The aim of this research is to develop thermoplastic olefin (TPO) composites containing polypropylene (PP), an elastomeric ethylene-octene copolymer (EOC) and graphene nanoplatelets (GNPs), suitable for material extrusion (MEX). A PP functionalized with amino-pyridine (PP-g-Py) was used as a compatibilizer. The composite blends had droplet-matrix morphology at compositions as high as 40 wt% EOC. Imaging by Transmission Electron Microscopy showed that the GNPs resided at the interface between the blend components. This microstructure promoted higher thermal conductivity of the TPO/GNP composite blends, as compared to the PP/GNP composite (1.54 W/m K, vs 1.3 W/m K respectively). PP/GNP composites processed by MEX exhibited inadequate interfacial fusion between the deposited strands, which resulted in severe delamination during tensile and flexural testing, and consequently poor mechanical properties. In the TPO/GNP composites containing 40 wt% EOC, the slower crystallization of the elongated EOC domains promoted interfacial adhesion between the strands, resulting in better part consolidation, more consistent mechanical properties and improved ductility compared to the PP/GNP composites.
{"title":"Improving the material extrusion processing of thermoplastic olefin/graphene nanoplatelet composites through control of the morphology","authors":"Quang Binh Ho, Roxana Abdi, Marianna Kontopoulou, Weawkamol Leelapornpisit","doi":"10.1177/08927057241244691","DOIUrl":"https://doi.org/10.1177/08927057241244691","url":null,"abstract":"The aim of this research is to develop thermoplastic olefin (TPO) composites containing polypropylene (PP), an elastomeric ethylene-octene copolymer (EOC) and graphene nanoplatelets (GNPs), suitable for material extrusion (MEX). A PP functionalized with amino-pyridine (PP-g-Py) was used as a compatibilizer. The composite blends had droplet-matrix morphology at compositions as high as 40 wt% EOC. Imaging by Transmission Electron Microscopy showed that the GNPs resided at the interface between the blend components. This microstructure promoted higher thermal conductivity of the TPO/GNP composite blends, as compared to the PP/GNP composite (1.54 W/m K, vs 1.3 W/m K respectively). PP/GNP composites processed by MEX exhibited inadequate interfacial fusion between the deposited strands, which resulted in severe delamination during tensile and flexural testing, and consequently poor mechanical properties. In the TPO/GNP composites containing 40 wt% EOC, the slower crystallization of the elongated EOC domains promoted interfacial adhesion between the strands, resulting in better part consolidation, more consistent mechanical properties and improved ductility compared to the PP/GNP composites.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"97 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140601581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the present work, investigations of the wettability, wear, and morphological study on 3D-printed polylactic acid (PLA)/molybdenum disulfide (MoS2)-silicon carbide (SiC) based composite have been performed. In the first stage, the PLA/MoS2-SiC composite was fabricated from the different types of filaments of 1.75 ± 0.10 mm size by taking MoS2-SiC as reinforcement at various extrusion temperatures (150°C–160°C) and screw rotational speed (3–7 r/min) of the extruder setup. The Taguchi L9 orthogonal array was used to design the experiments for 3D printing by varying the filament type, range of nozzle temperature (200°C–210°C), and infill density (40%–90%). The pin-on-disk (POD) setup was used for measuring specific wear rate (SWR) and showed the lowest value of 0.00141 g/N-m when composites were 3D printed by taking filaments manufactured at the parametric combination of 160°C extruder temperature and 7 r/min rotational speed, while 3D printed at 210°C nozzle temperature and 40% infill density. Contact angle (CA) values indicated that the reinforcement of MoS2 and SiC in PLA resulted in hydrophilic surface formation due to morphology and increased roughness (including mean roughness (Sa), mean root square of the Z data (Sq), and the highest peak (Sz)). The significantly increased surface free energy (SFE) of MoS2-SiC-reinforced PLA composite compared to pure PLA was reported which makes the prepared composite a promising candidate to be used for biocompatible implants with high wear resistance.
