Pub Date : 2024-05-09DOI: 10.1007/s40831-024-00788-4
Yannan Wang, Min Gan, Xiaohui Fan, Zhiyun Ji, Wei Lv, Ganesh Pilla, Mingfeng Ye
In this study, a mixture rich in K, Na, and Pb, composed of undesired elements rich iron ore A, sinter dust, and blast furnace dust (ore-dust mix,), is sintered along with the regular iron ore. The K, Na, and Pb compounds within the ore-dust mix are identified as alkali chlorides, alkali aluminosilicates, PbO, and PbSO4 using X-ray diffraction. The primary objective is to investigate the impact of three distinct sintering technologies: regular (pre-reduction) sintering, double-layer sintering, and hearth-layer sintering, on the removal degrees of K, Na, and Pb. In both the regular and double-layer sintering processes, the K, Na, and Pb contents within the blend of raw materials was measured approximately 0.430 wt%, 0.105 wt%, and 0.033 wt%, respectively. Moreover, the ratio of ore-dust mix to the regular ore was 0.54. In the regular sinter pot test, sinter feed was uniformly placed in the pot. In the run of the regular sinter pot test with the optimal coke breeze ratio of 20 wt%, the removal degrees of K, Na, and Pb were 79.5%, 67.5% and 92.7%, respectively. In comparison, the double-layer sintering technology resulted in a slight increase in the removal degrees for alkali metals and a similar removal degree for Pb, while utilizing a reduced coke breeze ratio of only 8.10 wt%. The removal mechanism of the hearth-layer and double-layer sintering processes are similar. However, the coke breeze ratio decreases to 6.63 wt% as the fraction of ore-dust mix within the blend of raw materials is reduced to 7 wt% during the hearth-layer sintering process.
{"title":"Enhanced Removal of Potassium, Sodium, and Lead During the Iron Ore Sintering Process","authors":"Yannan Wang, Min Gan, Xiaohui Fan, Zhiyun Ji, Wei Lv, Ganesh Pilla, Mingfeng Ye","doi":"10.1007/s40831-024-00788-4","DOIUrl":"https://doi.org/10.1007/s40831-024-00788-4","url":null,"abstract":"<p>In this study, a mixture rich in K, Na, and Pb, composed of undesired elements rich iron ore A, sinter dust, and blast furnace dust (ore-dust mix,), is sintered along with the regular iron ore. The K, Na, and Pb compounds within the ore-dust mix are identified as alkali chlorides, alkali aluminosilicates, PbO, and PbSO<sub>4</sub> using X-ray diffraction. The primary objective is to investigate the impact of three distinct sintering technologies: regular (pre-reduction) sintering, double-layer sintering, and hearth-layer sintering, on the removal degrees of K, Na, and Pb. In both the regular and double-layer sintering processes, the K, Na, and Pb contents within the blend of raw materials was measured approximately 0.430 wt%, 0.105 wt%, and 0.033 wt%, respectively. Moreover, the ratio of ore-dust mix to the regular ore was 0.54. In the regular sinter pot test, sinter feed was uniformly placed in the pot. In the run of the regular sinter pot test with the optimal coke breeze ratio of 20 wt%, the removal degrees of K, Na, and Pb were 79.5%, 67.5% and 92.7%, respectively. In comparison, the double-layer sintering technology resulted in a slight increase in the removal degrees for alkali metals and a similar removal degree for Pb, while utilizing a reduced coke breeze ratio of only 8.10 wt%. The removal mechanism of the hearth-layer and double-layer sintering processes are similar. However, the coke breeze ratio decreases to 6.63 wt% as the fraction of ore-dust mix within the blend of raw materials is reduced to 7 wt% during the hearth-layer sintering process.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"155 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140929214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The reclamation of exhausted Fluid Catalytic Cracking (FCC) catalysts has attracted considerable interest. However, the leaching rates of valuable metals in waste can be influenced by the pretreatment and calcination process. This study focuses on investigating the impact of pretreatment temperature on the metal-leaching process of spent FCC catalysts. After calcination at 1200 °C, the Al2O3 carrier transformed from γ-Al2O3 to α-Al2O3 with a denser structure. Subsequently, the valuable metals react with the carrier to form regular acid salts, which are averse to the leaching process. While the pretreatment roasting of spent FCC catalysts at 600 °C could not only remove the surface impurities effectively but also keep the original γ-Al2O3 structure, promoting the leaching process. Finally, the kinetic model is studied with the aim of achieving the high-efficiency leaching of Ni in spent FCC catalysts. The leaching kinetics model of Ni accords with the ash diffusion model, and the reaction activation energy is 53.05 kJ/mol, in the temperature range of 60–90 °C, sulfuric acid concentration of 2 mol/L, particle size of less than 200 mesh (75μm). Specifically, for spent FCC catalysts, pretreatment at high temperatures is not conducive to subsequent leaching, while pretreatment at low temperatures is conducive to subsequent leaching of valuable metals.