Bikash Poudel, Mukesh Gautam, Binghui Li, Jianqiao Huang, Jie Zhang
Nuclear-renewable integrated energy systems (IES) consist of a variety of energy generation and conversion technologies and can be used to meet heterogeneous end uses (e.g., electricity, heat, and cooling demands). In addition to supply-demand balance, end-use heat demands usually require heat supply of certain temperature ranges. The effective and efficient utilization of heat produced within an IES is, therefore, a critical challenge. This paper examines design options of an IES that includes heating processes of multiple temperature grades. We investigate a cascaded design configuration, where the remaining residual heat after high-grade heating processes [e.g., hydrogen production through high-temperature steam electrolysis (HTSE)] is recovered to meet the low-grade heating needs [e.g., district heating (DH)]. Additionally, a thermal energy storage system is integrated into the DH system to address the imbalance between heat supply and demand. This paper primarily focuses on the design and modeling of the proposed system and evaluates its operation with a 24-h transient process simulation using a DH demand profile with hourly resolution. The results indicate that the residual heat from the HTSE exhaust is insufficient for the DH demand, and additional topping heat directly from the reactor process steam is needed. Furthermore, the inclusion of thermal energy storage within the DH system provides the necessary balance between thermal generation and demand, thereby ensuring a consistent rated temperature of the DH supply water. This approach helps minimize the control actions needed on the reactor side.
{"title":"Design, modeling and simulation of nuclear-powered integrated energy systems with cascaded heating applications","authors":"Bikash Poudel, Mukesh Gautam, Binghui Li, Jianqiao Huang, Jie Zhang","doi":"10.1063/5.0163557","DOIUrl":"https://doi.org/10.1063/5.0163557","url":null,"abstract":"Nuclear-renewable integrated energy systems (IES) consist of a variety of energy generation and conversion technologies and can be used to meet heterogeneous end uses (e.g., electricity, heat, and cooling demands). In addition to supply-demand balance, end-use heat demands usually require heat supply of certain temperature ranges. The effective and efficient utilization of heat produced within an IES is, therefore, a critical challenge. This paper examines design options of an IES that includes heating processes of multiple temperature grades. We investigate a cascaded design configuration, where the remaining residual heat after high-grade heating processes [e.g., hydrogen production through high-temperature steam electrolysis (HTSE)] is recovered to meet the low-grade heating needs [e.g., district heating (DH)]. Additionally, a thermal energy storage system is integrated into the DH system to address the imbalance between heat supply and demand. This paper primarily focuses on the design and modeling of the proposed system and evaluates its operation with a 24-h transient process simulation using a DH demand profile with hourly resolution. The results indicate that the residual heat from the HTSE exhaust is insufficient for the DH demand, and additional topping heat directly from the reactor process steam is needed. Furthermore, the inclusion of thermal energy storage within the DH system provides the necessary balance between thermal generation and demand, thereby ensuring a consistent rated temperature of the DH supply water. This approach helps minimize the control actions needed on the reactor side.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135690334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaosheng Xu, Chentao Li, Tianyao Ji, Mengshi Li, Qinghua Wu
In the realm of modern energy systems, addressing the challenges of enhancing flexibility and efficiency under uncertain conditions is of paramount importance. This paper explores the stochastic multi-objective optimal multi-energy flow problem within the context of integrated electrical and heating systems (IEHS). First, the electrical network, the heating network, and the energy hubs were modeled in a completely linearized form. The linear weighted sum method with variable weights was used to transform the multi-objective problem into a single-objective problem and generate a large number of Pareto-optimal solutions. Second, the input stochastic variables were divided into multi-interval scenarios by employing the Cartesian product. For each interval scenario, the interval satisfaction degree level was proposed to convert the constraints involving interval numbers into deterministic ones. Third, a multiple attributes decision analysis (MADA) approach was proposed based on evidential reasoning theory. Six evaluation attributes, namely, the power purchase cost and pollution gas emissions of IEHS, the sum of power loss and sum of voltage deviation in the electrical system, the sum of temperature drop in the heating system, and the interval probability value of the multi-interval scenarios, were considered to rank the Pareto-optimal solutions collected from the multi-interval scenarios and determine the final dispatch solution (called the Utopia solution). Numerical simulations demonstrated that the Utopia solution can comprehensively evaluate various attributes, making it the most suitable option for meeting the operational requirements of IEHS.