本研究对基于聚乳酸(PLA)/二硫化钼(MoS2)-碳化硅(SiC)的三维打印复合材料的润湿性、磨损和形态进行了研究。第一阶段,在不同的挤出温度(150°C-160°C)和螺杆转速(3-7 r/min)下,以二硫化钼(MoS2)-碳化硅(SiC)为增强体,用不同类型的尺寸为 1.75 ± 0.10 mm 的长丝制造聚乳酸/MoS2-碳化硅复合材料。Taguchi L9 正交阵列用于设计三维打印实验,改变长丝类型、喷嘴温度范围(200°C-210°C)和填充密度(40%-90%)。采用盘上插针(POD)装置测量特定磨损率(SWR),结果表明,复合材料在 160°C 挤压机温度和 7 r/min 转速的参数组合下进行 3D 打印时,SWR 值最低,为 0.00141 g/N-m,而在 210°C 喷嘴温度和 40% 填充密度下进行 3D 打印时,SWR 值最低。接触角(CA)值表明,由于形态和粗糙度(包括平均粗糙度(Sa)、Z 数据的平均平方根(Sq)和最高峰值(Sz))的增加,聚乳酸中添加 MoS2 和 SiC 后形成了亲水性表面。与纯聚乳酸相比,MoS2-SiC 增强聚乳酸复合材料的表面自由能(SFE)明显增加,这使得制备的复合材料有望用于具有高耐磨性的生物兼容植入物。
{"title":"Investigation of wettability and wear properties on 3D printed Polylactic acid/Molybdenum disulfide-Silicon carbide polymeric composite for sustainable biomedical applications","authors":"Rashi Tyagi, Nishant Ranjan, Monty Kumar, Vinay Kumar, Ashutosh Tripathi, Ranvijay Kumar","doi":"10.1177/08927057241243356","DOIUrl":"https://doi.org/10.1177/08927057241243356","url":null,"abstract":"In the present work, investigations of the wettability, wear, and morphological study on 3D-printed polylactic acid (PLA)/molybdenum disulfide (MoS<jats:sub>2</jats:sub>)-silicon carbide (SiC) based composite have been performed. In the first stage, the PLA/MoS<jats:sub>2</jats:sub>-SiC composite was fabricated from the different types of filaments of 1.75 ± 0.10 mm size by taking MoS<jats:sub>2</jats:sub>-SiC as reinforcement at various extrusion temperatures (150°C–160°C) and screw rotational speed (3–7 r/min) of the extruder setup. The Taguchi L9 orthogonal array was used to design the experiments for 3D printing by varying the filament type, range of nozzle temperature (200°C–210°C), and infill density (40%–90%). The pin-on-disk (POD) setup was used for measuring specific wear rate (SWR) and showed the lowest value of 0.00141 g/N-m when composites were 3D printed by taking filaments manufactured at the parametric combination of 160°C extruder temperature and 7 r/min rotational speed, while 3D printed at 210°C nozzle temperature and 40% infill density. Contact angle (CA) values indicated that the reinforcement of MoS<jats:sub>2</jats:sub> and SiC in PLA resulted in hydrophilic surface formation due to morphology and increased roughness (including mean roughness (Sa), mean root square of the Z data (Sq), and the highest peak (Sz)). The significantly increased surface free energy (SFE) of MoS<jats:sub>2</jats:sub>-SiC-reinforced PLA composite compared to pure PLA was reported which makes the prepared composite a promising candidate to be used for biocompatible implants with high wear resistance.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"43 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140601577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.1177/08927057241243361
Shirley N Cavalcanti, Moacy P da Silva, Túlio ACS Rodrigues, Pankaj Agrawal, Gustavo F Brito, Eudésio O Vilar, Tomás JA Mélo
In this work, conductive polymeric composites (CPCs) of renewable source high-density polyethylene (HDPE) (BioPe) with various carbon black (CB) concentrations were developed. To corroborate the electrical conductivity prediction techniques, an artificial neural network (ANN) was modeled and trained to predict electrical conductivity using processing parameters, filler information, and polymeric matrix. Thus, the obtained neural network and the proposed methodology could serve as experimental support for the development of new materials based on parametric variation and consequent prediction of electrical conductivity. Therefore, the use of artificial neural networks from processing data and filler concentration proved to be an efficient technique for predicting the electrical conductivity of CPCs using conductive carbon black as conductive filler.
