首页 > 最新文献

Journal of Thermoplastic Composite Materials最新文献

英文 中文
The impact of glycol water exposure on PA6/GF30 properties 乙二醇水暴露对 PA6/GF30 性能的影响
IF 3.3 4区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-08-14 DOI: 10.1177/08927057241274346
Imen Ksouri, Olivier De Almeida, Nader Haddar
The current paper aims to study the behavior of Polyamide 6 (PA6) and Polyamide 6 reinforced with 30% of short glass fibers (PA6GF30) under glycol water (GW) mixture used for cars as coolant fluid. Samples were fully immersed in the mixture of GW (20:80) at 50°C, 70°C and 90°C for up to 80 days and periodically weighted. Results gathered revealed the occurrence of substantial changes especially for PA6 samples aged at 90°C. The long term ageing leads to the formation of ester species due to thermo-oxidation as pointed out by Infrared spectroscopy analysis. Moreover, dynamic mechanical analysis measurements showed that glycol water acted as an effective plasticizer in lowering the Tg of the polyamide 6. This plasticizer effect was confirmed by the gain of ductility at early stage of ageing for both materials (PA6 and PA6GF30). Nevertheless, after 80 days of ageing the effect of glycol water ageing is no longer physical in nature and an overall loss of mechanical properties was noticed. Indeed, an embrittlement of PA6 was measured that can be attributed to a decrease of the level of entanglements within the polymer. Nevertheless, for PA6GF30 material, the loss of strength and stiffness was the result of the interfacial debonding between the fibers and the matrix.
本文旨在研究聚酰胺 6(PA6)和 30% 短玻璃纤维增强聚酰胺 6(PA6GF30)在乙二醇水(GW)混合物(用作汽车冷却液)中的行为。将样品完全浸入 50°C、70°C 和 90°C 的 GW(20:80)混合物中长达 80 天,并定期称重。收集的结果表明,尤其是在 90°C 老化的 PA6 样品发生了很大的变化。红外光谱分析显示,长期老化会导致热氧化形成酯类物质。此外,动态机械分析测量结果表明,乙二醇水是一种有效的增塑剂,可降低聚酰胺 6 的 Tg。两种材料(PA6 和 PA6GF30)在老化初期的延展性增加证实了这种增塑作用。然而,经过 80 天的老化后,乙二醇水老化的影响不再是物理性的,而是机械性能的整体损失。事实上,PA6 材料的脆化现象可归因于聚合物内部缠结程度的降低。然而,对于 PA6GF30 材料来说,强度和刚度的损失是纤维与基体之间界面脱粘的结果。
{"title":"The impact of glycol water exposure on PA6/GF30 properties","authors":"Imen Ksouri, Olivier De Almeida, Nader Haddar","doi":"10.1177/08927057241274346","DOIUrl":"https://doi.org/10.1177/08927057241274346","url":null,"abstract":"The current paper aims to study the behavior of Polyamide 6 (PA6) and Polyamide 6 reinforced with 30% of short glass fibers (PA6GF30) under glycol water (GW) mixture used for cars as coolant fluid. Samples were fully immersed in the mixture of GW (20:80) at 50°C, 70°C and 90°C for up to 80 days and periodically weighted. Results gathered revealed the occurrence of substantial changes especially for PA6 samples aged at 90°C. The long term ageing leads to the formation of ester species due to thermo-oxidation as pointed out by Infrared spectroscopy analysis. Moreover, dynamic mechanical analysis measurements showed that glycol water acted as an effective plasticizer in lowering the Tg of the polyamide 6. This plasticizer effect was confirmed by the gain of ductility at early stage of ageing for both materials (PA6 and PA6GF30). Nevertheless, after 80 days of ageing the effect of glycol water ageing is no longer physical in nature and an overall loss of mechanical properties was noticed. Indeed, an embrittlement of PA6 was measured that can be attributed to a decrease of the level of entanglements within the polymer. Nevertheless, for PA6GF30 material, the loss of strength and stiffness was the result of the interfacial debonding between the fibers and the matrix.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning-based approach for predicting the compressive strength of 3D printed hexagon lattice-cored sandwich structures 基于机器学习的 3D 打印六边形格子夹层结构抗压强度预测方法
IF 3.6 4区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-08-10 DOI: 10.1177/08927057241270791