{"title":"Decision-making for stochastic multi-objective dispatch of integrated electrical and heating systems","authors":"Xiaosheng Xu, Chentao Li, Tianyao Ji, Mengshi Li, Qinghua Wu","doi":"10.1063/5.0175636","DOIUrl":"https://doi.org/10.1063/5.0175636","url":null,"abstract":"In the realm of modern energy systems, addressing the challenges of enhancing flexibility and efficiency under uncertain conditions is of paramount importance. This paper explores the stochastic multi-objective optimal multi-energy flow problem within the context of integrated electrical and heating systems (IEHS). First, the electrical network, the heating network, and the energy hubs were modeled in a completely linearized form. The linear weighted sum method with variable weights was used to transform the multi-objective problem into a single-objective problem and generate a large number of Pareto-optimal solutions. Second, the input stochastic variables were divided into multi-interval scenarios by employing the Cartesian product. For each interval scenario, the interval satisfaction degree level was proposed to convert the constraints involving interval numbers into deterministic ones. Third, a multiple attributes decision analysis (MADA) approach was proposed based on evidential reasoning theory. Six evaluation attributes, namely, the power purchase cost and pollution gas emissions of IEHS, the sum of power loss and sum of voltage deviation in the electrical system, the sum of temperature drop in the heating system, and the interval probability value of the multi-interval scenarios, were considered to rank the Pareto-optimal solutions collected from the multi-interval scenarios and determine the final dispatch solution (called the Utopia solution). Numerical simulations demonstrated that the Utopia solution can comprehensively evaluate various attributes, making it the most suitable option for meeting the operational requirements of IEHS.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135736753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Non-isothermal thermogravimetric experiments were carried out at four different heating rates to investigate thermal decomposition of Polyalthia longifolia leaves, with primary goals of determining kinetic triplets (activation energy, frequency factor, and reaction mechanism) and thermodynamic parameters. Kinetics investigation was conducted by utilizing five iso-conversional approaches, viz., Starink (STK), Ozawa-Flynn-Wall (OFW), Kissinger-Akahira-Sunose (KAS), differential Friedman method (DFM), and distributed activation energy model (DAEM). Results indicated that average activation energy (Eα) ranged between 211.57 and 231 kJ/mol. Average values of activation energy obtained by KAS (211.57 kJ/mol) were found to be in the neighborhood of that obtained by other three integral methods, i.e., OFW (210.80 kJ/mol), STK (211.80 kJ/mol), and DAEM (211.57 kJ/mol). Criado's master plots approach revealed that experimental data matches with none of the reaction model until conversion of 0.4 and thereafter follows D3 for conversion of 0.5–0.7, whereas master plots based on the integral form of data disclosed that this method is not appropriate for pyrolysis of the present biomass sample. Finally, pyrolysis of P. longifolia biomass to produce bioenergy is found to be feasible (Eα − ΔH = ∼5–6 kJ/mol).
{"title":"Non-isothermal pyrolysis of <i>Polyalthia longifolia</i> using thermogravimetric analyzer: Kinetics and thermodynamics","authors":"Praveen Kumar Reddy Annapureddy, Nanda Kishore","doi":"10.1063/5.0160104","DOIUrl":"https://doi.org/10.1063/5.0160104","url":null,"abstract":"Non-isothermal thermogravimetric experiments were carried out at four different heating rates to investigate thermal decomposition of Polyalthia longifolia leaves, with primary goals of determining kinetic triplets (activation energy, frequency factor, and reaction mechanism) and thermodynamic parameters. Kinetics investigation was conducted by utilizing five iso-conversional approaches, viz., Starink (STK), Ozawa-Flynn-Wall (OFW), Kissinger-Akahira-Sunose (KAS), differential Friedman method (DFM), and distributed activation energy model (DAEM). Results indicated that average activation energy (Eα) ranged between 211.57 and 231 kJ/mol. Average values of activation energy obtained by KAS (211.57 kJ/mol) were found to be in the neighborhood of that obtained by other three integral methods, i.e., OFW (210.80 kJ/mol), STK (211.80 kJ/mol), and DAEM (211.57 kJ/mol). Criado's master plots approach revealed that experimental data matches with none of the reaction model until conversion of 0.4 and thereafter follows D3 for conversion of 0.5–0.7, whereas master plots based on the integral form of data disclosed that this method is not appropriate for pyrolysis of the present biomass sample. Finally, pyrolysis of P. longifolia biomass to produce bioenergy is found to be feasible (Eα − ΔH = ∼5–6 kJ/mol).","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135889089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael Sinner, Evangelia Spyrou, Christopher J. Bay, Jennifer King, David Corbus
This article considers joint active power control of wind turbines and battery storage to follow a plant-level power reference signal. The joint control dynamically curtails the energy from a subset of the wind turbines and stores or withdraws energy from the battery to meet the power reference setpoint while accounting for wind plant aerodynamic interactions, such as wake losses. As a use case, we study the performance of the controller in maintaining a constant power output over hourly periods. A wind plant operating in this way would rely much less on other grid resources to meet its contractual agreements, thereby improving grid reliability, especially in grids with high penetration of wind and solar generation. We compare the operation of the wind plant under joint active power control to standard power-maximizing control with battery support. We present an analysis of the performance of the control system architecture. To study the impact of the battery size on performance, we simulate a 50-MW wind plant supported by batteries ranging from 8 to 64 MWh. We then evaluate the over and undergeneration penalties incurred by the plant during the simulation period.
