首页 > 最新文献

2019 Silicon Nanoelectronics Workshop (SNW)最新文献

英文 中文
Si Surface Orientation Dependence of SiC Nano-Dot Formation in Hot-C+ -Ion Implanted Bulk-Si Substrate 热c +离子注入体硅衬底中SiC纳米点形成与硅表面取向的关系
Pub Date : 2019-06-01 DOI: 10.23919/SNW.2019.8782938
T. Mizuno, Masaki Yamamoto, T. Aoki, T. Sameshima
We experimentally studied the Si surface orientation dependence of SiC nano-dot formation in a hot-C+-ion implanted bulk-Si substrate (C+-bulk Si), to analyze the effects of Si atom surface density on SiC nano-dot formation in Si and the photoluminescence (PL) property. We successfully demonstrated SiC dot formation even in (110) and (111) C+-bulk Si, too. SiC dot size and density of (110) C+-bulk Si is larger than those of (100) C+-bulk Si. The photoluminescence (PL) properties of C+-bulk Si strongly depend on the Si surface orientation, and the PL intensity is the minimum in (110) C+-bulk Si with lowest Si atom surface density.
实验研究了在热C+离子注入体硅衬底(C+-体硅)中SiC纳米点形成与Si表面取向的关系,分析了Si原子表面密度对Si中SiC纳米点形成和光致发光(PL)性能的影响。我们也成功地证明了即使在(110)和(111)C+体Si中也能形成SiC点。(110) C+-体硅的SiC点尺寸和密度均大于(100)C+-体硅。C+体硅的光致发光(PL)性能与Si的表面取向密切相关,在(110)C+体硅中,Si原子表面密度最低,PL强度最小。
{"title":"Si Surface Orientation Dependence of SiC Nano-Dot Formation in Hot-C+ -Ion Implanted Bulk-Si Substrate","authors":"T. Mizuno, Masaki Yamamoto, T. Aoki, T. Sameshima","doi":"10.23919/SNW.2019.8782938","DOIUrl":"https://doi.org/10.23919/SNW.2019.8782938","url":null,"abstract":"We experimentally studied the Si surface orientation dependence of SiC nano-dot formation in a hot-C<sup>+</sup>-ion implanted bulk-Si substrate (C<sup>+</sup>-bulk Si), to analyze the effects of Si atom surface density on SiC nano-dot formation in Si and the photoluminescence (PL) property. We successfully demonstrated SiC dot formation even in (110) and (111) C<sup>+</sup>-bulk Si, too. SiC dot size and density of (110) C<sup>+</sup>-bulk Si is larger than those of (100) C<sup>+</sup>-bulk Si. The photoluminescence (PL) properties of C<sup>+</sup>-bulk Si strongly depend on the Si surface orientation, and the PL intensity is the minimum in (110) C<sup>+</sup>-bulk Si with lowest Si atom surface density.","PeriodicalId":170513,"journal":{"name":"2019 Silicon Nanoelectronics Workshop (SNW)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134027421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Moving Spins From Lab to Fab: A Silicon-Based Platform for Quantum Computing Device Technologies 移动自旋从实验室到工厂:量子计算设备技术的硅基平台
Pub Date : 2019-06-01 DOI: 10.23919/SNW.2019.8782903
B. Govoreanu, S. Kubicek, J. Jussot, B. T. Chan, N. Dumoulin-Stuyck, F. Mohiyaddin, R. Li, G. Simion, T. Ivanov, D. Mocuta, Jae Woo Lee, I. Radu
We discuss the key features of a 300mm integrated Silicon MOS platform to serve as a basis for spin-qubit device exploration. The process yields structures with a pitch of 100nm and below, without bearing the complexity of advanced optical lithography, and retains high flexibility for fast device design adjustment.