Narain kumar Sivakumar, Kaaviya J, Sabarinathan Palaniyappan, Mohammed Azeem P, S. Basavarajappa, Ihab M. Moussa, Mohamed Ibrahim Hashem
The utilization of Fused Filament Fabrication (FFF) technology for developing sandwich structures proves to be an effective approach, enabling the rapid construction of intricate profiles and gaining widespread recognition for diverse structural applications. In this study, hexagon lattice-cored sandwich structures are created by situating the lattice core at the center of the PLA polymeric specimens. The performance is assessed by varying 3D-Printing Factors (3D-PFs), including Nozzle Temperature (NT), Layer Height (LH), Printing Speed (PS), and Line Width (LW). The levels of 3D-PFs are manipulated as follows: NT (180, 190, 200, 210°C), LH (0.15, 0.2, 0.25, 0.3 mm), PS (15, 20, 25, 30 mm/sec), and LW (0.1, 0.2, 0.3, 0.4 mm). By employing a FFF 3D printer, the sandwich specimens are 3D-printed and their compression properties are assessed using a Universal Testing Machine (UTM). In this research, various Machine Learning (ML) models namely Bayesian Ridge regression (BRid), Elastic Net linear regression (EN), Quantile Regression (QR), and Support Vector Machine (SVM) are utilized to predict the compressive strength/density property of the developed sandwich structure. This aids in determining the optimal levels of 3D-PFs to achieve enhanced compressive strength/density. The results reveal that the QR model, particularly when employed in the boosting ensemble technique, exhibits superior accuracy with a Root Mean Square Error (RMSE) of 0.26 × 104, Mean Absolute Error (MAE) of 0.21 × 104, and Median Absolute Error (MedAE) of 0.16 × 104. Utilizing the QR model within the boosting ensemble technique, the influence of 3D-PFs on resulting compressive strength/density is analyzed, facilitating the identification of optimized 3D-PF levels for improved compressive strength/density. Sandwich structures fabricated at these optimized levels demonstrate enhanced compressive properties, making them suitable for a variety of structural applications.
事实证明,利用熔融长丝制造(FFF)技术开发夹层结构是一种有效的方法,能够快速构建复杂的轮廓,并在各种结构应用中获得广泛认可。在本研究中,通过将晶格核心置于聚乳酸聚合物试样的中心,创建了六边形晶格夹层结构。通过改变三维打印因子(3D-PFs),包括喷嘴温度(NT)、层高(LH)、打印速度(PS)和线宽(LW),对其性能进行了评估。3D-PFs的水平控制如下:NT(180、190、200、210°C)、LH(0.15、0.2、0.25、0.3 毫米)、PS(15、20、25、30 毫米/秒)和 LW(0.1、0.2、0.3、0.4 毫米)。通过使用 FFF 三维打印机,夹层试样被三维打印出来,并使用万能试验机(UTM)对其压缩性能进行评估。在这项研究中,使用了各种机器学习(ML)模型,即贝叶斯岭回归(BRid)、弹性网线性回归(EN)、量子回归(QR)和支持向量机(SVM)来预测所开发夹层结构的抗压强度/密度特性。这有助于确定 3D-PF 的最佳水平,以实现更高的抗压强度/密度。结果表明,QR 模型,尤其是在增强集合技术中使用时,表现出卓越的准确性,均方根误差 (RMSE) 为 0.26 × 104,平均绝对误差 (MAE) 为 0.21 × 104,中位绝对误差 (MedAE) 为 0.16 × 104。利用增强集合技术中的 QR 模型,分析了 3D-PF 对所产生的抗压强度/密度的影响,从而确定了优化的 3D-PF 水平,以提高抗压强度/密度。在这些优化水平下制造的夹层结构显示出更强的抗压性能,使其适用于各种结构应用。
{"title":"Machine learning-based approach for predicting the compressive strength of 3D printed hexagon lattice-cored sandwich structures","authors":"Narain kumar Sivakumar, Kaaviya J, Sabarinathan Palaniyappan, Mohammed Azeem P, S. Basavarajappa, Ihab M. Moussa, Mohamed Ibrahim Hashem","doi":"10.1177/08927057241270791","DOIUrl":"https://doi.org/10.1177/08927057241270791","url":null,"abstract":"The utilization of Fused Filament Fabrication (FFF) technology for developing sandwich structures proves to be an effective approach, enabling the rapid construction of intricate profiles and gaining widespread recognition for diverse structural applications. In this study, hexagon lattice-cored sandwich structures are created by situating the lattice core at the center of the PLA polymeric specimens. The performance is assessed by varying 3D-Printing Factors (3D-PFs), including Nozzle Temperature (NT), Layer Height (LH), Printing Speed (PS), and Line Width (LW). The levels of 3D-PFs are manipulated as follows: NT (180, 190, 200, 