Pub Date : 2024-08-14DOI: 10.1177/08927057241274346
Imen Ksouri, Olivier De Almeida, Nader Haddar
The current paper aims to study the behavior of Polyamide 6 (PA6) and Polyamide 6 reinforced with 30% of short glass fibers (PA6GF30) under glycol water (GW) mixture used for cars as coolant fluid. Samples were fully immersed in the mixture of GW (20:80) at 50°C, 70°C and 90°C for up to 80 days and periodically weighted. Results gathered revealed the occurrence of substantial changes especially for PA6 samples aged at 90°C. The long term ageing leads to the formation of ester species due to thermo-oxidation as pointed out by Infrared spectroscopy analysis. Moreover, dynamic mechanical analysis measurements showed that glycol water acted as an effective plasticizer in lowering the Tg of the polyamide 6. This plasticizer effect was confirmed by the gain of ductility at early stage of ageing for both materials (PA6 and PA6GF30). Nevertheless, after 80 days of ageing the effect of glycol water ageing is no longer physical in nature and an overall loss of mechanical properties was noticed. Indeed, an embrittlement of PA6 was measured that can be attributed to a decrease of the level of entanglements within the polymer. Nevertheless, for PA6GF30 material, the loss of strength and stiffness was the result of the interfacial debonding between the fibers and the matrix.
{"title":"The impact of glycol water exposure on PA6/GF30 properties","authors":"Imen Ksouri, Olivier De Almeida, Nader Haddar","doi":"10.1177/08927057241274346","DOIUrl":"https://doi.org/10.1177/08927057241274346","url":null,"abstract":"The current paper aims to study the behavior of Polyamide 6 (PA6) and Polyamide 6 reinforced with 30% of short glass fibers (PA6GF30) under glycol water (GW) mixture used for cars as coolant fluid. Samples were fully immersed in the mixture of GW (20:80) at 50°C, 70°C and 90°C for up to 80 days and periodically weighted. Results gathered revealed the occurrence of substantial changes especially for PA6 samples aged at 90°C. The long term ageing leads to the formation of ester species due to thermo-oxidation as pointed out by Infrared spectroscopy analysis. Moreover, dynamic mechanical analysis measurements showed that glycol water acted as an effective plasticizer in lowering the Tg of the polyamide 6. This plasticizer effect was confirmed by the gain of ductility at early stage of ageing for both materials (PA6 and PA6GF30). Nevertheless, after 80 days of ageing the effect of glycol water ageing is no longer physical in nature and an overall loss of mechanical properties was noticed. Indeed, an embrittlement of PA6 was measured that can be attributed to a decrease of the level of entanglements within the polymer. Nevertheless, for PA6GF30 material, the loss of strength and stiffness was the result of the interfacial debonding between the fibers and the matrix.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"41 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.1177/08927057241271776
Tianyu Fu, Shan Yan, Yunfei Gu
Achieving precise temperature control during the heating process of carbon fibre-reinforced polypropylene thermoplastic composite (CF-PP) using electromagnetic induction heating is crucial for the consolidation effectiveness of the material. This paper begins by constructing a finite element microscopic model for induction heating that incorporates the actual fiber structure and matrix. It systematically analyzes the heating mechanism, temperature field distribution, and surface temperature hysteresis of CF-PP with different fiber weave structures during the heating process. Based on the observed temperature distribution and variation patterns during material heating, an improved particle swarm Fuzzy PID control method is proposed, which effectively reduces temperature overshoot and enhances the system’s resistance to disturbances. Experimental validation demonstrates the effectiveness of this algorithm for controlling the temperature of CF-PP plates during the induction heating process. This research offers an effective control strategy and research approach to enhance the accuracy of temperature control during the CF-PP induction heating process, contributing to improved outcomes in the field.