{"title":"Coordinated wind power plant and battery control for active power services","authors":"Michael Sinner, Evangelia Spyrou, Christopher J. Bay, Jennifer King, David Corbus","doi":"10.1063/5.0156464","DOIUrl":"https://doi.org/10.1063/5.0156464","url":null,"abstract":"This article considers joint active power control of wind turbines and battery storage to follow a plant-level power reference signal. The joint control dynamically curtails the energy from a subset of the wind turbines and stores or withdraws energy from the battery to meet the power reference setpoint while accounting for wind plant aerodynamic interactions, such as wake losses. As a use case, we study the performance of the controller in maintaining a constant power output over hourly periods. A wind plant operating in this way would rely much less on other grid resources to meet its contractual agreements, thereby improving grid reliability, especially in grids with high penetration of wind and solar generation. We compare the operation of the wind plant under joint active power control to standard power-maximizing control with battery support. We present an analysis of the performance of the control system architecture. To study the impact of the battery size on performance, we simulate a 50-MW wind plant supported by batteries ranging from 8 to 64 MWh. We then evaluate the over and undergeneration penalties incurred by the plant during the simulation period.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134995148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lichao Xiong, Conghuan Le, Puyang Zhang, Hongyan Ding, Jingyi Li
As the global demand for energy continues to increase, floating photovoltaic (FPV) power is gaining more attention as a promising clean energy source. This paper summarizes the unique advantages of FPV, such as its freedom from land restrictions, higher energy output, and potential integration with other forms of energy. However, FPV also faces challenges due to complex and harsh environmental conditions such as wind, waves, corrosion, and biological fouling. Therefore, the integrated mechanism design and the use of lightweight hydrophobic materials are crucial for ensuring the safety and stability of FPV systems under such conditions. This article also highlights certain key design points and optimization techniques that can improve the structural reliability of FPV systems. With continuous technological advancements and the accumulation of experience, the production efficiency of FPV has improved, leading to the expansion of FPV projects and a reduction in investment costs. As a result, the development of FPV has been accelerating globally, with numerous high-capacity projects being constructed. Building upon the previous literature reviews, this paper provides a concise review of the latest FPV case studies, innovative technologies, challenges in marine environments, economic costs, and market prospects from various perspectives. The primary objective is to encourage further research and application in the field of FPV.