{"title":"Application of artificial neural networks as a tool for the prediction of electrical conductivity in polymer composites","authors":"Shirley N Cavalcanti, Moacy P da Silva, Túlio ACS Rodrigues, Pankaj Agrawal, Gustavo F Brito, Eudésio O Vilar, Tomás JA Mélo","doi":"10.1177/08927057241243361","DOIUrl":"https://doi.org/10.1177/08927057241243361","url":null,"abstract":"In this work, conductive polymeric composites (CPCs) of renewable source high-density polyethylene (HDPE) (BioPe) with various carbon black (CB) concentrations were developed. To corroborate the electrical conductivity prediction techniques, an artificial neural network (ANN) was modeled and trained to predict electrical conductivity using processing parameters, filler information, and polymeric matrix. Thus, the obtained neural network and the proposed methodology could serve as experimental support for the development of new materials based on parametric variation and consequent prediction of electrical conductivity. Therefore, the use of artificial neural networks from processing data and filler concentration proved to be an efficient technique for predicting the electrical conductivity of CPCs using conductive carbon black as conductive filler.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"27 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140601912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.1177/08927057241243364
Gazi Akgun, Osman Ulkir
The final product of additive manufacturing (AM) or 3D printing critically depends on the surface quality. An experimental study on the 3D printed intake manifold flange using acrylonitrile butadiene styrene (ABS) material was executed by varying the four process parameters. A fused deposition modeling (FDM) based 3D printer was used to fabricate the flanges. The association between the parameters and the surface roughness of printed ABS flanges was investigated. A feed forward neural network (FFNN) model trained on particle swarm optimization (PSO) optimized with a genetic algorithm (GA) was used to estimate the surface roughness. A Box-Behnken design (BBD) with printing parameters at three levels was used, and 25 parts were fabricated. The suggested model demonstrated a coefficient of determination (R2) of 0.9865 on test values, mean of root-mean-square-error (RMSE) of 0.1231 after 500 times training for generalization. And also mean of overfitting factor is 0.7110. This means that the suggested system could generalize. Comparing the results from the suggested model and ANN, the suggested hybrid model outperformed ANN in predicting the surface roughness values with no overfitting. This suggests that GA optimized PSO based FFNN may be a more suitable method for estimating product quality in terms of surface roughness.
增材制造(AM)或三维打印的最终产品关键取决于表面质量。通过改变四个工艺参数,对使用丙烯腈-丁二烯-苯乙烯(ABS)材料的三维打印进气歧管法兰进行了实验研究。使用基于熔融沉积建模(FDM)的三维打印机制造法兰。研究了参数与打印 ABS 法兰表面粗糙度之间的关系。采用遗传算法(GA)优化的粒子群优化(PSO)训练的前馈神经网络(FFNN)模型用于估算表面粗糙度。采用方框-贝肯设计 (BBD),印刷参数分为三个级别,共制造了 25 个零件。所建议的模型在测试值上的判定系数(R2)为 0.9865,经过 500 次训练后的均方根误差(RMSE)平均值为 0.1231。过拟合系数的平均值为 0.7110。这说明建议的系统可以泛化。比较所建议的模型和 ANN 的结果,所建议的混合模型在预测表面粗糙度值方面优于 ANN,且没有过拟合。这表明,基于 GA 优化 PSO 的 FFNN 可能是一种更适合估计产品质量表面粗糙度的方法。
{"title":"Prediction surface roughness of 3D printed parts using genetic algorithm optimized hybrid learning model","authors":"Gazi Akgun, Osman Ulkir","doi":"10.1177/08927057241243364","DOIUrl":"https://doi.org/10.1177/08927057241243364","url":null,"abstract":"The final product of additive manufacturing (AM) or 3D printing critically depends on the surface quality. An experimental study on the 3D printed intake manifold flange using acrylonitrile butadiene styrene (ABS) material was executed by varying the four process parameters. A fused deposition modeling (FDM) based 3D printer was used to fabricate the flanges. The association between the parameters and the surface roughness of printed ABS flanges was investigated. A feed forward neural network (FFNN) model trained on particle swarm optimization (PSO) optimized with a genetic algorithm (GA) was used to estimate the surface roughness. A Box-Behnken design (BBD) with printing parameters at three levels was used, and 25 parts were fabricated. The suggested model demonstrated a coefficient of determination (R<jats:sup>2</jats:sup>) of 0.9865 on test values, mean of root-mean-square-error (RMSE) of 0.1231 after 500 times training for generalization. And also mean of overfitting factor is 0.7110. This means that the suggested system could generalize. Comparing the results from the suggested model and ANN, the suggested hybrid model outperformed ANN in predicting the surface roughness values with no overfitting. This suggests that GA optimized PSO based FFNN may be a more suitable method for estimating product quality in terms of surface roughness.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"95 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140601578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Poly(vinylidene fluoride) (PVDF) based conducting polymer composites with carbon nanomaterials can be used for mechanical energy harvesting through piezoelectric or triboelectric effect. This study aims to investigate the influence of PMMA molecular weight on the electrical, thermal, and wetting properties of PVDF/40 wt.