{"title":"Research on temperature control of CF-PP induction heating based on improved particle swarm fuzzy PID","authors":"Tianyu Fu, Shan Yan, Yunfei Gu","doi":"10.1177/08927057241271776","DOIUrl":"https://doi.org/10.1177/08927057241271776","url":null,"abstract":"Achieving precise temperature control during the heating process of carbon fibre-reinforced polypropylene thermoplastic composite (CF-PP) using electromagnetic induction heating is crucial for the consolidation effectiveness of the material. This paper begins by constructing a finite element microscopic model for induction heating that incorporates the actual fiber structure and matrix. It systematically analyzes the heating mechanism, temperature field distribution, and surface temperature hysteresis of CF-PP with different fiber weave structures during the heating process. Based on the observed temperature distribution and variation patterns during material heating, an improved particle swarm Fuzzy PID control method is proposed, which effectively reduces temperature overshoot and enhances the system’s resistance to disturbances. Experimental validation demonstrates the effectiveness of this algorithm for controlling the temperature of CF-PP plates during the induction heating process. This research offers an effective control strategy and research approach to enhance the accuracy of temperature control during the CF-PP induction heating process, contributing to improved outcomes in the field.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"42 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-07DOI: 10.1177/08927057241268831
Hatam Hardani, Mahmoud Afshari, Mohammad Reza Samadi, Hossein Afshari, Santi Ago López
Fused-filament fabrication (FFF) is one of the most common 3D printing methods for thermoplastic polymers and composite materials because it is easy to use and is low-cost. The printed polymer parts for industrial applications require desirable mechanical properties. Therefore, in the present research, the process parameters of fused filament fabrication are optimized to enhance the Young’s modulus and bending resistance of polylactic acid/carbon nanotube (PLA/CNT) composite. For this purpose, the response surface method (RSM) and desirability function technique (DFT) are applied to find the optimal values of the effective parameters of CNT content, printing speed and nozzle temperature. The printed samples were examined by using DSC, TGA and SEM analyses. The results of DSC and TGA analyses indicated that the addition of CNT into PLA enhanced the thermal stability of PLA/CNT composite. It was also observed from the optimization results that the Young’s modulus and bending resistance of PLA/CNT composite improved at CNT content of 2.9 wt%, printing speed of 20 mm/s and nozzle temperature of 210°C.
{"title":"An enhancement in the tensile modulus and bending resistance of polylactic acid/carbon nanotube composite by optimizing FFF process parameters","authors":"Hatam Hardani, Mahmoud Afshari, Mohammad Reza Samadi, Hossein Afshari, Santi Ago López","doi":"10.1177/08927057241268831","DOIUrl":"https://doi.org/10.1177/08927057241268831","url":null,"abstract":"Fused-filament fabrication (FFF) is one of the most common 3D printing methods for thermoplastic polymers and composite materials because it is easy to use and is low-cost. The printed polymer parts for industrial applications require desirable mechanical properties. Therefore, in the present research, the process parameters of fused filament fabrication are optimized to enhance the Young’s modulus and bending resistance of polylactic acid/carbon nanotube (PLA/CNT) composite. For this purpose, the response surface method (RSM) and desirability function technique (DFT) are applied to find the optimal values of the effective parameters of CNT content, printing speed and nozzle temperature. The printed samples were examined by using DSC, TGA and SEM analyses. The results of DSC and TGA analyses indicated that the addition of CNT into PLA enhanced the thermal stability of PLA/CNT composite. It was also observed from the optimization results that the Young’s modulus and bending resistance of PLA/CNT composite improved at CNT content of 2.9 wt%, printing speed of 20 mm/s and nozzle temperature of 210°C.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"77 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Additive manufacturing (AM) has significantly transformed the fabrication of functional materials, particularly in electronics and biomedical engineering. This study reviews stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), direct ink writing (DIW), and inkjet printing for flexible electronic applications. The review highlights SLA-based 3D printing’s better ability to optimize material compositions, printing procedures, and post-processing methods to improve material characteristics. Photosensitive materials and shrinkage-induced internal tensions seems to be its major constraint. Additionally, SLS 3D printing has improved composite materials' electrical, mechanical, and thermal properties. It has drawbacks including permeable structures and internal tensions. In FDM 3D printing, mechanical and electrical qualities are improved for piezoelectric sensor manufacture. Warping and nozzle blockage require additional study. DIW’s versatility in constructing complicated structures with increased features for energy harvesting and sensor development is also mentioned. We identify ink development and printer nozzle clogging issues. The review concludes that inkjet printing can provide a variety of materials for flexible electronics. Since it integrates the latest discoveries with technological developments, this study may help guide future research and promote innovation in the sector. Overall, additive manufacturing methods provide a new era of sensor technology by offering unrivalled flexibility and versatility.