{"title":"Harnessing the power of floating photovoltaic: A global review","authors":"Lichao Xiong, Conghuan Le, Puyang Zhang, Hongyan Ding, Jingyi Li","doi":"10.1063/5.0159394","DOIUrl":"https://doi.org/10.1063/5.0159394","url":null,"abstract":"As the global demand for energy continues to increase, floating photovoltaic (FPV) power is gaining more attention as a promising clean energy source. This paper summarizes the unique advantages of FPV, such as its freedom from land restrictions, higher energy output, and potential integration with other forms of energy. However, FPV also faces challenges due to complex and harsh environmental conditions such as wind, waves, corrosion, and biological fouling. Therefore, the integrated mechanism design and the use of lightweight hydrophobic materials are crucial for ensuring the safety and stability of FPV systems under such conditions. This article also highlights certain key design points and optimization techniques that can improve the structural reliability of FPV systems. With continuous technological advancements and the accumulation of experience, the production efficiency of FPV has improved, leading to the expansion of FPV projects and a reduction in investment costs. As a result, the development of FPV has been accelerating globally, with numerous high-capacity projects being constructed. Building upon the previous literature reviews, this paper provides a concise review of the latest FPV case studies, innovative technologies, challenges in marine environments, economic costs, and market prospects from various perspectives. The primary objective is to encourage further research and application in the field of FPV.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134995151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The rapid development of renewable energy (RE) has become a crucial strategy to mitigate climate change and promote sustainable development. However, financing RE projects is often challenging due to high upfront costs, complex regulatory frameworks, and lack of access to capital. Green bonds have emerged as a promising tool for financing RE projects and promoting sustainable development. This study evaluates the impact of green bonds on RE investment in China using a fuzzy analytical hierarchy process (FAHP) and a fuzzy weighted aggregates sum product assessment (WASPAS) method. The study identifies six factors, 18 sub-factors, and six investment strategies through extensive literature works. The FAHP method is used to evaluate various factors and sub-factors, while the fuzzy weighted aggregates sum product assessment (FWASPAS) method is employed to identify the key strategies for green bonds implementation in RE projects. The FAHP analysis finds that the financial impact of green bonds is the most significant factor with financial feasibility and cost of capital being the most important sub-factors in this category. The environmental, regulatory, and market are the most important sub-factors. The FWASPAS method indicates that green bonds can have significant impact on lowering the cost of capital, improving investor confidence, and supporting project certification of RE projects.
{"title":"Evaluating the impact of green bonds on renewable energy investment to promote sustainable development in China","authors":"Li Xu, Yasir Ahmed Solangi","doi":"10.1063/5.0161387","DOIUrl":"https://doi.org/10.1063/5.0161387","url":null,"abstract":"The rapid development of renewable energy (RE) has become a crucial strategy to mitigate climate change and promote sustainable development. However, financing RE projects is often challenging due to high upfront costs, complex regulatory frameworks, and lack of access to capital. Green bonds have emerged as a promising tool for financing RE projects and promoting sustainable development. This study evaluates the impact of green bonds on RE investment in China using a fuzzy analytical hierarchy process (FAHP) and a fuzzy weighted aggregates sum product assessment (WASPAS) method. The study identifies six factors, 18 sub-factors, and six investment strategies through extensive literature works. The FAHP method is used to evaluate various factors and sub-factors, while the fuzzy weighted aggregates sum product assessment (FWASPAS) method is employed to identify the key strategies for green bonds implementation in RE projects. The FAHP analysis finds that the financial impact of green bonds is the most significant factor with financial feasibility and cost of capital being the most important sub-factors in this category. The environmental, regulatory, and market are the most important sub-factors. The FWASPAS method indicates that green bonds can have significant impact on lowering the cost of capital, improving investor confidence, and supporting project certification of RE projects.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135249085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rongze Hu, Bin Yang, Cunyang Shi, Mingzhe Xue, Shaowei Zhu
Recovering the cryogenic cold energy of liquid hydrogen (LH2) for precooling high-pressure hydrogen gas before refueling can significantly reduce the electricity and energy consumption of liquid hydrogen refueling stations. Existing methods, such as blending, require continuous cryogenic pump operation and are not suitable for various operating conditions. This work proposes a novel method to recover LH2 cryogenic cold energy using a double-pipe heat exchanger, which can decouple the compression and refueling process and meet the fluctuating demand for the cryogenic cold energy required by the hydrogen dispenser. The lumped parameter method and temperature partition method were adopted to design the heat exchanger structure. Numerical simulations of a 2D axisymmetric swirl model were done to verify the accuracy of the temperature partition method applied to high-pressure cryogenic hydrogen. Due to the low temperature of LH2, the secondary refrigerant dichloromethane (CH2Cl2) risks freezing. Comparing the outer wall surface temperature of the inner pipe with the CH2Cl2 freezing point temperature, the optimal anti-freezing condition is that the outer pipe nominal diameter should be selected as 0.032 m and CH2Cl2 mass flow rate should be at least 1.72 kg s−1. Recovery efficiency can reach over 75.39% without freezing.