% PMMA blend nanocomposites reinforced with expanded graphite (ExGr). The blend nanocomposites with 40 wt.% PMMA have been prepared by solution blending method by using two different molecular weights of PMMA whose melt flow indices are 2 g/10 min and 2.3 g/10 min. The coexistence of the electroactive gamma and non-polar alpha phases of PVDF in the blend nanocomposites has been confirmed by X-ray diffraction, Fourier transform infrared spectroscopy and differential scanning calorimetry analyses. While overall crystallinity (%) of low molecular weight PMMA employed blend nanocomposites is lower than that of high molecular weight PMMA blended nanocomposites, the electroactive gamma phase has been found to increase in the former blend nanocomposites. The dispersion of graphite nanosheets has been observed to be better in high molecular weight PMMA employed blend nanocomposites which results in higher electrical conductivity. Impedance analysis of PVDF-40 wt.% PMMA-2 wt.% ExGr blend nanocomposite with high molecular weight PMMA results in enhanced interjunction capacitance (74.5 pF) in comparison to low molecular weight PMMA mixed blend nanocomposites (68 pF). Water contact angle (WCA) increases with molecular weight of PMMA and ExGr loading level. Thermogravimetric analysis has shown that the char content (above 500°C) is slightly higher for the blend with low molecular weight PMMA than with high molecular weight PMMA.
{"title":"Unravelling the role of poly(methyl methacrylate) (PMMA) molecular weight in poly(vinylidene fluoride) (PVDF)/PMMA/Expanded graphite (ExGr) blend nanocomposites: Insights into morphology, thermal behavior, electrical conductivity, and wetting property","authors":"Nikhitha Augustin, Pranesh Muraliharan, Aleena Sabu, Kanya Koothanatham Senthilkumar, Pratheep Kumar Annamalai, Ramanujam Brahmadesam Thoopul Srinivasa Raghava","doi":"10.1177/08927057241238203","DOIUrl":"https://doi.org/10.1177/08927057241238203","url":null,"abstract":"Poly(vinylidene fluoride) (PVDF) based conducting polymer composites with carbon nanomaterials can be used for mechanical energy harvesting through piezoelectric or triboelectric effect. This study aims to investigate the influence of PMMA molecular weight on the electrical, thermal, and wetting properties of PVDF/40 wt.% PMMA blend nanocomposites reinforced with expanded graphite (ExGr). The blend nanocomposites with 40 wt.% PMMA have been prepared by solution blending method by using two different molecular weights of PMMA whose melt flow indices are 2 g/10 min and 2.3 g/10 min. The coexistence of the electroactive gamma and non-polar alpha phases of PVDF in the blend nanocomposites has been confirmed by X-ray diffraction, Fourier transform infrared spectroscopy and differential scanning calorimetry analyses. While overall crystallinity (%) of low molecular weight PMMA employed blend nanocomposites is lower than that of high molecular weight PMMA blended nanocomposites, the electroactive gamma phase has been found to increase in the former blend nanocomposites. The dispersion of graphite nanosheets has been observed to be better in high molecular weight PMMA employed blend nanocomposites which results in higher electrical conductivity. Impedance analysis of PVDF-40 wt.% PMMA-2 wt.% ExGr blend nanocomposite with high molecular weight PMMA results in enhanced interjunction capacitance (74.5 pF) in comparison to low molecular weight PMMA mixed blend nanocomposites (68 pF). Water contact angle (WCA) increases with molecular weight of PMMA and ExGr loading level. Thermogravimetric analysis has shown that the char content (above 500°C) is slightly higher for the blend with low molecular weight PMMA than with high molecular weight PMMA.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"47 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140313244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Polystyrene foam (EPS) concrete is a composite concrete material commonly used in construction, which has excellent thermal insulation and thermal insulation properties, but also has defects of weak bonding interface.KH-560 can significantly improve the characteristics of EPS particles and concrete matrix, which have different physical and chemical properties and are difficult to combine. In this study, the effects of different levels of KH-560 on the enhanced mechanical properties of EPS concrete were studied from the aspects of macroscopic mechanical properties, microstructure characteristics, chemical composition and discrete element simulation, and the mechanism of action was discussed. The results of mechanical experiments show that the compressive strength and flexural strength of EPS concrete mixed with KH-560 are higher than those of ordinary EPS concrete, and its mechanical properties gradually increase with the increase of KH-560 content. XRD, FT-IR and SEM observations showed that more C-S-H gels would be produced under the action of KH-560, which made the structure of the weak interface transition zone of EPS concrete more compact. The results of discrete element simulation show that the peak strength of EPS concrete increases with the increase of friction coefficient, but has little effect on its elastic modulus.
