首页 > 最新文献

2019 Silicon Nanoelectronics Workshop (SNW)最新文献

英文 中文
Feasibility of Ge Double Quantum Dots With High Symmetry and Tunability in Size and Inter-Dot Spacing 高对称性、高尺寸和点间距可调的Ge双量子点的可行性
Pub Date : 1900-01-01 DOI: 10.23919/SNW.2019.8782958
K. Peng, Tsung-Lin Huang, T. George, Horng-Chih Lin, Pei-Wen Li
We report the tunability of the sizes and inter-dot spacings of Ge coupled quantum dots (QDs) using nano-spacer technology in combination with selective oxidation of Si0.85Ge0.15. Spherical-shaped Ge QDs were formed at each sidewall corner of the nano-patterned Si3N4 ridges by thermal oxidation of poly-SiGe spacer layers encapsulating the Si3N4 nano-ridges. The diameters of the Ge spherical QDs are essentially determined by geometrical height, width, and length of the nano-spacer islands of poly-SiGe, which are tunable by adjusting the process times of their deposition and etch back. The inter-dot spacing between the Ge DQDs are controllable by adjusting the widths of the lithographically-patterned Si3N4 ridges and the thermal oxidation times. Our self-organization and self-alignment approach achieved high symmetry within the Ge DQDs in terms of the individual QD sizes as well as the coupling barriers between the QDs and external electrodes in close proximity.
我们报道了利用纳米间隔技术结合Si0.85Ge0.15选择性氧化锗耦合量子点(QDs)的尺寸和点间距的可调性。通过热氧化包覆Si3N4纳米脊的聚sige间隔层,在Si3N4纳米脊的每个侧壁角形成球形锗量子点。锗球形量子点的直径本质上是由poly-SiGe的纳米间隔岛的几何高度、宽度和长度决定的,可以通过调整其沉积和蚀刻回的工艺时间来调节。通过调整硅氮化硅脊的宽度和热氧化次数,可以控制锗量子点之间的点间距。我们的自组织和自对准方法在单个量子点尺寸以及量子点与近距离外部电极之间的耦合势垒方面实现了Ge DQDs内的高度对称性。
{"title":"Feasibility of Ge Double Quantum Dots With High Symmetry and Tunability in Size and Inter-Dot Spacing","authors":"K. Peng, Tsung-Lin Huang, T. George, Horng-Chih Lin, Pei-Wen Li","doi":"10.23919/SNW.2019.8782958","DOIUrl":"https://doi.org/10.23919/SNW.2019.8782958","url":null,"abstract":"We report the tunability of the sizes and inter-dot spacings of Ge coupled quantum dots (QDs) using nano-spacer technology in combination with selective oxidation of Si0.85Ge0.15. Spherical-shaped Ge QDs were formed at each sidewall corner of the nano-patterned Si3N4 ridges by thermal oxidation of poly-SiGe spacer layers encapsulating the Si3N4 nano-ridges. The diameters of the Ge spherical QDs are essentially determined by geometrical height, width, and length of the nano-spacer islands of poly-SiGe, which are tunable by adjusting the process times of their deposition and etch back. The inter-dot spacing between the Ge DQDs are controllable by adjusting the widths of the lithographically-patterned Si3N4 ridges and the thermal oxidation times. Our self-organization and self-alignment approach achieved high symmetry within the Ge DQDs in terms of the individual QD sizes as well as the coupling barriers between the QDs and external electrodes in close proximity.","PeriodicalId":170513,"journal":{"name":"2019 Silicon Nanoelectronics Workshop (SNW)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115761853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Demonstration of Performance Enhancement of MFMIS and MFIS for 5-nm × 12.5-nm Poly-Si Nanowire Gate-All-Around Negative Capacitance FETs Featuring Seed-Layer and PMA-Free Process MFMIS和MFIS在5nm × 12.5 nm多晶硅纳米线栅极全能负电容场效应管中的性能增强实验证明