回收液氢(LH2)的低温冷能,在加氢前对高压氢气进行预冷,可以显著降低液氢加氢站的电量和能耗。现有的方法,如混合,需要连续低温泵运行,不适合各种操作条件。本文提出了一种利用双管换热器回收LH2低温冷能的新方法,该方法可以解耦压缩和加注过程,满足氢气分配器对低温冷能的波动需求。换热器结构设计采用集总参数法和温度分区法。通过二维轴对称旋流模型的数值模拟,验证了温度划分方法在高压低温氢气中应用的准确性。由于LH2温度过低,二次制冷剂二氯甲烷(CH2Cl2)存在结冰危险。根据内管外壁表面温度和CH2Cl2凝固点温度的比较,最佳防冻条件为选择外管公称直径为0.032 m, CH2Cl2质量流量不小于1.72 kg s−1。在不冻结的情况下,回收率可达75.39%以上。
{"title":"Cryogenic cold energy recovery in liquid hydrogen refueling station with double-pipe heat exchanger","authors":"Rongze Hu, Bin Yang, Cunyang Shi, Mingzhe Xue, Shaowei Zhu","doi":"10.1063/5.0158028","DOIUrl":"https://doi.org/10.1063/5.0158028","url":null,"abstract":"Recovering the cryogenic cold energy of liquid hydrogen (LH2) for precooling high-pressure hydrogen gas before refueling can significantly reduce the electricity and energy consumption of liquid hydrogen refueling stations. Existing methods, such as blending, require continuous cryogenic pump operation and are not suitable for various operating conditions. This work proposes a novel method to recover LH2 cryogenic cold energy using a double-pipe heat exchanger, which can decouple the compression and refueling process and meet the fluctuating demand for the cryogenic cold energy required by the hydrogen dispenser. The lumped parameter method and temperature partition method were adopted to design the heat exchanger structure. Numerical simulations of a 2D axisymmetric swirl model were done to verify the accuracy of the temperature partition method applied to high-pressure cryogenic hydrogen. Due to the low temperature of LH2, the secondary refrigerant dichloromethane (CH2Cl2) risks freezing. Comparing the outer wall surface temperature of the inner pipe with the CH2Cl2 freezing point temperature, the optimal anti-freezing condition is that the outer pipe nominal diameter should be selected as 0.032 m and CH2Cl2 mass flow rate should be at least 1.72 kg s−1. Recovery efficiency can reach over 75.39% without freezing.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135640387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the emergent need for clean and reliable energy resources, hybrid energy systems, such as the microgrid, are widely adopted in the United States. A microgrid can consist of various distributed energy resources, for instance, combined heat and power (CHP) systems. The CHP module is a distributed cogeneration technology that produces electricity and recaptures heat generated as a by-product. It is an energy-efficient technology converting heat that would otherwise be wasted to valuable thermal energy. For an optimal system configuration, this study develops a novel co-design optimization framework for CHP-based cogeneration microgrids. The framework provides the stakeholder with a method to optimize investments and attain resilient operations. The proposed co-design framework has a mixed integer programming (MIP) model that outputs decisions for both plant designs and operating controls. The microgrid considered in this study contains six components: the CHP, boiler, heat recovery unit, thermal storage system, power storage system, and photovoltaic plant. After solving the MIP model, the optimal design parameters of each component can be found to minimize the total installation cost of all components in the microgrid. Furthermore, the online costs from energy production, operation, maintenance, machine startup, and disruption-induced unsatisfied loads are minimized by solving the optimal control decisions for operations. Case studies based on designing a CHP-based microgrid with empirical data are conducted. Moreover, we consider both nominal and disruptive operational scenarios to validate the performance of the proposed co-design framework in terms of a cost-effective, resilient system.