{"title":"Mechanical properties and discrete element simulation of KH-560 modified polystyrene concrete","authors":"Yong Feng, Xiaoyang Li, Weijian Wang, Lijuan Li, Chen Zhao","doi":"10.1177/08927057241240724","DOIUrl":"https://doi.org/10.1177/08927057241240724","url":null,"abstract":"Polystyrene foam (EPS) concrete is a composite concrete material commonly used in construction, which has excellent thermal insulation and thermal insulation properties, but also has defects of weak bonding interface.KH-560 can significantly improve the characteristics of EPS particles and concrete matrix, which have different physical and chemical properties and are difficult to combine. In this study, the effects of different levels of KH-560 on the enhanced mechanical properties of EPS concrete were studied from the aspects of macroscopic mechanical properties, microstructure characteristics, chemical composition and discrete element simulation, and the mechanism of action was discussed. The results of mechanical experiments show that the compressive strength and flexural strength of EPS concrete mixed with KH-560 are higher than those of ordinary EPS concrete, and its mechanical properties gradually increase with the increase of KH-560 content. XRD, FT-IR and SEM observations showed that more C-S-H gels would be produced under the action of KH-560, which made the structure of the weak interface transition zone of EPS concrete more compact. The results of discrete element simulation show that the peak strength of EPS concrete increases with the increase of friction coefficient, but has little effect on its elastic modulus.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"9 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140313243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-22DOI: 10.1177/08927057241241504
Femi A Ibitoye, Donald W Radford
Ongoing research in additive manufacturing towards structural and industrial application has led to the use of commingled roving as a manufacturing feedstock for printing high fiber volume fraction composites. The prospects of using this technology for high performance applications necessitates the need for a comprehensive experimental investigation into the effects of processing parameters on the quality of an additively manufactured composite printed from commingled roving feedstock. In this work, transverse flexure and void fraction matrix pyrolysis testing are both performed to evaluate composite quality. The transverse flexure test is a testing approach that evaluates the quality of the interfacial fiber-matrix bond while the void fraction test estimates the void content in the printed composite. A full observational study consisting of 27 different test combinations is done to investigate the effects of three different process parameters namely, temperature, pressure, and print speed across three different levels. Composite samples were made from commingled roving of E-glass and amorphous PET using an in-house built continuous fiber composite digital manufacturing system. Least squares regression analysis is performed to study the main, interaction and quadratic effects of process parameters. A statistical regression model having an R2 adjusted value of 80.1% is generated from the transverse flexure study, which is used to explain main and interaction effects and also predict performance. Response surface plots are also generated and are used to optimize process parameters which can subsequently be of help in scaling up composite manufacturing. Results show that all three process parameters are highly statistically significant at the 0.01 level of significance. Pressure * Temperature and Pressure * Printspeed are significant interaction terms. Pressure plays a weightier role when print speed is increased or temperature is decreased as it closes more voids that would ordinarily have been introduced because of drop in polymer melt viscosity. Micrographic analysis is also performed.