210°C), LH (0.15, 0.2, 0.25, 0.3 mm), PS (15, 20, 25, 30 mm/sec), and LW (0.1, 0.2, 0.3, 0.4 mm). By employing a FFF 3D printer, the sandwich specimens are 3D-printed and their compression properties are assessed using a Universal Testing Machine (UTM). In this research, various Machine Learning (ML) models namely Bayesian Ridge regression (BRid), Elastic Net linear regression (EN), Quantile Regression (QR), and Support Vector Machine (SVM) are utilized to predict the compressive strength/density property of the developed sandwich structure. This aids in determining the optimal levels of 3D-PFs to achieve enhanced compressive strength/density. The results reveal that the QR model, particularly when employed in the boosting ensemble technique, exhibits superior accuracy with a Root Mean Square Error (RMSE) of 0.26 × 104, Mean Absolute Error (MAE) of 0.21 × 104, and Median Absolute Error (MedAE) of 0.16 × 104. Utilizing the QR model within the boosting ensemble technique, the influence of 3D-PFs on resulting compressive strength/density is analyzed, facilitating the identification of optimized 3D-PF levels for improved compressive strength/density. Sandwich structures fabricated at these optimized levels demonstrate enhanced compressive properties, making them suitable for a variety of structural applications.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141919854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning-based approach for predicting the compressive strength of 3D printed hexagon lattice-cored sandwich structures 基于机器学习的 3D 打印六边形格子夹层结构抗压强度预测方法
IF 3.6 4区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-08-10 DOI: 10.1177/08927057241270791
Narain kumar Sivakumar, Kaaviya J, Sabarinathan Palaniyappan, Mohammed Azeem P, S. Basavarajappa, Ihab M. Moussa, Mohamed Ibrahim Hashem
The utilization of Fused Filament Fabrication (FFF) technology for developing sandwich structures proves to be an effective approach, enabling the rapid construction of intricate profiles and gaining widespread recognition for diverse structural applications. In this study, hexagon lattice-cored sandwich structures are created by situating the lattice core at the center of the PLA polymeric specimens. The performance is assessed by varying 3D-Printing Factors (3D-PFs), including Nozzle Temperature (NT), Layer Height (LH), Printing Speed (PS), and Line Width (LW). The levels of 3D-PFs are manipulated as follows: NT (180, 190, 200, 210°C), LH (0.15, 0.2, 0.25, 0.3 mm), PS (15, 20, 25, 30 mm/sec), and LW (0.1, 0.2, 0.3, 0.4 mm). By employing a FFF 3D printer, the sandwich specimens are 3D-printed and their compression properties are assessed using a Universal Testing Machine (UTM). In this research, various Machine Learning (ML) models namely Bayesian Ridge regression (BRid), Elastic Net linear regression (EN), Quantile Regression (QR), and Support Vector Machine (SVM) are utilized to predict the compressive strength/density property of the developed sandwich structure. This aids in determining the optimal levels of 3D-PFs to achieve enhanced compressive strength/density. The results reveal that the QR model, particularly when employed in the boosting ensemble technique, exhibits superior accuracy with a Root Mean Square Error (RMSE) of 0.26 × 104, Mean Absolute Error (MAE) of 0.21 × 104, and Median Absolute Error (MedAE) of 0.16 × 104. Utilizing the QR model within the boosting ensemble technique, the influence of 3D-PFs on resulting compressive strength/density is analyzed, facilitating the identification of optimized 3D-PF levels for improved compressive strength/density. Sandwich structures fabricated at these optimized levels demonstrate enhanced compressive properties, making them suitable for a variety of structural applications.