我们讨论了一个300毫米集成硅MOS平台的关键特征,作为自旋量子比特器件探索的基础。该工艺产生的结构间距为100nm及以下,无需承担先进光学光刻的复杂性,并保留了快速调整器件设计的高度灵活性。
{"title":"Moving Spins From Lab to Fab: A Silicon-Based Platform for Quantum Computing Device Technologies","authors":"B. Govoreanu, S. Kubicek, J. Jussot, B. T. Chan, N. Dumoulin-Stuyck, F. Mohiyaddin, R. Li, G. Simion, T. Ivanov, D. Mocuta, Jae Woo Lee, I. Radu","doi":"10.23919/SNW.2019.8782903","DOIUrl":"https://doi.org/10.23919/SNW.2019.8782903","url":null,"abstract":"We discuss the key features of a 300mm integrated Silicon MOS platform to serve as a basis for spin-qubit device exploration. The process yields structures with a pitch of 100nm and below, without bearing the complexity of advanced optical lithography, and retains high flexibility for fast device design adjustment.","PeriodicalId":170513,"journal":{"name":"2019 Silicon Nanoelectronics Workshop (SNW)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134032236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Metallic Source/Drain Ge-Based Charge-Trapping Memory Cells 金属源/漏极基电荷捕获存储电池
Pub Date : 2019-06-01 DOI: 10.23919/SNW.2019.8782895
Yu-Hsuan Chen, C. Shih, Hung-Jin Teng, C. Lien
Schottky barrier source/drain produces particular ambipolar conduction and strong hotcarrier generation in CMOS devices. This work presents a new metallic source/drain Ge-based charge-trapping cells for memory applications. Two-dimensional simulations were employed to elucidate the source-side injection programming of Ge-based memory cells and discuss the differences of cell characteristics between the Ge and Si cells.
肖特基势垒源/漏极在CMOS器件中产生特殊的双极导通和强热载流子。本文提出了一种用于存储的新型金属源/漏极锗电荷捕获电池。采用二维仿真的方法,对锗基存储单元的源端注入编程进行了研究,并讨论了锗基存储单元与硅基存储单元特性的差异。
{"title":"Metallic Source/Drain Ge-Based Charge-Trapping Memory Cells","authors":"Yu-Hsuan Chen, C. Shih, Hung-Jin Teng, C. Lien","doi":"10.23919/SNW.2019.8782895","DOIUrl":"https://doi.org/10.23919/SNW.2019.8782895","url":null,"abstract":"Schottky barrier source/drain produces particular ambipolar conduction and strong hotcarrier generation in CMOS devices. This work presents a new metallic source/drain Ge-based charge-trapping cells for memory applications. Two-dimensional simulations were employed to elucidate the source-side injection programming of Ge-based memory cells and discuss the differences of cell characteristics between the Ge and Si cells.","PeriodicalId":170513,"journal":{"name":"2019 Silicon Nanoelectronics Workshop (SNW)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115479456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomic qubits in silicon 硅中的原子量子位
Pub Date : 2019-06-01 DOI: 10.23919/SNW.2019.8782966
M. Simmons
Extremely long electron and nuclear spin coherence times have been demonstrated in isotopically pure Si-28 [1, 2] making silicon a promising semiconductor material for spin-based quantum information. The two-level spin state of single electrons bound to shallow phosphorus donors in silicon in particular provide well defined, reproducible qubits [3]. An important challenge in these systems is the realisation of an architecture, where we can position donors within a crystalline environment with approx. 20-50nm separation, individually address each donor, manipulate the electron spins using ESR techniques and read-out their spin states.
在同位素纯Si-28中已经证明了极长的电子和核自旋相干时间[1,2],使硅成为基于自旋的量子信息的有前途的半导体材料。在硅中,单电子与浅磷供体结合的两能级自旋态提供了定义良好、可重复的量子比特[3]。在这些系统中,一个重要的挑战是实现一个架构,在这个架构中,我们可以在一个近似的晶体环境中定位供体。20-50nm分离,单独定位每个供体,使用ESR技术操纵电子自旋并读出其自旋态。
{"title":"Atomic qubits in silicon","authors":"M. Simmons","doi":"10.23919/SNW.2019.8782966","DOIUrl":"https://doi.org/10.23919/SNW.2019.8782966","url":null,"abstract":"Extremely long electron and nuclear spin coherence times have been demonstrated in isotopically pure Si-28 [1, 2] making silicon a promising semiconductor material for spin-based quantum information. The two-level spin state of single electrons bound to shallow phosphorus donors in silicon in particular provide well defined, reproducible qubits [3]. An important challenge in these systems is the realisation of an architecture, where we can position donors within a crystalline environment with approx. 20-50nm separation, individually address each donor, manipulate the electron spins using ESR techniques and read-out their spin states.","PeriodicalId":170513,"journal":{"name":"2019 Silicon Nanoelectronics Workshop (SNW)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128742009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Study of Germanium Nanosheet Channel With Negative Capacitance Field-Effect-Transistor 负电容场效应晶体管锗纳米片沟道的研究
Pub Date : 2019-06-01 DOI: 10.23919/SNW.2019.8782940
Yu-ning Chen, F. Hou, C. Su, Yung-Chun Wu
This work demonstrates the germanium nanosheet channel with negative capacitance in gate-all-around field-effect-transistor (Ge NS NC-GAAFET) to reduce the subthreshold slope (SS). The Ge NS NC-GAAFET device structure, fabrication, and electrical are analysis were studied. Moreover, the Ge NS NC-FET reveals high driving current, and high Ion/Ioff ratio (>106). The novel Ge NS NC-FET could suit for future low-power integrated circuit applications.