快速成型制造(AM)极大地改变了功能材料的制造,尤其是在电子和生物医学工程领域。本研究综述了用于柔性电子应用的立体光刻(SLA)、选择性激光烧结(SLS)、熔融沉积建模(FDM)、直接墨水写入(DIW)和喷墨打印技术。综述重点介绍了基于 SLA 的 3D 打印技术在优化材料成分、打印程序和后处理方法以改善材料特性方面的更佳能力。光敏材料和收缩引起的内部张力似乎是其主要制约因素。此外,SLS 三维打印技术还改善了复合材料的电气、机械和热性能。但它也存在渗透结构和内部张力等缺点。在 FDM 三维打印中,压电传感器制造的机械和电气性能得到了改善。翘曲和喷嘴堵塞问题需要进一步研究。此外,我们还提到了 DIW 在构建复杂结构方面的多功能性,可增加能量收集和传感器开发所需的功能。我们发现了墨水开发和打印机喷嘴堵塞问题。综述的结论是,喷墨打印可为柔性电子产品提供多种材料。由于本研究将最新发现与技术发展融为一体,因此有助于指导未来的研究并促进该领域的创新。总之,增材制造方法提供了无与伦比的灵活性和多功能性,开创了传感器技术的新纪元。
{"title":"Navigating the frontier: Additive Manufacturing’s role in synthesizing piezoelectric materials for flexible electronics","authors":"Sudhir Kumar, Ravinder Kumar Duvedi, Sandeep Kumar Sharma, Ajay Batish","doi":"10.1177/08927057241270729","DOIUrl":"https://doi.org/10.1177/08927057241270729","url":null,"abstract":"Additive manufacturing (AM) has significantly transformed the fabrication of functional materials, particularly in electronics and biomedical engineering. This study reviews stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), direct ink writing (DIW), and inkjet printing for flexible electronic applications. The review highlights SLA-based 3D printing’s better ability to optimize material compositions, printing procedures, and post-processing methods to improve material characteristics. Photosensitive materials and shrinkage-induced internal tensions seems to be its major constraint. Additionally, SLS 3D printing has improved composite materials' electrical, mechanical, and thermal properties. It has drawbacks including permeable structures and internal tensions. In FDM 3D printing, mechanical and electrical qualities are improved for piezoelectric sensor manufacture. Warping and nozzle blockage require additional study. DIW’s versatility in constructing complicated structures with increased features for energy harvesting and sensor development is also mentioned. We identify ink development and printer nozzle clogging issues. The review concludes that inkjet printing can provide a variety of materials for flexible electronics. Since it integrates the latest discoveries with technological developments, this study may help guide future research and promote innovation in the sector. Overall, additive manufacturing methods provide a new era of sensor technology by offering unrivalled flexibility and versatility.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"6 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1177/08927057241270859
Ryoji Ohashi, Ryoichi Hatano, Shunsuke Haruna
Carbon fiber-reinforced thermoplastics have been extensively studied to reduce the weight of transportation equipment. In this study, to enhance the interlocking effect of Ti-6Al-4V rivets, the new riveting process combined with refill friction stir spot welding (FSSW) was attempted. Consequently, the successful combination of refill FSSW and riveting resulted in a flared trumpet-shaped rivet, expanding the diameter of its tip significantly. Tensile shear tests exhibited both the stirred zone induced by refill FSSW and the flared rivet affected the fracture behavior. The cross-sectional observations revealed the existence of cracks at the boundary between the stirred zone and base material during tensile shear tests. Furthermore, a unique arrangement of the fiber caused by the stirring action was identified by observing the fracture surface using scanning electron microscopy. The study findings clarify the advantages of combining refill FSSW with riveting, providing insights into the potential implementation of this combined process in thermoplastic composites.
