn>3</mn></mrow><mo>)</mo></mrow></mrow></math></span> are particularly probable. Finally, the total i
采用多参考组态相互作用(MRCI)和单参考耦合簇(CC)方法系统地研究了CH自由基的电子结构和自旋轨道态。这些计算是与四倍,五倍和六倍ζ质量的大型相关一致的基础集一起进行的。为了达到较高的精度,将所有状态的电子能量外推到完全基集(CBS)极限,从而可以详细构建势能曲线并确定可靠的光谱常数。明确地考虑了自旋轨道耦合效应,并通过Numerov分析计算了振动能级。所得值与现有实验数据具有良好的一致性。偶极矩和跃迁偶极矩曲线进行评估评估CH的不透明特性,揭示转换如X2Π(u”= 0)→A2Δ(u = 0), X2Π(u”= 0)→B2Σ−(u = 0), X2Π(u”= 0)→C2Σ+ (u ' = 0),和X2Π(u”= 0)→D2Σ+ (u ' = 3)尤其可能。最后,基于高精度从头算结果,在宽温度范围(10-30,000 K)内计算了CH的总内配分函数和(TIPS)。
{"title":"Low-lying states and total internal partition sums of CH","authors":"Alexandros Androutsopoulos ,&nbsp;Isuru R. Ariyarathna ,&nbsp;Mark C. Zammit ,&nbsp;Evangelos Miliordos ,&nbsp;Amanda J. Neukirch ,&nbsp;Jeffery A. Leiding","doi":"10.1016/j.jqsrt.2025.109800","DOIUrl":"10.1016/j.jqsrt.2025.109800","url":null,"abstract":"&lt;div&gt;&lt;div&gt;The electronic structure and spin-orbit states of the CH radical have been systematically investigated using multi-reference configuration interaction (MRCI) and single-reference coupled-cluster (CC) methods. These calculations were performed in conjunction with large correlation-consistent basis sets of quadruple-, quintuple-, and sextuple-ζ quality. To achieve high accuracy, electronic energies for all states were extrapolated to the complete basis set (CBS) limit, enabling the detailed construction of potential energy curves and determination of reliable spectroscopic constants. Spin-orbit coupling effects were explicitly incorporated, and vibrational energy levels were computed via Numerov analysis. The resulting values exhibit good to excellent agreement with available experimental data. Dipole moment and transition dipole moment curves were evaluated to assess the opacity characteristics of CH, revealing that transitions such as &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;mstyle&gt;&lt;mi&gt;Π&lt;/mi&gt;&lt;/mstyle&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;″&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;/mstyle&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;mstyle&gt;&lt;mi&gt;Π&lt;/mi&gt;&lt;/mstyle&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;″&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/msup&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;mstyle&gt;&lt;mi&gt;Π&lt;/mi&gt;&lt;/mstyle&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;″&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/msup&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;mstyle&gt;&lt;mi&gt;Π&lt;/mi&gt;&lt;/mstyle&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;″&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; are particularly probable. Finally, the total i","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"352 ","pages":"Article 109800"},"PeriodicalIF":1.9,"publicationDate":"2025-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145845039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topological magneto-electric effects for a high permeability material-plasmonic-coated topological insulator stratified sphere 高磁导率材料-等离子体涂层拓扑绝缘体层状球体的拓扑磁电效应
IF 1.9 3区 物理与天体物理 Q2 OPTICS Pub Date : 2025-12-25 DOI: 10.1016/j.jqsrt.2025.109801
Huai-Yi Xie
We investigate how the topological magneto-electric effect (TME) affects multiple resonances in the presence of a high permeability material (HPM)-plasmonic-coated topological insulator (TI) stratified sphere via applying the dyadic Green's functions (DGFs) incorporating layer-dependent relative permeability. Our focus is on how a HPM shell affects the TME-modified molecular decay rate spectrum of an emitting dipole in the vicinity of a HPM-metal-coated/metal-HPM-coated TI sphere. Our analysis reveals that for each multipolar resonance in the decay rate spectrum, the TME-induced red-shifts of the plasmonic bonding/antibonding mode and multiple magnetic-induced modes are explored. For a HPM-metal-coated TI sphere, the antibonding mode exhibits more significant TME-induced red-shifts than the bonding mode and the first magnetic-induced mode. In particular, the TME-induced red-shifts of the first magnetic-induced mode vanish when the HPM shell has a relative permeability of 500 and a thickness of 2 nm. In contrast, for a metal-HPM-coated TI sphere, the first magnetic-induced mode shows larger TME-induced red-shifted values than one for a HPM-metal-coated TI sphere. These phenomenological findings provide some useful guidance with experimenters to design realistic experiments for exploring possible unique TME signatures via utilizing some versatile HPM-plasmonic TI coreshell systems in their tunability of the multiple resonance modes.