本研究展示了在栅极全能场效应晶体管(Ge NS NC-GAAFET)中具有负电容的锗纳米片沟道可以降低亚阈值斜率(SS)。研究了Ge NS NC-GAAFET器件的结构、制作方法和电性能。此外,Ge NS NC-FET显示出高驱动电流和高离子/ off比(>106)。这种新型的Ge NS nc场效应管可用于未来的低功耗集成电路应用。
{"title":"Study of Germanium Nanosheet Channel With Negative Capacitance Field-Effect-Transistor","authors":"Yu-ning Chen, F. Hou, C. Su, Yung-Chun Wu","doi":"10.23919/SNW.2019.8782940","DOIUrl":"https://doi.org/10.23919/SNW.2019.8782940","url":null,"abstract":"This work demonstrates the germanium nanosheet channel with negative capacitance in gate-all-around field-effect-transistor (Ge NS NC-GAAFET) to reduce the subthreshold slope (SS). The Ge NS NC-GAAFET device structure, fabrication, and electrical are analysis were studied. Moreover, the Ge NS NC-FET reveals high driving current, and high Ion/Ioff ratio (>106). The novel Ge NS NC-FET could suit for future low-power integrated circuit applications.","PeriodicalId":170513,"journal":{"name":"2019 Silicon Nanoelectronics Workshop (SNW)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130260007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Dopant-Induced Terahertz Resonance of a Dopant-Rich Silicon Quantum Dot 富掺杂硅量子点掺杂诱导的太赫兹共振
Pub Date : 2019-06-01 DOI: 10.23919/SNW.2019.8782972
T. Okamoto, Naoki Fujimura, T. Kodera, Y. Kawano
Dopants provide attractive and interesting properties, such as robust quantum states and low-energy physics. Since typical energy depth of dopants corresponds to terahertz (THz) photon energy, optical control of trapped and de-trapped electrons is feasible, paving a pathway for developing new functional electronic/optical devices. Here, we experimentally demonstrate THz-induced de-trapping processes in a dopant-rich silicon quantum dot. Our study offers a deeper understanding of optical properties of dopants, and potentially leads to new functional dopant-based THz devices.
掺杂剂提供了吸引人的和有趣的特性,如鲁棒量子态和低能物理。由于掺杂剂的典型能量深度对应于太赫兹(THz)光子能量,因此对捕获和解捕获电子的光学控制是可行的,为开发新的功能电子/光学器件铺平了道路。在这里,我们通过实验证明了在富含掺杂剂的硅量子点中太赫兹诱导的脱阱过程。我们的研究提供了对掺杂剂光学性质的更深入的理解,并有可能导致新的基于掺杂剂的功能太赫兹器件。
{"title":"Dopant-Induced Terahertz Resonance of a Dopant-Rich Silicon Quantum Dot","authors":"T. Okamoto, Naoki Fujimura, T. Kodera, Y. Kawano","doi":"10.23919/SNW.2019.8782972","DOIUrl":"https://doi.org/10.23919/SNW.2019.8782972","url":null,"abstract":"Dopants provide attractive and interesting properties, such as robust quantum states and low-energy physics. Since typical energy depth of dopants corresponds to terahertz (THz) photon energy, optical control of trapped and de-trapped electrons is feasible, paving a pathway for developing new functional electronic/optical devices. Here, we experimentally demonstrate THz-induced de-trapping processes in a dopant-rich silicon quantum dot. Our study offers a deeper understanding of optical properties of dopants, and potentially leads to new functional dopant-based THz devices.","PeriodicalId":170513,"journal":{"name":"2019 Silicon Nanoelectronics Workshop (SNW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126052069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Germanium Layer Transfer with Low Temperature Direct Bonding and Epitaxial Lift-off Technique for Ge-based monolithic 3D integration 锗基单片三维集成中低温直接键合锗层转移及外延提升技术
Pub Date : 2019-06-01 DOI: 10.23919/SNW.2019.8782955
T. Maeda, H. Ishii, W. Chang, T. Irisawa, Y. Kurashima, H. Takagi, N. Uchida
We demonstrated high-quality single crystal Germanium (Ge) layer transferred on arbitrary substrates, such as Si, glass, and flexible plastic substrates utilizing direct bonding and epitaxial lift-off (ELO) techniques. Owing to Ge epitaxial growth on GaAs substrates with AlAs release layer, we successfully transferred epitaxial Ge layers on arbitrary substrates with a wide range of thickness from several um to $sim 1$ nm. This layer tranfer approach enables us to realize Ge-based monolithic 3D devices without degradation of Ge crystalline quality.