事实证明,利用熔融长丝制造(FFF)技术开发夹层结构是一种有效的方法,能够快速构建复杂的轮廓,并在各种结构应用中获得广泛认可。在本研究中,通过将晶格核心置于聚乳酸聚合物试样的中心,创建了六边形晶格夹层结构。通过改变三维打印因子(3D-PFs),包括喷嘴温度(NT)、层高(LH)、打印速度(PS)和线宽(LW),对其性能进行了评估。3D-PFs的水平控制如下:NT(180、190、200、210°C)、LH(0.15、0.2、0.25、0.3 毫米)、PS(15、20、25、30 毫米/秒)和 LW(0.1、0.2、0.3、0.4 毫米)。通过使用 FFF 三维打印机,夹层试样被三维打印出来,并使用万能试验机(UTM)对其压缩性能进行评估。在这项研究中,使用了各种机器学习(ML)模型,即贝叶斯岭回归(BRid)、弹性网线性回归(EN)、量子回归(QR)和支持向量机(SVM)来预测所开发夹层结构的抗压强度/密度特性。这有助于确定 3D-PF 的最佳水平,以实现更高的抗压强度/密度。结果表明,QR 模型,尤其是在增强集合技术中使用时,表现出卓越的准确性,均方根误差 (RMSE) 为 0.26 × 104,平均绝对误差 (MAE) 为 0.21 × 104,中位绝对误差 (MedAE) 为 0.16 × 104。利用增强集合技术中的 QR 模型,分析了 3D-PF 对所产生的抗压强度/密度的影响,从而确定了优化的 3D-PF 水平,以提高抗压强度/密度。在这些优化水平下制造的夹层结构显示出更强的抗压性能,使其适用于各种结构应用。
{"title":"Machine learning-based approach for predicting the compressive strength of 3D printed hexagon lattice-cored sandwich structures","authors":"Narain kumar Sivakumar, Kaaviya J, Sabarinathan Palaniyappan, Mohammed Azeem P, S. Basavarajappa, Ihab M. Moussa, Mohamed Ibrahim Hashem","doi":"10.1177/08927057241270791","DOIUrl":"https://doi.org/10.1177/08927057241270791","url":null,"abstract":"The utilization of Fused Filament Fabrication (FFF) technology for developing sandwich structures proves to be an effective approach, enabling the rapid construction of intricate profiles and gaining widespread recognition for diverse structural applications. In this study, hexagon lattice-cored sandwich structures are created by situating the lattice core at the center of the PLA polymeric specimens. The performance is assessed by varying 3D-Printing Factors (3D-PFs), including Nozzle Temperature (NT), Layer Height (LH), Printing Speed (PS), and Line Width (LW). The levels of 3D-PFs are manipulated as follows: NT (180, 190, 200, 210°C), LH (0.15, 0.2, 0.25, 0.3 mm), PS (15, 20, 25, 30 mm/sec), and LW (0.1, 0.2, 0.3, 0.4 mm). By employing a FFF 3D printer, the sandwich specimens are 3D-printed and their compression properties are assessed using a Universal Testing Machine (UTM). In this research, various Machine Learning (ML) models namely Bayesian Ridge regression (BRid), Elastic Net linear regression (EN), Quantile Regression (QR), and Support Vector Machine (SVM) are utilized to predict the compressive strength/density property of the developed sandwich structure. This aids in determining the optimal levels of 3D-PFs to achieve enhanced compressive strength/density. The results reveal that the QR model, particularly when employed in the boosting ensemble technique, exhibits superior accuracy with a Root Mean Square Error (RMSE) of 0.26 × 104, Mean Absolute Error (MAE) of 0.21 × 104, and Median Absolute Error (MedAE) of 0.16 × 104. Utilizing the QR model within the boosting ensemble technique, the influence of 3D-PFs on resulting compressive strength/density is analyzed, facilitating the identification of optimized 3D-PF levels for improved compressive strength/density. Sandwich structures fabricated at these optimized levels demonstrate enhanced compressive properties, making them suitable for a variety of structural applications.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141919400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nature-inspired solutions: A comprehensive review of biomimetic nanoparticles in nanomedicine 自然启发的解决方案:纳米医学中的仿生物纳米粒子综述