我们研究了拓扑磁电效应(TME)如何影响高磁导率材料(HPM)-等离子体涂层拓扑绝缘体(TI)层状球体存在时的多重共振,通过应用包含层相关相对磁导率的二进格林函数(DGFs)。我们的重点是HPM壳如何影响HPM-金属涂层/金属-HPM-涂层TI球附近发射偶极子的tme修饰分子衰减率谱。我们的分析表明,对于衰减速率谱中的每个多极共振,tme诱导的等离子体成键/反键模式和多个磁诱导模式的红移都被探索。对于hpm金属涂层的TI球,反键模式比键合模式和第一磁致模式表现出更显著的tme诱导红移。特别是,当HPM壳层的相对磁导率为500,厚度为2 nm时,tme诱导的第一磁致模式红移消失。相比之下,对于金属- hpm涂层的TI球,第一个磁诱导模式显示出比金属- hpm涂层的TI球更大的tme诱导红移值。这些现象学发现为实验人员提供了一些有用的指导,以设计现实的实验,通过利用一些通用的hpm -等离子体TI核壳系统在其多共振模式的可调性来探索可能的独特TME特征。
{"title":"Topological magneto-electric effects for a high permeability material-plasmonic-coated topological insulator stratified sphere","authors":"Huai-Yi Xie","doi":"10.1016/j.jqsrt.2025.109801","DOIUrl":"10.1016/j.jqsrt.2025.109801","url":null,"abstract":"<div><div>We investigate how the topological magneto-electric effect (TME) affects multiple resonances in the presence of a high permeability material (HPM)-plasmonic-coated topological insulator (TI) stratified sphere via applying the dyadic Green's functions (DGFs) incorporating layer-dependent relative permeability. Our focus is on how a HPM shell affects the TME-modified molecular decay rate spectrum of an emitting dipole in the vicinity of a HPM-metal-coated/metal-HPM-coated TI sphere. Our analysis reveals that for each multipolar resonance in the decay rate spectrum, the TME-induced red-shifts of the plasmonic bonding/antibonding mode and multiple magnetic-induced modes are explored. For a HPM-metal-coated TI sphere, the antibonding mode exhibits more significant TME-induced red-shifts than the bonding mode and the first magnetic-induced mode. In particular, the TME-induced red-shifts of the first magnetic-induced mode vanish when the HPM shell has a relative permeability of 500 and a thickness of 2 nm. In contrast, for a metal-HPM-coated TI sphere, the first magnetic-induced mode shows larger TME-induced red-shifted values than one for a HPM-metal-coated TI sphere. These phenomenological findings provide some useful guidance with experimenters to design realistic experiments for exploring possible unique TME signatures via utilizing some versatile HPM-plasmonic TI coreshell systems in their tunability of the multiple resonance modes.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"351 ","pages":"Article 109801"},"PeriodicalIF":1.9,"publicationDate":"2025-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145845041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyperfine structure investigation of spectral lines of the praseodymium atom in the visible spectral region 镨原子可见光谱线的超精细结构研究
IF 1.9 3区 物理与天体物理 Q2 OPTICS Pub Date : 2025-12-24 DOI: 10.1016/j.jqsrt.2025.109799
Günay Başar , Gönül Başar , L. Windholz , G.H. Guthöhrlein
26 new energy levels (7 of even, 19 of odd parity) of Pr I were discovered using laser induced fluorescence (LIF) spectroscopy. Values of the magnetic hyperfine interaction constants A of these levels are presented. 57 known but up to now unclassified lines could be classified as transitions to the new levels. Moreover, 77 lines which were never mentioned in the literature but could be identified in our FT spectra, are classified. Finally, 62 other lines could be detected either as excitation or fluorescence channels, but too weak to appear in the FT spectra. For some lines the classification given in the literature appeared to be erroneous.
利用激光诱导荧光(LIF)光谱法发现了Pr I的26个新能级(7个偶宇称,19个奇宇称)。给出了这些能级的磁超精细相互作用常数A的取值。57条已知但迄今未分类的线路可归类为向新水平的过渡。此外,在文献中从未提及但在我们的FT光谱中可以识别的77条谱线被分类。最后,有62条其他谱线可以作为激发通道或荧光通道被检测到,但由于太弱而无法出现在FT光谱中。对于某些行,文献中给出的分类似乎是错误的。
{"title":"Hyperfine structure investigation of spectral lines of the praseodymium atom in the visible spectral region","authors":"Günay Başar ,&nbsp;Gönül Başar ,&nbsp;L. Windholz ,&nbsp;G.H. Guthöhrlein","doi":"10.1016/j.jqsrt.2025.109799","DOIUrl":"10.1016/j.jqsrt.2025.109799","url":null,"abstract":"<div><div>26 new energy levels (7 of even, 19 of odd parity) of Pr I were discovered using laser induced fluorescence (LIF) spectroscopy. Values of the magnetic hyperfine interaction constants <em>A</em> of these levels are presented. 57 known but up to now unclassified lines could be classified as transitions to the new levels. Moreover, 77 lines which were never mentioned in the literature but could be identified in our FT spectra, are classified. Finally, 62 other lines could be detected either as excitation or fluorescence channels, but too weak to appear in the FT spectra. For some lines the classification given in the literature appeared to be erroneous.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"351 ","pages":"Article 109799"},"PeriodicalIF":1.9,"publicationDate":"2025-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145823723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Quantitative Spectroscopy & Radiative Transfer
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1