目前正在进行的结构和工业应用增材制造研究促使人们使用混合粗纱作为制造原料,打印高纤维体积分数复合材料。考虑到将这种技术用于高性能应用的前景,有必要对加工参数对用混合粗纱原料印制的添加剂制造复合材料质量的影响进行全面的实验研究。在这项工作中,横向挠曲和空隙率基质热解测试都是为了评估复合材料的质量。横向挠曲测试是一种评估纤维-基质界面结合质量的测试方法,而空隙率测试则是对印刷复合材料中空隙含量的估算。我们进行了一项包含 27 种不同测试组合的全面观察研究,以调查三种不同工艺参数(即温度、压力和印刷速度)在三个不同水平上的影响。复合材料样品是使用内部制造的连续纤维复合材料数字制造系统,由 E 玻璃和无定形 PET 混合粗纱制成的。通过最小二乘法回归分析来研究工艺参数的主效应、交互效应和二次效应。通过横向挠曲研究生成了 R2 调整值为 80.1% 的统计回归模型,用于解释主要效应和交互效应,并预测性能。此外,还生成了响应面图,用于优化工艺参数,从而有助于扩大复合材料的生产规模。结果表明,所有三个工艺参数在 0.01 显著性水平上都具有高度统计学意义。压力 * 温度和压力 * 印刷速度是显著的交互项。当印刷速度提高或温度降低时,压力的作用更大,因为它可以封闭更多的空隙,而这些空隙通常是由于聚合物熔体粘度下降而产生的。此外,还进行了显微图像分析。
{"title":"Experimental and statistical study on the effect of process parameters on the quality of continuous fiber composites made via additive manufacturing","authors":"Femi A Ibitoye, Donald W Radford","doi":"10.1177/08927057241241504","DOIUrl":"https://doi.org/10.1177/08927057241241504","url":null,"abstract":"Ongoing research in additive manufacturing towards structural and industrial application has led to the use of commingled roving as a manufacturing feedstock for printing high fiber volume fraction composites. The prospects of using this technology for high performance applications necessitates the need for a comprehensive experimental investigation into the effects of processing parameters on the quality of an additively manufactured composite printed from commingled roving feedstock. In this work, transverse flexure and void fraction matrix pyrolysis testing are both performed to evaluate composite quality. The transverse flexure test is a testing approach that evaluates the quality of the interfacial fiber-matrix bond while the void fraction test estimates the void content in the printed composite. A full observational study consisting of 27 different test combinations is done to investigate the effects of three different process parameters namely, temperature, pressure, and print speed across three different levels. Composite samples were made from commingled roving of E-glass and amorphous PET using an in-house built continuous fiber composite digital manufacturing system. Least squares regression analysis is performed to study the main, interaction and quadratic effects of process parameters. A statistical regression model having an R<jats:sup>2</jats:sup> adjusted value of 80.1% is generated from the transverse flexure study, which is used to explain main and interaction effects and also predict performance. Response surface plots are also generated and are used to optimize process parameters which can subsequently be of help in scaling up composite manufacturing. Results show that all three process parameters are highly statistically significant at the 0.01 level of significance. Pressure * Temperature and Pressure * Printspeed are significant interaction terms. Pressure plays a weightier role when print speed is increased or temperature is decreased as it closes more voids that would ordinarily have been introduced because of drop in polymer melt viscosity. Micrographic analysis is also performed.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"27 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140205155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-21DOI: 10.1177/08927057241240720
Dil Jan, Shahid Ikramullah Butt, Muhammad Salman Khan, Nasir Ahmad, Ghullam Hussain
Automotive bumper beams play a very crucial role in absorbing impact energy during crash collisions and reducing damage from the front or rear ends of the vehicle during low or high-velocity impact. This paper discusses the impact of different energy-absorbing materials introduced between the fascia and the metallic beam. A novel recipe, with combinations ranging from 0% to 50% and 20% to 80% of Polypropylene (PP) with Ethylene vinyl acetate (EVA) and Polypropylene (PP) with Ethylene propylene diene monomer (EPDM), was prepared by weight and comparative study based on their impact strengths was done both experimentally and numerically. The mechanical properties of the polymer blends have been determined under tensile, compressive, and impact testing. Results obtained from numerical simulation analysis lie in reasonable agreement with the experimental findings. The tensile and compression test results show that polymer blend PP/EPDM-50/50 is the best selection as an energy absorber due to its ductility and toughness properties which is evident from experimental testing. The introduction of this blend in front of the metallic strip (bumper beam) has significantly supported the improvement in the energy-absorbing capacity and impact strength.