Pub Date : 1900-01-01 DOI: 10.23919/SNW.2019.8782939
Shen-Yang Lee, Han-Wei Chen, C. Shen, P. Kuo, C. Chung, Yu-En Huang, Hsin-Yu Chen, T. Chao
We have experimentally demonstrated fully suspended nanowire (NW) gate-all-around (GAA) negative-capacitance (NC) field-effect transistors (FETs) with ultrasmall channel dimensions (5-nm $times 12.5 -$nm); they exhibit a remarkable $mathrm{I}_{on}-mathrm{I}_{off}$ ratio of over 1010. This work, for the first time, experimentally studies and compares the structures of metal-ferroelectric-metal-insulator-semiconductor (MFMIS) and metal-ferroelectric-insulator-semiconductor (MFIS) NCFETs. The GAA with the MFMIS structure has a higher on-state current owing to the metallic equal-potential layer and superior S.S $._{min}$ of 39.22 mV/decade. A ZrO2 seed-layer is inserted under HfZr $_{1-x}, mathrm{O}_{x}($ HZO) to improve the ferroelectric crystallinity. Consequently, post-metal annealing (PMA), the conventional crystallization annealing step, can be omitted in the presence of o-phase. The gate current $(mathrm{I}_{G})$ is monitored to verify the multi-domain HZO. A negative DIBL of -160 mV/V is observed because of the strong NC effect corresponding to previous simulated results.
我们通过实验证明了具有超小通道尺寸(5-nm × 12.5 -nm)的完全悬浮纳米线(NW)栅极全能(GAA)负电容(NC)场效应晶体管(fet);它们表现出惊人的$ mathm {I}_{on}- $ mathm {I}_{off}$比率,超过1010。本文首次对金属-铁电-金属-绝缘体-半导体(MFMIS)和金属-铁电-绝缘体-半导体(MFIS) ncfet的结构进行了实验研究和比较。具有MFMIS结构的GAA具有较高的导通电流,这是由于金属等电位层和优越的S.S $。_{min}$ 39.22 mV/decade。在HfZr $_{1-x}, mathm {O}_{x}($ HZO)下插入ZrO2种子层以提高铁电结晶度。因此,在o相存在的情况下,可以省略传统的结晶退火步骤金属后退火(PMA)。监控栅极电流$( mathm {I}_{G})$以验证多域HZO。由于与先前的模拟结果相对应的强NC效应,观察到-160 mV/V的负DIBL。
{"title":"Experimental Demonstration of Performance Enhancement of MFMIS and MFIS for 5-nm × 12.5-nm Poly-Si Nanowire Gate-All-Around Negative Capacitance FETs Featuring Seed-Layer and PMA-Free Process","authors":"Shen-Yang Lee, Han-Wei Chen, C. Shen, P. Kuo, C. Chung, Yu-En Huang, Hsin-Yu Chen, T. Chao","doi":"10.23919/SNW.2019.8782939","DOIUrl":"https://doi.org/10.23919/SNW.2019.8782939","url":null,"abstract":"We have experimentally demonstrated fully suspended nanowire (NW) gate-all-around (GAA) negative-capacitance (NC) field-effect transistors (FETs) with ultrasmall channel dimensions (5-nm $times 12.5 -$nm); they exhibit a remarkable $mathrm{I}_{on}-mathrm{I}_{off}$ ratio of over 1010. This work, for the first time, experimentally studies and compares the structures of metal-ferroelectric-metal-insulator-semiconductor (MFMIS) and metal-ferroelectric-insulator-semiconductor (MFIS) NCFETs. The GAA with the MFMIS structure has a higher on-state current owing to the metallic equal-potential layer and superior S.S $._{min}$ of 39.22 mV/decade. A ZrO2 seed-layer is inserted under HfZr $_{1-x}, mathrm{O}_{x}($ HZO) to improve the ferroelectric crystallinity. Consequently, post-metal annealing (PMA), the conventional crystallization annealing step, can be omitted in the presence of o-phase. The gate current $(mathrm{I}_{G})$ is monitored to verify the multi-domain HZO. A negative DIBL of -160 mV/V is observed because of the strong NC effect corresponding to previous simulated results.","PeriodicalId":170513,"journal":{"name":"2019 Silicon Nanoelectronics Workshop (SNW)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123828148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The Understanding of Gate Capacitance Matching on Achieving a High Performance NC MOSFET with Sufficient Mobility 栅极电容匹配对实现具有足够迁移率的高性能NC MOSFET的理解
