Chlorine has important roles in the Earth's systems. In different forms, it helps balance the charge and osmotic potential of cells, provides energy for microorganisms, mobilizes metals in geologic fluids, alters the salinity of waters, and degrades atmospheric ozone. Despite this importance, there has not been a comprehensive summary of chlorine's geobiology. Here, we unite different areas of recent research to describe a biogeochemical cycle for chlorine. Chlorine enters the biosphere through volcanism and weathering of rocks and is sequestered by subduction and the formation of evaporite sediments from inland seas. In the biosphere, chlorine is converted between solid, dissolved, and gaseous states and in oxidation states ranging from −1 to +7, with the soluble, reduced chloride ion as its most common form. Living organisms and chemical reactions change chlorine's form through oxidation and reduction and the addition and removal of chlorine from organic molecules. Chlorine can be transported through the atmosphere, and the highest oxidation states of chlorine are produced by reactions between sunlight and trace chlorine gases. Partial oxidation of chlorine occurs across the biosphere and creates reactive chlorine species that contribute to the oxidative stress experienced by living cells. A unified view of this chlorine cycle demonstrates connections between chlorine biology, chemistry, and geology that affect life on the Earth.
{"title":"The biogeochemical cycling of chlorine","authors":"Tyler P. Barnum, John D. Coates","doi":"10.1111/gbi.12513","DOIUrl":"https://doi.org/10.1111/gbi.12513","url":null,"abstract":"<p>Chlorine has important roles in the Earth's systems. In different forms, it helps balance the charge and osmotic potential of cells, provides energy for microorganisms, mobilizes metals in geologic fluids, alters the salinity of waters, and degrades atmospheric ozone. Despite this importance, there has not been a comprehensive summary of chlorine's geobiology. Here, we unite different areas of recent research to describe a biogeochemical cycle for chlorine. Chlorine enters the biosphere through volcanism and weathering of rocks and is sequestered by subduction and the formation of evaporite sediments from inland seas. In the biosphere, chlorine is converted between solid, dissolved, and gaseous states and in oxidation states ranging from −1 to +7, with the soluble, reduced chloride ion as its most common form. Living organisms and chemical reactions change chlorine's form through oxidation and reduction and the addition and removal of chlorine from organic molecules. Chlorine can be transported through the atmosphere, and the highest oxidation states of chlorine are produced by reactions between sunlight and trace chlorine gases. Partial oxidation of chlorine occurs across the biosphere and creates reactive chlorine species that contribute to the oxidative stress experienced by living cells. A unified view of this chlorine cycle demonstrates connections between chlorine biology, chemistry, and geology that affect life on the Earth.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"20 5","pages":"634-649"},"PeriodicalIF":3.7,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5745707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Protection from radiation damage is an important adaptation for phototrophic microbes. Living in surface, shallow water, and peritidal environments, cyanobacteria are especially exposed to long-wavelength ultraviolet (UVA) radiation. Several groups of cyanobacteria within these environments are protected from UVA damage by the production of the pigment scytonemin. Paleontological evidence of cyanobacteria in UVA-exposed environments from the Proterozoic, and possibly as early as the Archaean, suggests a long evolutionary history of radiation protection within this group. We show that phylogenetic analyses of enzymes in the scytonemin biosynthesis pathway support this hypothesis and reveal a deep history of vertical inheritance of this pathway within extant cyanobacterial diversity. Referencing this phylogeny to cyanobacterial molecular clocks suggests that scytonemin production likely appeared during the early Proterozoic, soon after the Great Oxygenation Event. This timing is consistent with an adaptive scenario for the evolution of scytonemin production, wherein the threat of UVA-generated reactive oxygen species becomes significantly greater once molecular oxygen is more pervasive across photosynthetic environments.