{"title":"Co-design optimization of combined heat and power-based microgrids","authors":"Jiaxin Wu, In-Bum Chung, Zheng Liu, Pingfeng Wang","doi":"10.1063/5.0165676","DOIUrl":"https://doi.org/10.1063/5.0165676","url":null,"abstract":"With the emergent need for clean and reliable energy resources, hybrid energy systems, such as the microgrid, are widely adopted in the United States. A microgrid can consist of various distributed energy resources, for instance, combined heat and power (CHP) systems. The CHP module is a distributed cogeneration technology that produces electricity and recaptures heat generated as a by-product. It is an energy-efficient technology converting heat that would otherwise be wasted to valuable thermal energy. For an optimal system configuration, this study develops a novel co-design optimization framework for CHP-based cogeneration microgrids. The framework provides the stakeholder with a method to optimize investments and attain resilient operations. The proposed co-design framework has a mixed integer programming (MIP) model that outputs decisions for both plant designs and operating controls. The microgrid considered in this study contains six components: the CHP, boiler, heat recovery unit, thermal storage system, power storage system, and photovoltaic plant. After solving the MIP model, the optimal design parameters of each component can be found to minimize the total installation cost of all components in the microgrid. Furthermore, the online costs from energy production, operation, maintenance, machine startup, and disruption-induced unsatisfied loads are minimized by solving the optimal control decisions for operations. Case studies based on designing a CHP-based microgrid with empirical data are conducted. Moreover, we consider both nominal and disruptive operational scenarios to validate the performance of the proposed co-design framework in terms of a cost-effective, resilient system.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135690335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We use analytical and numerical methods to evaluate the daily beam energy received by some convex surfaces. Spherical, hemispherical, cylindrical, and semi-cylindrical convex surfaces with arbitrary tilt angles have been investigated and compared with a flat surface of unit area. Diffusive irradiations (sky and ground) were not considered. For hemispherical and semi-cylindrical surfaces, the optimal orientations at which the received beam energy is maximal were obtained for each day of the year. The dependence of the optimal tilt angle on the day of the year is qualitatively the same as for the flat surface. Clear sky condition has been assumed to hold in this work. It is shown that a flat surface per unit of its area receives highest beam energy among other convex surfaces whereas a sphere receives the least amount. Furthermore, the received daily beam energy per unit of the ground-occupied area has been calculated. In this case, a cylindrical surface with a range of values of radius to height ratio receives the highest amount of energy whereas a flat surface receives the least. This aspect becomes noticeable in places where there are some limits, e.g., land price or any other limitation on the available surface area.
{"title":"Evaluation of direct beam energy received by convex solar collectors and their optimal orientations","authors":"M. Ebrahim Foulaadvand, Amir Aghamohammadi","doi":"10.1063/5.0161277","DOIUrl":"https://doi.org/10.1063/5.0161277","url":null,"abstract":"We use analytical and numerical methods to evaluate the daily beam energy received by some convex surfaces. Spherical, hemispherical, cylindrical, and semi-cylindrical convex surfaces with arbitrary tilt angles have been investigated and compared with a flat surface of unit area. Diffusive irradiations (sky and ground) were not considered. For hemispherical and semi-cylindrical surfaces, the optimal orientations at which the received beam energy is maximal were obtained for each day of the year. The dependence of the optimal tilt angle on the day of the year is qualitatively the same as for the flat surface. Clear sky condition has been assumed to hold in this work. It is shown that a flat surface per unit of its area receives highest beam energy among other convex surfaces whereas a sphere receives the least amount. Furthermore, the received daily beam energy per unit of the ground-occupied area has been calculated. In this case, a cylindrical surface with a range of values of radius to height ratio receives the highest amount of energy whereas a flat surface receives the least. This aspect becomes noticeable in places where there are some limits, e.g., land price or any other limitation on the available surface area.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135735585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wind energy plays a crucial role as a clean energy source in the electricity system. The unpredictability of wind power makes it more challenging to put into use in comparison to thermal power generation. Accurate wind power prediction algorithms are of great importance for allocation and deployment of wind power. In this paper, a novel time-series forecasting model, SCINet, is used for short-term wind power forecasting and achieves high forecasting accuracy. Furthermore, the addition of reversible instance normalization (RevIN) to SCINet effectively alleviates the shift problem that arises in time series forecasting tasks. This enhancement further improves the model's forecasting ability. Finally, this paper uses knowledge distillation to get a small model that could speed up the computing and save memory resources. The source code is available at https://github.com/raspnew/WPF.git.
{"title":"Wind power forecasting based on SCINet, reversible instance normalization, and knowledge distillation","authors":"Mingju Gong, Wenxiang Li, Changcheng Yan, Yan Liu, Sheng Li, Zhixuan Zhao, Wei Xu","doi":"10.1063/5.0166061","DOIUrl":"https://doi.org/10.1063/5.0166061","url":null,"abstract":"Wind energy plays a crucial role as a clean energy source in the electricity system. The unpredictability of wind power makes it more challenging to put into use in comparison to thermal power generation. Accurate wind power prediction algorithms are of great importance for allocation and deployment of wind power. In this paper, a novel time-series forecasting model, SCINet, is used for short-term wind power forecasting and achieves high forecasting accuracy. Furthermore, the addition of reversible instance normalization (RevIN) to SCINet effectively alleviates the shift problem that arises in time series forecasting tasks. This enhancement further improves the model's forecasting ability. Finally, this paper uses knowledge distillation to get a small model that could speed up the computing and save memory resources. The source code is available at https://github.com/raspnew/WPF.git.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":"97 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135736510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}