{"title":"Characterization of thermoplastic composite joints fabricated by the combined refill friction stir spot welding and riveting process","authors":"Ryoji Ohashi, Ryoichi Hatano, Shunsuke Haruna","doi":"10.1177/08927057241270859","DOIUrl":"https://doi.org/10.1177/08927057241270859","url":null,"abstract":"Carbon fiber-reinforced thermoplastics have been extensively studied to reduce the weight of transportation equipment. In this study, to enhance the interlocking effect of Ti-6Al-4V rivets, the new riveting process combined with refill friction stir spot welding (FSSW) was attempted. Consequently, the successful combination of refill FSSW and riveting resulted in a flared trumpet-shaped rivet, expanding the diameter of its tip significantly. Tensile shear tests exhibited both the stirred zone induced by refill FSSW and the flared rivet affected the fracture behavior. The cross-sectional observations revealed the existence of cracks at the boundary between the stirred zone and base material during tensile shear tests. Furthermore, a unique arrangement of the fiber caused by the stirring action was identified by observing the fracture surface using scanning electron microscopy. The study findings clarify the advantages of combining refill FSSW with riveting, providing insights into the potential implementation of this combined process in thermoplastic composites.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"52 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1177/08927057241270750
Mohammed O Alziyadi, Asma Alkabsh, Basmat Amal M Said, Mustafa S. Shalaby
Herein, cadmium sulfide (CdS) nanospheres were synthesized using the hydrothermal method and then inserted into a polyvinyl butyral (PVB) matrix at different concentrations (0%, 2%, and 4% wt.) using the solution casting method. This work examines the effects of varying percentages of CdS spheres on the structural characteristics, mechanical properties, surface/volume energy loss functions, dielectric constants, and linear/non-linear optical properties of PVB nanocomposite films. The findings confirmed the successful synthesis of sphere-like CdS with a cubic structural phase. The stress-strain curves of PVB and its composites with nano CdS spheres were examined. The PVB has a direct/indirect energy gap of 5.1 eV (4.1 eV). With a CdS doping level of 2% and 4%, the values correspondingly decreased to 4.76 eV (3.36 eV) and 4.49 eV (2.45 eV). The EU values for PVB, PVB-2 wt.% CdS, and PVB-4 wt.% CdS nanocomposite are 15.3, 11.2, and 14.1 meV, respectively. CdS nanospheres decreased the volume and surface energy losses (VELF & SELF) of PVB films. The research demonstrates that the mechanical properties and optical parameters of PVB/CdS nanocomposite films positively correlate with the concentration of CdS nanospheres. These attributes make them well-suited for incorporation into flexible electronic devices.
{"title":"Effect of cadmium sulfide spheres on structural, mechanical, and optical properties of polyvinyl butyral/cadmium sulfide nanocomposite films","authors":"Mohammed O Alziyadi, Asma Alkabsh, Basmat Amal M Said, Mustafa S. Shalaby","doi":"10.1177/08927057241270750","DOIUrl":"https://doi.org/10.1177/08927057241270750","url":null,"abstract":"Herein, cadmium sulfide (CdS) nanospheres were synthesized using the hydrothermal method and then inserted into a polyvinyl butyral (PVB) matrix at different concentrations (0%, 2%, and 4% wt.) using the solution casting method. This work examines the effects of varying percentages of CdS spheres on the structural characteristics, mechanical properties, surface/volume energy loss functions, dielectric constants, and linear/non-linear optical properties of PVB nanocomposite films. The findings confirmed the successful synthesis of sphere-like CdS with a cubic structural phase. The stress-strain curves of PVB and its composites with nano CdS spheres were examined. The PVB has a direct/indirect energy gap of 5.1 eV (4.1 eV). With a CdS doping level of 2% and 4%, the values correspondingly decreased to 4.76 eV (3.36 eV) and 4.49 eV (2.45 eV). The E<jats:sub>U</jats:sub> values for PVB, PVB-2 wt.% CdS, and PVB-4 wt.% CdS nanocomposite are 15.3, 11.2, and 14.1 meV, respectively. CdS nanospheres decreased the volume and surface energy losses (VELF & SELF) of PVB films. The research demonstrates that the mechanical properties and optical parameters of PVB/CdS nanocomposite films positively correlate with the concentration of CdS nanospheres. These attributes make them well-suited for incorporation into flexible electronic devices.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"54 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1177/08927057241270832
Rania Mounir, MM El Zayat, A Sharaf, AA El-Gamal
By using a traditional roll mill, nitrile butadiene rubber (NBR)/magnetite nanocomposites for electromagnetic interference shielding applications were successfully prepared. The synthesized magnetite nanoparticles were analyzed using X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscope (TEM), and energy dispersive X-ray (EDX) techniques. The results from these techniques emphasis the preparation of Fe3O4 with a diameter range between 3.8 nm and 19 nm. Before and after gamma irradiation at different doses the impact of adding different contents of magnetite nanoparticles in NBR was carefully examined through mechanical and electrical measurements for all samples at room temperature. The mechanical parameters and the electrical properties of NBR were enhanced after adding Fe3O4 nanoparticles. Electromagnetic interference shielding (EMI) for all fabricated nanocomposites before and after gamma-ray irradiation under the same conditions of pressure, humidity and temperature was performed as a promising application for these materials in practical life. The electromagnetic shielding effectiveness (SE) of the prepared samples was measured in the X-band of the radio frequency range. There are three global maxima around 9.4 GHz, 10.4 GHz, and 11.4 GHz. Subsequent reinforcement of Fe3O4 nanoparticles into NBR produced higher shielding effectiveness for radio frequency signals. Furthermore, applied gamma radiation doses improved the shielding properties of the fabricated nanocomposites.