{"title":"Inferred ancestry of scytonemin biosynthesis proteins in cyanobacteria indicates a response to Paleoproterozoic oxygenation","authors":"Erik Tamre, Gregory P. Fournier","doi":"10.1111/gbi.12514","DOIUrl":"https://doi.org/10.1111/gbi.12514","url":null,"abstract":"<p>Protection from radiation damage is an important adaptation for phototrophic microbes. Living in surface, shallow water, and peritidal environments, cyanobacteria are especially exposed to long-wavelength ultraviolet (UVA) radiation. Several groups of cyanobacteria within these environments are protected from UVA damage by the production of the pigment scytonemin. Paleontological evidence of cyanobacteria in UVA-exposed environments from the Proterozoic, and possibly as early as the Archaean, suggests a long evolutionary history of radiation protection within this group. We show that phylogenetic analyses of enzymes in the scytonemin biosynthesis pathway support this hypothesis and reveal a deep history of vertical inheritance of this pathway within extant cyanobacterial diversity. Referencing this phylogeny to cyanobacterial molecular clocks suggests that scytonemin production likely appeared during the early Proterozoic, soon after the Great Oxygenation Event. This timing is consistent with an adaptive scenario for the evolution of scytonemin production, wherein the threat of UVA-generated reactive oxygen species becomes significantly greater once molecular oxygen is more pervasive across photosynthetic environments.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"20 6","pages":"764-775"},"PeriodicalIF":3.7,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12514","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5918361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana C. Gonzalez-Nayeck, Wiebke Mohr, Tiantian Tang, Sarah Sattin, M. Niki Parenteau, Linda L. Jahnke, Ann Pearson
In modern ecosystems, the carbon stable isotope (δ13C) ratios of consumers generally conform to the principle “you are what you eat, +1‰.” However, this metric may not apply to microbial mat systems where diverse communities, using a variety of carbon substrates via multiple assimilation pathways, live in close physical association and phagocytosis is minimal or absent. To interpret the δ13C record of the Proterozoic and early Paleozoic, when mat-based productivity likely was widespread, it is necessary to understand how a microbially driven producer–consumer structure affects the δ13C compositions of biomass and preservable lipids. Protein Stable Isotope Fingerprinting (P-SIF) is a recently developed method that allows measurement of the δ13C values of whole proteins, separated from environmental samples and identified taxonomically via proteomics. Here, we use P-SIF to determine the trophic relationships in a microbial mat sample from Chocolate Pots Hot Springs, Yellowstone National Park (YNP), USA. In this mat, proteins from heterotrophic bacteria are indistinguishable from cyanobacterial proteins, indicating that “you are what you eat, +1‰” is not applicable. To explain this finding, we hypothesize that sugar production and consumption dominate the net ecosystem metabolism, yielding a community in which producers and consumers share primary photosynthate as a common resource. This idea was validated by confirming that glucose moieties in exopolysaccharide were equal in δ13C composition to both cyanobacterial and heterotrophic proteins, and by confirming that highly 13C-depleted fatty acids (FAs) of Cyanobacteria dominate the lipid pool, consistent with flux-balance expectations for systems that overproduce primary photosynthate. Overall, the results confirm that the δ13C composition of microbial biomass and lipids is tied to specific metabolites, rather than to autotrophy versus heterotrophy or to individual trophic levels. Therefore, we suggest that aerobic microbial heterotrophy is simply a case of “you are what you eat.”
{"title":"Absence of canonical trophic levels in a microbial mat","authors":"Ana C. Gonzalez-Nayeck, Wiebke Mohr, Tiantian Tang, Sarah Sattin, M. Niki Parenteau, Linda L. Jahnke, Ann Pearson","doi":"10.1111/gbi.12511","DOIUrl":"https://doi.org/10.1111/gbi.12511","url":null,"abstract":"<p>In modern ecosystems, the carbon stable isotope (δ<sup>13</sup>C) ratios of consumers generally conform to the principle “you are what you eat, +1‰.” However, this metric may not apply to microbial mat systems where diverse communities, using a variety of carbon substrates via multiple assimilation pathways, live in close physical association and phagocytosis is minimal or absent. To interpret the δ<sup>13</sup>C record of the Proterozoic and early Paleozoic, when mat-based productivity likely was widespread, it is necessary to understand how a microbially driven producer–consumer structure affects the δ<sup>13</sup>C compositions of biomass and preservable lipids. Protein Stable Isotope Fingerprinting (P-SIF) is a recently developed method that allows measurement of the δ<sup>13</sup>C values of whole proteins, separated from environmental samples and identified taxonomically via proteomics. Here, we use P-SIF to determine the trophic relationships in a microbial mat sample from Chocolate Pots Hot Springs, Yellowstone National Park (YNP), USA. In this mat, proteins from heterotrophic bacteria are indistinguishable