我们展示了利用直接键合和外延提升(ELO)技术将高质量的单晶锗(Ge)层转移到任意衬底上,如硅、玻璃和柔性塑料衬底。由于在GaAs衬底上有AlAs释放层的Ge外延生长,我们成功地将Ge外延层转移到任意衬底上,其厚度范围从几um到$sim 1$ nm。这种层转移方法使我们能够在不降低锗晶体质量的情况下实现基于锗的单片3D器件。
{"title":"Germanium Layer Transfer with Low Temperature Direct Bonding and Epitaxial Lift-off Technique for Ge-based monolithic 3D integration","authors":"T. Maeda, H. Ishii, W. Chang, T. Irisawa, Y. Kurashima, H. Takagi, N. Uchida","doi":"10.23919/SNW.2019.8782955","DOIUrl":"https://doi.org/10.23919/SNW.2019.8782955","url":null,"abstract":"We demonstrated high-quality single crystal Germanium (Ge) layer transferred on arbitrary substrates, such as Si, glass, and flexible plastic substrates utilizing direct bonding and epitaxial lift-off (ELO) techniques. Owing to Ge epitaxial growth on GaAs substrates with AlAs release layer, we successfully transferred epitaxial Ge layers on arbitrary substrates with a wide range of thickness from several um to $sim 1$ nm. This layer tranfer approach enables us to realize Ge-based monolithic 3D devices without degradation of Ge crystalline quality.","PeriodicalId":170513,"journal":{"name":"2019 Silicon Nanoelectronics Workshop (SNW)","volume":"66 2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115717568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Directivity of SOI Photodiode with Gold Surface Plasmon Antenna 金表面等离子体天线SOI光电二极管的指向性
Pub Date : 2019-06-01 DOI: 10.23919/SNW.2019.8782959
Anitharaj Nagarajan, Shusuke Hara, H. Satoh, A. Panchanathan, H. Inokawa
This paper demonstrates the directivity for incoming light of silicon-on-insulator (SOI) photodiode (PD) with gold (Au) grating type surface plasmon (SP) antenna. Light sensitivity is enhanced when the phase matching condition between the diffracted light from the antenna and propagating wave in the SOI is satisfied, and therefore incident angle detection can be realized. Since the PD is compatible with complementary metal-oxide-semiconductor (CMOS) integrated circuit technology, the results may open up a new field of angle sensitive pixels (ASPs) integrated in a chip for applications such as lensless imaging.
本文研究了带有金(Au)光栅型表面等离子体(SP)天线的绝缘体上硅(SOI)光电二极管(PD)入射光的方向性。当天线发出的绕射光与SOI中传播波的相位匹配条件满足时,光敏度得到提高,从而实现入射角检测。由于PD与互补金属氧化物半导体(CMOS)集成电路技术兼容,该结果可能开辟一个新的领域,即将角度敏感像素(asp)集成在芯片中,用于无透镜成像等应用。
{"title":"Directivity of SOI Photodiode with Gold Surface Plasmon Antenna","authors":"Anitharaj Nagarajan, Shusuke Hara, H. Satoh, A. Panchanathan, H. Inokawa","doi":"10.23919/SNW.2019.8782959","DOIUrl":"https://doi.org/10.23919/SNW.2019.8782959","url":null,"abstract":"This paper demonstrates the directivity for incoming light of silicon-on-insulator (SOI) photodiode (PD) with gold (Au) grating type surface plasmon (SP) antenna. Light sensitivity is enhanced when the phase matching condition between the diffracted light from the antenna and propagating wave in the SOI is satisfied, and therefore incident angle detection can be realized. Since the PD is compatible with complementary metal-oxide-semiconductor (CMOS) integrated circuit technology, the results may open up a new field of angle sensitive pixels (ASPs) integrated in a chip for applications such as lensless imaging.","PeriodicalId":170513,"journal":{"name":"2019 Silicon Nanoelectronics Workshop (SNW)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115927048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Negative Capacitance in Short-Channel Tunnel Field-Effect Transistors 短通道隧道场效应晶体管的负电容
Pub Date : 2019-06-01 DOI: 10.23919/SNW.2019.8782929
Hung-Jin Teng, Yu-Hsuan Chen, Nguyen Dang Chien, C. Shih
Based on band-to-band tunneling, tunnel field-effect transistors (TFETs) have demonstrated its small subthreshold swing for energy-efficient applications. This work explores the use of negative capacitance in extremely scaled short-channel TFETs. Against conventional MOSFETs and P-i-N TFETs, the scaled asymmetric junctionless TFETs preserve the short-channel benefits of using negative capacitance ferroelectric to ensure boosted on-current with minimized swing.