通过使用传统的辊轧机,成功制备了用于电磁干扰屏蔽的丁腈橡胶(NBR)/磁铁矿纳米复合材料。利用 X 射线衍射 (XRD)、傅立叶变换红外 (FTIR)、透射电子显微镜 (TEM) 和能量色散 X 射线 (EDX) 技术对合成的磁铁矿纳米粒子进行了分析。这些技术的结果表明,制备出的 Fe3O4 直径范围在 3.8 纳米到 19 纳米之间。在室温下对所有样品进行不同剂量的伽马射线辐照前后,通过机械和电气测量仔细研究了在丁腈橡胶中添加不同含量的磁铁矿纳米粒子的影响。加入 Fe3O4 纳米粒子后,丁腈橡胶的机械参数和电气性能都得到了提高。在相同的压力、湿度和温度条件下,对所有制备的纳米复合材料进行伽马射线辐照前后的电磁干扰屏蔽(EMI)测试,结果表明这些材料在实际生活中的应用前景广阔。在射频范围的 X 波段测量了所制备样品的电磁屏蔽效能(SE)。在 9.4 GHz、10.4 GHz 和 11.4 GHz 附近有三个全局最大值。在丁腈橡胶中添加 Fe3O4 纳米粒子后,可产生更高的射频信号屏蔽效果。此外,应用伽马辐射剂量也提高了纳米复合材料的屏蔽性能。
{"title":"Enhancing the mechanical and electrical properties of irradiated acrylonitrile butadiene rubber/magnetite nanocomposites for electromagnetic shielding applications","authors":"Rania Mounir, MM El Zayat, A Sharaf, AA El-Gamal","doi":"10.1177/08927057241270832","DOIUrl":"https://doi.org/10.1177/08927057241270832","url":null,"abstract":"By using a traditional roll mill, nitrile butadiene rubber (NBR)/magnetite nanocomposites for electromagnetic interference shielding applications were successfully prepared. The synthesized magnetite nanoparticles were analyzed using X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscope (TEM), and energy dispersive X-ray (EDX) techniques. The results from these techniques emphasis the preparation of Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> with a diameter range between 3.8 nm and 19 nm. Before and after gamma irradiation at different doses the impact of adding different contents of magnetite nanoparticles in NBR was carefully examined through mechanical and electrical measurements for all samples at room temperature. The mechanical parameters and the electrical properties of NBR were enhanced after adding Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> nanoparticles. Electromagnetic interference shielding (EMI) for all fabricated nanocomposites before and after gamma-ray irradiation under the same conditions of pressure, humidity and temperature was performed as a promising application for these materials in practical life. The electromagnetic shielding effectiveness (SE) of the prepared samples was measured in the X-band of the radio frequency range. There are three global maxima around 9.4 GHz, 10.4 GHz, and 11.4 GHz. Subsequent reinforcement of Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> nanoparticles into NBR produced higher shielding effectiveness for radio frequency signals. Furthermore, applied gamma radiation doses improved the shielding properties of the fabricated nanocomposites.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"37 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present study investigates the efficacy of chitosan and glyoxal-crosslinked chitosan (Chi-Gly) as reinforcing agents for enhancing the mechanical, physical, and functional properties of recycled paper. The research aims to evaluate the comparative performance of these two forms of chitosan in imparting strength characteristics and improved functionality to recycled paper substrates. Chitosan and Chi-Gly solutions prepared via glyoxal crosslinking were incorporated into recycled pulp suspensions at varying dosages. Laboratory handsheets were fabricated, and their properties were systematically evaluated through mechanical testing, morphological analysis, wettability measurements, and antibacterial assays. The results demonstrated significant improvements in the tensile index, burst index, and bending resistance for the chitosan and Chi-Gly treated papers, with the Chi-Gly exhibiting superior reinforcement. Notably, the Chi-Gly treated paper exhibited a higher wet tensile index and lower water absorption capacity than the control. SEM analysis revealed a denser, more cohesive fiber network facilitated by chitosan and Chi-Gly, aiding the reinforcement. The treated papers exhibited reduced hydrophobicity and pronounced antibacterial activity against E. coli (a gram-negative bacterium) and S. aureus (a gram-positive bacterium), with the Chi-Gly treatment outperforming chitosan. Notably, the treatments improved the functional properties without negatively impacting optical brightness. The findings highlight the synergistic effects of glyoxal crosslinking on chitosan’s reinforcing ability and the potential of these biopolymers as sustainable and multifunctional additives for the recycled paper industry.