from cyanobacterial proteins, indicating that “you are what you eat, +1‰” is not applicable. To explain this finding, we hypothesize that sugar production and consumption dominate the net ecosystem metabolism, yielding a community in which producers and consumers share primary photosynthate as a common resource. This idea was validated by confirming that glucose moieties in exopolysaccharide were equal in δ<sup>13</sup>C composition to both cyanobacterial and heterotrophic proteins, and by confirming that highly <sup>13</sup>C-depleted fatty acids (FAs) of Cyanobacteria dominate the lipid pool, consistent with flux-balance expectations for systems that overproduce primary photosynthate. Overall, the results confirm that the δ<sup>13</sup>C composition of microbial biomass and lipids is tied to specific metabolites, rather than to autotrophy versus heterotrophy or to individual trophic levels. Therefore, we suggest that aerobic microbial heterotrophy is simply a case of “you are what you eat.”</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"20 5","pages":"726-740"},"PeriodicalIF":3.7,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6240951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Although nitrate-reducing Fe(II) oxidizing (NRFO) bacteria can grow sustainably in natural environments, numerous laboratory studies suggested that cell encrustation-induced metabolism limitations and cell death occurred more seriously in the absence of natural minerals. Hence, a study on how natural minerals could affect NRFO is warranted. This study examined the impact of hematite on NRFO by Acidovorax sp. BoFeN1 with different electron donors (acetate and Fe(II), acetate alone, and Fe(II) alone) and with nitrate as an electron acceptor. When acetate and Fe(II) were used as the electron donors, the amount of Fe(II) oxidation and nitrate reduction was enhanced in the presence of hematite, whereas no promotion was observed when only acetate was added as an electron donor. Under the conditions with only Fe(II) added as an electron donor, the level of Fe(II) oxidation was increased from 3.07 ± 0.06 to 3.92 ± 0.02 mM in the presence of hematite and nitrate reduction was enhanced. This suggests that hematite promotes microbial nitrate reduction by accelerating the biological oxidation of Fe(II). The main secondary minerals were goethite and lepidocrocite. After adding hematite, the assemblage of iron minerals on the cell surface decreased, and the cell crusts became thinner, indicating that hematite effectively mitigated cell encrustation. Furthermore, hematite accelerated the chemical oxidation of Fe(II) by nitrite. Hence, hematite can promote the NRFO of Acidovorax sp. BoFeN1 via two possible pathways: (i) hematite acts as nucleation sites to mitigate cell encrustation; (ii) hematite catalyzes the biological and chemical oxidation of Fe(II) through the mineral catalysis effects. This study highlights the importance of existing iron minerals on NRFO and sheds light on the survival strategy of NRFO bacteria in anoxic subsurface environments.
{"title":"Hematite-promoted nitrate-reducing Fe(II) oxidation by Acidovorax sp. strain BoFeN1: Roles of mineral catalysis and cell encrustation","authors":"Kuan Cheng, Han Li, Xiu Yuan, Yunlu Yin, Dandan Chen, Ying Wang, Xiaomin Li, Guojun Chen, Fangbai Li, Chao Peng, Yundang Wu, Tongxu Liu","doi":"10.1111/gbi.12510","DOIUrl":"https://doi.org/10.1111/gbi.12510","url":null,"abstract":"<p>Although nitrate-reducing Fe(II) oxidizing (NRFO) bacteria can grow sustainably in natural environments, numerous laboratory studies suggested that cell encrustation-induced metabolism limitations and cell death occurred more seriously in the absence of natural minerals. Hence, a study on how natural minerals could affect NRFO is warranted. This study examined the impact of hematite on NRFO by <i>Acidovorax</i> sp. BoFeN1 with different electron donors (acetate and Fe(II), acetate alone, and Fe(II) alone) and with nitrate as an electron acceptor. When acetate and Fe(II) were used as the electron donors, the amount of Fe(II) oxidation and nitrate reduction was enhanced in the presence of hematite, whereas no promotion was observed when only acetate was added as an electron donor. Under the conditions with only Fe(II) added as an electron donor, the level of Fe(II) oxidation was increased from 3.07 ± 0.06 to 3.92 ± 0.02 mM in the presence of hematite and nitrate reduction was enhanced. This suggests that hematite promotes microbial nitrate reduction by accelerating the biological oxidation of Fe(II). The main secondary minerals were goethite and lepidocrocite. After adding hematite, the assemblage of iron minerals on the cell surface decreased, and the cell crusts became thinner, indicating that hematite effectively mitigated cell encrustation. Furthermore, hematite accelerated the chemical oxidation of Fe(II) by nitrite. Hence, hematite can promote the NRFO of <i>Acidovorax</i> sp. BoFeN1 via two possible pathways: (i) hematite acts as nucleation sites to mitigate cell encrustation; (ii) hematite catalyzes the biological and chemical oxidation of Fe(II) through the mineral catalysis effects. This study highlights the importance of existing iron minerals on NRFO and sheds light on the survival strategy of NRFO bacteria in anoxic subsurface environments.