{"title":"Analyzing effects of damping materials on automotive bumper beam assembly under different velocity conditions","authors":"Dil Jan, Shahid Ikramullah Butt, Muhammad Salman Khan, Nasir Ahmad, Ghullam Hussain","doi":"10.1177/08927057241240720","DOIUrl":"https://doi.org/10.1177/08927057241240720","url":null,"abstract":"Automotive bumper beams play a very crucial role in absorbing impact energy during crash collisions and reducing damage from the front or rear ends of the vehicle during low or high-velocity impact. This paper discusses the impact of different energy-absorbing materials introduced between the fascia and the metallic beam. A novel recipe, with combinations ranging from 0% to 50% and 20% to 80% of Polypropylene (PP) with Ethylene vinyl acetate (EVA) and Polypropylene (PP) with Ethylene propylene diene monomer (EPDM), was prepared by weight and comparative study based on their impact strengths was done both experimentally and numerically. The mechanical properties of the polymer blends have been determined under tensile, compressive, and impact testing. Results obtained from numerical simulation analysis lie in reasonable agreement with the experimental findings. The tensile and compression test results show that polymer blend PP/EPDM-50/50 is the best selection as an energy absorber due to its ductility and toughness properties which is evident from experimental testing. The introduction of this blend in front of the metallic strip (bumper beam) has significantly supported the improvement in the energy-absorbing capacity and impact strength.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"14 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140205214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-21DOI: 10.1177/08927057241241500
Ramy A Fouad, Amal AA Ibrahim, Mohamed M El-Sayed Seleman, Sabbah Ataya, Mohamed Ibrahim AA Habba
Polymethyl methacrylate (PMMA) has been widely used as a material in dentistry. The deterioration of pure PMMA denture teeth is a significant issue that can alter the vertical dimensions of dentures. This study investigates the effect of aluminum oxide (Al2O3) nano-ceramic addition as reinforcements into the heat-cure acrylic resin denture teeth. The PMMA was reinforced with Al2O3 concentrations of 1, 3, 5, and 10 wt.%. The PMMA without ceramic addition is produced for comparison purposes. The color change, densification, microhardness, and compressive properties of the produced PMMA resin and its composites were investigated to detect the effect of Al2O3 nano ceramic addition on the physical and mechanical properties. Furthermore, the microstructure was also performed using scanning electron microscopy (SEM) analysis. A chewing simulator was utilized to conduct two-body wear testing, employing a human enamel antagonist. The wear behavior of the PMMA and their composites were assessed by measuring the weight loss after submitting them to 37,500 cycles. The SEM microstructure analysis revealed sound specimens of PMMA reinforced with 0, 1, 3, and 5 wt.% Al2O3 without any porosity and micro defects using the applied production procedures. In contrast, the aggregated sites and propagation of cracks were detected for the PMMA/10 wt.% Al2O3 specimen. The densification and hardness properties of the produced PMMA composites improved with increasing the Al2O3 additions. The microhardness of PMMA/10 wt.% Al2O3 improved by around 233% compared to the PMMA matrix. The higher compressive properties were detected for the PMMA/5 wt.% Al2O3 composite specimen with ultimate compressive strength (UCS) of 54.75 MPa and yield strength (YS) of 45.6 MPa and improved than the PMMA matrix by around 98 % and 117 %, respectively. In addition, incorporating Al2O3 nano-ceramic particles into a PMMA matrix revealed a significant improvement in the wear resistance of the produced composites compared to the PMMA matrix.