{"title":"Valorizing recycled paper through chitosan and glyoxal-chitosan treatments: Synergistic effects on mechanical and physical properties","authors":"Elahe Chiani, Hossein Jalali Torshizi, Alireza Ashori, Hamidreza Rudi, Mohammad Reza Nabid","doi":"10.1177/08927057241271760","DOIUrl":"https://doi.org/10.1177/08927057241271760","url":null,"abstract":"The present study investigates the efficacy of chitosan and glyoxal-crosslinked chitosan (Chi-Gly) as reinforcing agents for enhancing the mechanical, physical, and functional properties of recycled paper. The research aims to evaluate the comparative performance of these two forms of chitosan in imparting strength characteristics and improved functionality to recycled paper substrates. Chitosan and Chi-Gly solutions prepared via glyoxal crosslinking were incorporated into recycled pulp suspensions at varying dosages. Laboratory handsheets were fabricated, and their properties were systematically evaluated through mechanical testing, morphological analysis, wettability measurements, and antibacterial assays. The results demonstrated significant improvements in the tensile index, burst index, and bending resistance for the chitosan and Chi-Gly treated papers, with the Chi-Gly exhibiting superior reinforcement. Notably, the Chi-Gly treated paper exhibited a higher wet tensile index and lower water absorption capacity than the control. SEM analysis revealed a denser, more cohesive fiber network facilitated by chitosan and Chi-Gly, aiding the reinforcement. The treated papers exhibited reduced hydrophobicity and pronounced antibacterial activity against E. coli (a gram-negative bacterium) and S. aureus (a gram-positive bacterium), with the Chi-Gly treatment outperforming chitosan. Notably, the treatments improved the functional properties without negatively impacting optical brightness. The findings highlight the synergistic effects of glyoxal crosslinking on chitosan’s reinforcing ability and the potential of these biopolymers as sustainable and multifunctional additives for the recycled paper industry.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"10 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1177/08927057241270891
Dazhi Zhu, Wanwu Ma, Jianqiang Chu, Zhiyuan Gong, Zhaobo Wang
A simple and effective strategy for preparing thermo-responsive shape memory polymers (TSMPs) can be designed where the novel TSMPs based on ethylene-methyl acrylate copolymer (EMA) and chlorinated polyethylene rubber (CR) thermoplastic vulcanizates (TPVs) were prepared using dynamic vulcanization. The morphology of the EMA/CR TPVs exhibited a sea-island structure obviously; moreover, the EMA served as the continuous phase and mainly provided the shape fixation (SF) capability of the blend, while the highly elastic CR was acted as the dispersed phase and provided the primary driving force during the shape recovery (SR) process. The SF and SR behaviors of the EMA/CR TPVs can be effectively controlled by varying the weight ratio of EMA/CR blends. Increasing the weight ratio of EMA/CR, the SF% of the EMA/CR TPVs was enhanced while the SR% was decreased remarkably. The shape memory behaviors of EMA/CR TPVs were significantly influenced by temperature. Notably, when the fixation and recovery temperatures were all set at 95°C, both the SF% and SR% of the EMA/CR TPVs with a weight ratio of 80/20 exceeded 95%, and the SR time was 15∼20s, demonstrating the excellent shape memory property.