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"20 6","pages":"810-822"},"PeriodicalIF":3.7,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6211552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nitrogen isotopes and abundances in sedimentary rocks have become an important tool for reconstructing biogeochemical cycles in ancient ecosystems. There are two archives of nitrogen in the rock record, namely kerogen-bound amines and silicate-bound ammonium, and it is well documented that the isotopic ratios of these two archives can be offset from one another. This offset has been observed to increase with metamorphic grade, suggesting that it may be related to the bonding environment in differing nitrogen host phases and associated equilibrium isotope fractionation. However, theoretical bounds for this effect have not been established, and it remains possible that some isotopic offsets predate metamorphism. In support of this hypothesis, we report an unexpectedly large isotopic offset of 4–5‰ in siltstones of very low metamorphic grade from the late Mesoproterozoic Diabaig Formation in NW Scotland (1.0 Ga). Carbon to nitrogen ratios of bulk rocks are 2–3 times lower than in other Mesoproterozoic sections. The rocks also contain early-formed phosphate concretions and display wrinkled surfaces on bedding planes, indicative of fossilised microbial mats. Collectively, these data are most parsimoniously interpreted as evidence of diagenetic ammonium release from microbial mats into porewaters, followed by partial oxidation to nitrite or nitrate at the sediment–water interface. This process would render residual ammonium in clays isotopically heavy, while the resulting nitrite or nitrate would be relatively lighter and captured in new biomass, leading to the observed isotopic divergence. The same diagenetic degradation pathway likely also liberated phosphate that was trapped within concretions. Diagenetic release of nutrients is known to occur in modern settings, and our data suggest that nitrogen isotopes may be a way to track this local sedimentary nutrient source in past environments. Lastly, we speculate that diagenetic nutrient recycling within Proterozoic microbial mats may have created a favourable niche for eukaryotic organisms in shallow waters.
{"title":"Diagenetic nutrient supplies to the Proterozoic biosphere archived in divergent nitrogen isotopic ratios between kerogen and silicate minerals","authors":"Eva E. Stüeken, Anthony R. Prave","doi":"10.1111/gbi.12507","DOIUrl":"https://doi.org/10.1111/gbi.12507","url":null,"abstract":"<p>Nitrogen isotopes and abundances in sedimentary rocks have become an important tool for reconstructing biogeochemical cycles in ancient ecosystems. There are two archives of nitrogen in the rock record, namely kerogen-bound amines and silicate-bound ammonium, and it is well documented that the isotopic ratios of these two archives can be offset from one another. This offset has been observed to increase with metamorphic grade, suggesting that it may be related to the bonding environment in differing nitrogen host phases and associated equilibrium isotope fractionation. However, theoretical bounds for this effect have not been established, and it remains possible that some isotopic offsets predate metamorphism. In support of this hypothesis, we report an unexpectedly large isotopic offset of 4–5‰ in siltstones of very low metamorphic grade from the late Mesoproterozoic Diabaig Formation in NW Scotland (1.0 Ga). Carbon to nitrogen ratios of bulk rocks are 2–3 times lower than in other Mesoproterozoic sections. The rocks also contain early-formed phosphate concretions and display wrinkled surfaces on bedding planes, indicative of fossilised microbial mats. Collectively, these data are most parsimoniously interpreted as evidence of diagenetic ammonium release from microbial mats into porewaters, followed by partial oxidation to nitrite or nitrate at the sediment–water interface. This process would render residual ammonium in clays isotopically heavy, while the resulting nitrite or nitrate would be relatively lighter and captured in new biomass, leading to the observed isotopic divergence. The same diagenetic degradation pathway likely also liberated phosphate that was trapped within concretions. Diagenetic release of nutrients is known to occur in modern settings, and our data suggest that nitrogen isotopes may be a way to track this local sedimentary nutrient source in past environments. Lastly, we speculate that diagenetic nutrient recycling within Proterozoic microbial mats may have created a favourable niche for eukaryotic organisms in shallow waters.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"20 5","pages":"623-633"},"PeriodicalIF":3.7,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12507","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5804524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kerstin M. Leberecht, Simon M. Ritter, Christian J. Lapp, Lukas Klose, Julian Eschenr?der, Christian Scholz, Sebastian Kühnel, Wolfgang Stinnesbeck, Arnulf Kletzin, Margot Isenbeck-Schr?ter, Johannes Gescher
Cover Caption: The cover image is based on the Research Article Microbially promoted calcite precipitation in the pelagic redoxcline: Elucidating the formation of the turbid layer by Kerstin M. Leberecht, et al., https://doi.org/10.1111/gbi.12492