IF 3.6 4区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-08-09 DOI: 10.1177/08927057241264464
Eliasu Issaka, Blessing Tornyeava, Enock Adjei Agyekum, Michael Enyan, Jesse Nii Okai Amu-Darko, Hither Tariro Chimuza
Biomimetic nanoparticles (BioM NPs) are an innovative strategy for nanomedicine (NanoMed) that combines the advantages of artificial materials with the biological functioning of natural systems. Ongoing research attempts to enhance their design, and stability, and solve problems for broader applications in medicine and biotechnology. NanoMed ideas are intensively researched in preclinical research because they provide unique advantages in disease management. It has developed novel therapeutic strategies for combating viral infections and increasing treatment success rates. The creation of novel nanocarriers and drug delivery systems is critical to the evolution of NanoMed, but there is still much to learn about this quickly evolving field. To contribute to existing knowledge and cover knowledge gaps, our present review article will discuss the state-of-the-art of BioM NPs in NanoMed in three sections. First, the methods of BioM NP production and their synergistic interactions with human cells, tissues, organs, and organ systems will be discussed. Followed by a discussion of BioM NPs) for several NanoMeds (wound healing, targeted drug delivery, theranostics, cancer therapy, and bone formation and/or regeneration), and concluding with the novel application of BioM NPs, challenges associated with these novel applications, and prospects.
仿生纳米粒子(BioM NPs)是纳米医学(NanoMed)的一种创新策略,它结合了人工材料的优势和自然系统的生物功能。正在进行的研究试图加强其设计和稳定性,并解决在医学和生物技术领域更广泛应用的问题。由于纳米医学在疾病治疗方面具有独特的优势,因此在临床前研究中对其进行了深入研究。它已开发出抗病毒感染的新型治疗策略,并提高了治疗成功率。新型纳米载体和给药系统的创造对于纳米医学的发展至关重要,但对于这一快速发展的领域,仍有许多知识需要学习。为了丰富现有知识并弥补知识空白,我们这篇综述文章将分三部分讨论纳米医学中生物纳米载体的最新进展。首先,将讨论生物纳米粒子的生产方法及其与人体细胞、组织、器官和器官系统的协同作用。然后讨论生物纳米粒子在几种纳米医学(伤口愈合、靶向给药、治疗学、癌症治疗以及骨形成和/或再生)中的应用,最后讨论生物纳米粒子的新型应用、与这些新型应用相关的挑战以及前景。
{"title":"Nature-inspired solutions: A comprehensive review of biomimetic nanoparticles in nanomedicine","authors":"Eliasu Issaka, Blessing Tornyeava, Enock Adjei Agyekum, Michael Enyan, Jesse Nii Okai Amu-Darko, Hither Tariro Chimuza","doi":"10.1177/08927057241264464","DOIUrl":"https://doi.org/10.1177/08927057241264464","url":null,"abstract":"Biomimetic nanoparticles (BioM NPs) are an innovative strategy for nanomedicine (NanoMed) that combines the advantages of artificial materials with the biological functioning of natural systems. Ongoing research attempts to enhance their design, and stability, and solve problems for broader applications in medicine and biotechnology. NanoMed ideas are intensively researched in preclinical research because they provide unique advantages in disease management. It has developed novel therapeutic strategies for combating viral infections and increasing treatment success rates. The creation of novel nanocarriers and drug delivery systems is critical to the evolution of NanoMed, but there is still much to learn about this quickly evolving field. To contribute to existing knowledge and cover knowledge gaps, our present review article will discuss the