{"title":"A novel polymer based on ethylene-methyl acrylate copolymer/chloroprene rubber thermoplastic vulcanizates with rapid thermo-responsive shape memory property","authors":"Dazhi Zhu, Wanwu Ma, Jianqiang Chu, Zhiyuan Gong, Zhaobo Wang","doi":"10.1177/08927057241270891","DOIUrl":"https://doi.org/10.1177/08927057241270891","url":null,"abstract":"A simple and effective strategy for preparing thermo-responsive shape memory polymers (TSMPs) can be designed where the novel TSMPs based on ethylene-methyl acrylate copolymer (EMA) and chlorinated polyethylene rubber (CR) thermoplastic vulcanizates (TPVs) were prepared using dynamic vulcanization. The morphology of the EMA/CR TPVs exhibited a sea-island structure obviously; moreover, the EMA served as the continuous phase and mainly provided the shape fixation (SF) capability of the blend, while the highly elastic CR was acted as the dispersed phase and provided the primary driving force during the shape recovery (SR) process. The SF and SR behaviors of the EMA/CR TPVs can be effectively controlled by varying the weight ratio of EMA/CR blends. Increasing the weight ratio of EMA/CR, the SF% of the EMA/CR TPVs was enhanced while the SR% was decreased remarkably. The shape memory behaviors of EMA/CR TPVs were significantly influenced by temperature. Notably, when the fixation and recovery temperatures were all set at 95°C, both the SF% and SR% of the EMA/CR TPVs with a weight ratio of 80/20 exceeded 95%, and the SR time was 15∼20s, demonstrating the excellent shape memory property.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"44 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1177/08927057241268839
Ammar M Al-Areqi, Subbarayan Sivasankaran, Bandar A. Aloyaydi, Fahad A. Al-Mufadi
Additively manufactured composite structures can be utilized in the production of engineering materials with enhanced mechanical properties. In this work, mono-, bi-, and tri-material structures (MMS, BMS, and TMS, respectively) were fabricated using additively manufactured PLA (poly-lactic acid) lattice frames embedded with Polyurethane (PU) foam and milled glass fibers (MGFs). TMS samples were reinforced with MGFs at 1.25, 2.5, 3.75, and 5.0 vol%, indicated as TMS-1, TMS-2, TMS-3, and TMS-4, respectively. The mechanical response of these composite structures was tested by applying a low-velocity impact load. The effects of MGF content and variations in applied impact energy, and variation in microstructure on the composite samples were investigated. Results revealed an enhanced mechanical response of TMS samples compared to MMS and BMS. Additionally, with increasing applied impact energy, the TMS samples showed an improved corresponding response, with a peak absorbed energy of 96.03% of the applied 60 J energy. Furthermore, to study the applicability of the composite structures in real-life applications, helmet prototypes made of MMS, BMS, and TMS were designed and tested under the applied low-velocity load, showing an improved response of TMS helmet samples compared to the other composite structures.
{"title":"Investigating the low velocity impact response of additively manufactured tri-material composite structure with application on helmet","authors":"Ammar M Al-Areqi, Subbarayan Sivasankaran, Bandar A. Aloyaydi, Fahad A. Al-Mufadi","doi":"10.1177/08927057241268839","DOIUrl":"https://doi.org/10.1177/08927057241268839","url":null,"abstract":"Additively manufactured composite structures can be utilized in the production of engineering materials with enhanced mechanical properties. In this work, mono-, bi-, and tri-material structures (MMS, BMS, and TMS, respectively) were fabricated using additively manufactured PLA (poly-lactic acid) lattice frames embedded with Polyurethane (PU) foam and milled glass fibers (MGFs). TMS samples were reinforced with MGFs at 1.25, 2.5, 3.75, and 5.0 vol%, indicated as TMS-1, TMS-2, TMS-3, and TMS-4, respectively. The mechanical response of these composite structures was tested by applying a low-velocity impact load. The effects of MGF content and variations in applied impact energy, and variation in microstructure on the composite samples were investigated. Results revealed an enhanced mechanical response of TMS samples compared to MMS and BMS. Additionally, with increasing applied impact energy, the TMS samples showed an improved corresponding response, with a peak absorbed energy of 96.03% of the applied 60 J energy. Furthermore, to study the applicability of the composite structures in real-life applications, helmet prototypes made of MMS, BMS, and TMS were designed and tested under the applied low-velocity load, showing an improved response of TMS helmet samples compared to the other composite structures.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"41 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}