Pub Date : 1900-01-01 DOI: 10.23919/SNW.2019.8782951
C. Chiang, P. Husan, Y. Lou, F. L. Li, E. Hsieh, C. H. Liu, S. Chung
We develop experimental approaches to quantitatively extract the negative capacitance of MIM in a gate stacked NCFET. It was found that the NC effect is highly dependent on the grain and dipole behaviors with different annealing temperature. Also, to achieve a better design of high-performance NCFET, we explore not only the capacitance matching between ferroelectric HZO MIM and MOSFET but also how effective mobility is affected by HZO dipoles. For capacitance matching, we observe a 50x enhancement of overall gate capacitance triggered by NC effect, while, however, it adversely generated the degradation of the mobility. This mobility degradation is induced by the remote scattering from the ferroelectric HZO dipoles. Fortunately, if suitable polarization can be formed to align the HZO dipoles, the effects of remote scattering can be mitigated. From a trade-off between gate capacitance and the mobility, an NCFET with desirable performance can be achieved.
我们开发了定量提取栅极堆叠NCFET中MIM负电容的实验方法。研究发现,不同退火温度下的NC效应高度依赖于晶粒和偶极子行为。此外,为了实现高性能nfet的更好设计,我们不仅探索了铁电HZO MIM与MOSFET之间的电容匹配,还研究了HZO偶极子对有效迁移率的影响。对于电容匹配,我们观察到NC效应触发的栅极总电容提高了50倍,然而,它却导致了迁移率的下降。这种迁移率下降是由铁电HZO偶极子的远距离散射引起的。幸运的是,如果能够形成合适的极化来对准HZO偶极子,则可以减轻远程散射的影响。通过在栅极电容和迁移率之间进行权衡,可以获得具有理想性能的NCFET。
{"title":"The Understanding of Gate Capacitance Matching on Achieving a High Performance NC MOSFET with Sufficient Mobility","authors":"C. Chiang, P. Husan, Y. Lou, F. L. Li, E. Hsieh, C. H. Liu, S. Chung","doi":"10.23919/SNW.2019.8782951","DOIUrl":"https://doi.org/10.23919/SNW.2019.8782951","url":null,"abstract":"We develop experimental approaches to quantitatively extract the negative capacitance of MIM in a gate stacked NCFET. It was found that the NC effect is highly dependent on the grain and dipole behaviors with different annealing temperature. Also, to achieve a better design of high-performance NCFET, we explore not only the capacitance matching between ferroelectric HZO MIM and MOSFET but also how effective mobility is affected by HZO dipoles. For capacitance matching, we observe a 50x enhancement of overall gate capacitance triggered by NC effect, while, however, it adversely generated the degradation of the mobility. This mobility degradation is induced by the remote scattering from the ferroelectric HZO dipoles. Fortunately, if suitable polarization can be formed to align the HZO dipoles, the effects of remote scattering can be mitigated. From a trade-off between gate capacitance and the mobility, an NCFET with desirable performance can be achieved.","PeriodicalId":170513,"journal":{"name":"2019 Silicon Nanoelectronics Workshop (SNW)","volume":"308 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134484204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
2019 Silicon Nanoelectronics Workshop (SNW)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1