基于带到带隧道效应的隧道场效应晶体管(tfet)已证明其具有小的亚阈值摆动,可用于节能应用。这项工作探讨了负电容在极窄短沟道tfet中的应用。与传统的mosfet和P-i-N tfet相比,缩放的非对称无结tfet保留了使用负电容铁电的短通道优势,以确保以最小的摆幅增强导通电流。
{"title":"Negative Capacitance in Short-Channel Tunnel Field-Effect Transistors","authors":"Hung-Jin Teng, Yu-Hsuan Chen, Nguyen Dang Chien, C. Shih","doi":"10.23919/SNW.2019.8782929","DOIUrl":"https://doi.org/10.23919/SNW.2019.8782929","url":null,"abstract":"Based on band-to-band tunneling, tunnel field-effect transistors (TFETs) have demonstrated its small subthreshold swing for energy-efficient applications. This work explores the use of negative capacitance in extremely scaled short-channel TFETs. Against conventional MOSFETs and P-i-N TFETs, the scaled asymmetric junctionless TFETs preserve the short-channel benefits of using negative capacitance ferroelectric to ensure boosted on-current with minimized swing.","PeriodicalId":170513,"journal":{"name":"2019 Silicon Nanoelectronics Workshop (SNW)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125156932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of Twin Ge FinFET Structure Non-Volatile Memory 双Ge FinFET结构非易失性存储器的研究
Pub Date : 2019-06-01 DOI: 10.23919/SNW.2019.8782901
Chien-Chang Li, M. Yeh, Yao-Jen Lee, Yung-Chun Wu
A twin FinFET structure non-volatile memory with high mobility germanium channel (Twin Ge FinFET structure NVM) is demonstrated. An extrapolation of the memory window can achieve 10V of VTH at 21V for 10−3s which is large enough for NVM application. And the memory window can be maintained at 1.5V after 103 P/E cycles. In the future, this novel twin Ge FinFET NVM give a new solution of embedded NVM for next-generation Ge-based FinFET MOSFET integrated circuit.
提出了一种具有高迁移率锗通道的双Ge FinFET结构非易失性存储器(twin Ge FinFET structure NVM)。外推的内存窗口可以实现10V的VTH在21V在10−3s,这是足够大的NVM应用。经过103个P/E循环后,记忆窗口可保持在1.5V。在未来,这种新型的双Ge FinFET NVM为下一代基于Ge的FinFET MOSFET集成电路的嵌入式NVM提供了新的解决方案。
{"title":"Study of Twin Ge FinFET Structure Non-Volatile Memory","authors":"Chien-Chang Li, M. Yeh, Yao-Jen Lee, Yung-Chun Wu","doi":"10.23919/SNW.2019.8782901","DOIUrl":"https://doi.org/10.23919/SNW.2019.8782901","url":null,"abstract":"A twin FinFET structure non-volatile memory with high mobility germanium channel (Twin Ge FinFET structure NVM) is demonstrated. An extrapolation of the memory window can achieve 10V of VTH at 21V for 10−3s which is large enough for NVM application. And the memory window can be maintained at 1.5V after 103 P/E cycles. In the future, this novel twin Ge FinFET NVM give a new solution of embedded NVM for next-generation Ge-based FinFET MOSFET integrated circuit.","PeriodicalId":170513,"journal":{"name":"2019 Silicon Nanoelectronics Workshop (SNW)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126818571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
2019 Silicon Nanoelectronics Workshop (SNW)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1