{"title":"Mechanical properties and wear performance of denture base polymethyl methacrylate reinforced with nano Al2O3","authors":"Ramy A Fouad, Amal AA Ibrahim, Mohamed M El-Sayed Seleman, Sabbah Ataya, Mohamed Ibrahim AA Habba","doi":"10.1177/08927057241241500","DOIUrl":"https://doi.org/10.1177/08927057241241500","url":null,"abstract":"Polymethyl methacrylate (PMMA) has been widely used as a material in dentistry. The deterioration of pure PMMA denture teeth is a significant issue that can alter the vertical dimensions of dentures. This study investigates the effect of aluminum oxide (Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>) nano-ceramic addition as reinforcements into the heat-cure acrylic resin denture teeth. The PMMA was reinforced with Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> concentrations of 1, 3, 5, and 10 wt.%. The PMMA without ceramic addition is produced for comparison purposes. The color change, densification, microhardness, and compressive properties of the produced PMMA resin and its composites were investigated to detect the effect of Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> nano ceramic addition on the physical and mechanical properties. Furthermore, the microstructure was also performed using scanning electron microscopy (SEM) analysis. A chewing simulator was utilized to conduct two-body wear testing, employing a human enamel antagonist. The wear behavior of the PMMA and their composites were assessed by measuring the weight loss after submitting them to 37,500 cycles. The SEM microstructure analysis revealed sound specimens of PMMA reinforced with 0, 1, 3, and 5 wt.% Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> without any porosity and micro defects using the applied production procedures. In contrast, the aggregated sites and propagation of cracks were detected for the PMMA/10 wt.% Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> specimen. The densification and hardness properties of the produced PMMA composites improved with increasing the Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> additions. The microhardness of PMMA/10 wt.% Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> improved by around 233% compared to the PMMA matrix. The higher compressive properties were detected for the PMMA/5 wt.% Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> composite specimen with ultimate compressive strength (UCS) of 54.75 MPa and yield strength (YS) of 45.6 MPa and improved than the PMMA matrix by around 98 % and 117 %, respectively. In addition, incorporating Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> nano-ceramic particles into a PMMA matrix revealed a significant improvement in the wear resistance of the produced composites compared to the PMMA matrix.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"31 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140205287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-21DOI: 10.1177/08927057241240723
Sachidananda Mohapatra, Rajat Kumar Sahoo, Rajesh Kumar Nayak, Bishnu Prasad Panda, Mayureshwar Sunil Konarde, Aswathy N R, Aswini Kumar Mohapatra
Graphene oxide and polyaniline have some unique properties and are considered as new generation materials for various applications. One major application of these materials is the adsorption of pollutants. In this study, Graphene oxide was synthesized with different levels of oxidation by using the modified Hummers method. Polyaniline/graphene oxide composite was synthesized by in situ polymerization with GO loading at 10% and 50% and further the composite is casted inside a disposable syringe by using N-methyl-2-pyrrolidone (NMP) as a dispersing agent. An adsorption experiment was carried out for water containing pesticide chlorpyrifos. The produced materials were characterized by FTIR spectroscopy & and XRD. Morphology was studied by SEM images. The FTIR spectra shows the formation of functional groups like -OH, -COOH on graphene, which may increase the hydrophilicity and adsorption properties. FTIR spectra of the composite portrayed the formation of bonds between polyaniline and graphene oxide. XRD peaks were obtained corresponding to crystals of polyaniline and graphite sheets. The adsorption efficiency was determined by analysis of water samples before and after filtration by using GC-MS. The composite produced with 50% amount of GO showed optimum results for the removal of chlorpyrifos. However, the composite with 10% GO loading is showing very low efficiency for the removal of chlorpyrifos. The PANI/GO composite is a possible candidate for the treatment of river water polluted by agricultural pollutants.
{"title":"Adsorption of chlorpyrifos in water using polyaniline/graphene oxide composites","authors":"Sachidananda Mohapatra, Rajat Kumar Sahoo, Rajesh Kumar Nayak, Bishnu Prasad Panda, Mayureshwar Sunil Konarde, Aswathy N R, Aswini Kumar Mohapatra","doi":"10.1177/08927057241240723","DOIUrl":"https://doi.org/10.1177/08927057241240723","url":null,"abstract":"Graphene oxide and polyaniline have some unique properties and are considered as new generation materials for various applications. One major application of these materials is the adsorption of pollutants. In this study, Graphene oxide was synthesized with different levels of oxidation by using the modified Hummers method. Polyaniline/graphene oxide composite was synthesized by in situ polymerization with GO loading at 10% and 50% and further the composite is casted inside a disposable syringe by using N-methyl-2-pyrrolidone (NMP) as a dispersing agent. An adsorption experiment was carried out for water containing pesticide chlorpyrifos. The produced materials were characterized by FTIR spectroscopy & and XRD. Morphology was studied by SEM images. The FTIR spectra shows the formation of functional groups like -OH, -COOH on graphene, which may increase the hydrophilicity and adsorption properties. FTIR spectra of the composite portrayed the formation of bonds between polyaniline and graphene oxide. XRD peaks were obtained corresponding to crystals of polyaniline and graphite sheets. The adsorption efficiency was determined by analysis of water samples before and after filtration by using GC-MS. The composite produced with 50% amount of GO showed optimum results for the removal of chlorpyrifos. However, the composite with 10% GO loading is showing very low efficiency for the removal of chlorpyrifos. The PANI/GO composite is a possible candidate for the treatment of river water polluted by agricultural pollutants.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"68 2 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140205222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}