state-of-the-art of BioM NPs in NanoMed in three sections. First, the methods of BioM NP production and their synergistic interactions with human cells, tissues, organs, and organ systems will be discussed. Followed by a discussion of BioM NPs) for several NanoMeds (wound healing, targeted drug delivery, theranostics, cancer therapy, and bone formation and/or regeneration), and concluding with the novel application of BioM NPs, challenges associated with these novel applications, and prospects.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141924669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
UV and outdoor weathering of glass fiber reinforced polycarbonate/acrylonitrile-butadiene-styrene composites and recycling of aged composites 玻璃纤维增强聚碳酸酯/丙烯腈-丁二烯-苯乙烯复合材料的紫外线和户外风化以及老化复合材料的回收利用
IF 3.6 4区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-08-09 DOI: 10.1177/08927057241270890
E. Kuram, B. Ozcelik, H. Koçoğlu, Hamza Ayas, Mehmet Dogan
Polymeric materials usage is rising, and they are exposed to some effects such as temperature, light, water throughout their lifetime. Increase in use of polymer has led to waste problems. From an environmental point of view, recycling (reprocessing) of polymers is one of the viable solutions to diminish waste issues. Thus, in this work, the effect of reprocessing for aged glass fiber reinforced polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) composites having different glass fiber content was determined on the mechanical properties (tensile, impact, flexural), melt flow index and morphology. Virgin glass fiber reinforced PC/ABS specimens were exposed to two environments, namely artificial accelerated ageing in a QUV chamber for up to 336 h and natural ageing in Gebze (Turkey) for up to 1 year between January 2018 and January 2019 to determine the influence of a long-term outdoor exposure on the properties. After these ageing steps, naturally and UV aged specimens were ground and the ground specimens were mixed with virgin glass fiber reinforced PC/ABS at ratios of 25%, 50% and 75% by weight. The mixed materials were re-molded to fabricate test specimens and then characterized. In brief, in current research, the mechanical, rheological, and morphological properties of virgin, aged in outdoors for 12 months, aged in UV chamber for 336 h and blends of virgin-aged glass fiber reinforced PC/ABS composites were studied. Because there is no research regarding natural and UV ageing of PC/ABS having different glass fiber content, this study represents an important contribution to determining behavior of these composites after ageing. From experimental study, in general, it was found that mechanical properties decreased with natural and UV ageing, but some retention in properties could be achieved with the incorporation of pure polymer.
聚合材料的用量在不断增加,它们在整个生命周期中都会受到温度、光、水等因素的影响。聚合物用量的增加导致了废物问题。从环保角度来看,聚合物的回收(再加工)是减少废物问题的可行解决方案之一。因此,在这项研究中,我们测定了不同玻璃纤维含量的老化玻璃纤维增强聚碳酸酯/丙烯腈-丁二烯-苯乙烯(PC/ABS)复合材料的再加工对其机械性能(拉伸、冲击、弯曲)、熔融流动指数和形态的影响。原始玻璃纤维增强 PC/ABS 试样暴露在两种环境中,即 2018 年 1 月至 2019 年 1 月期间在 QUV 试验室中进行长达 336 小时的人工加速老化,以及在盖布泽(土耳其)进行长达 1 年的自然老化,以确定长期户外暴露对性能的影响。经过这些老化步骤后,自然老化和紫外线老化的试样被磨碎,磨碎的试样按 25%、50% 和 75% 的重量比与原玻璃纤维增强 PC/ABS 混合。混合后的材料被重新成型,制成测试试样,然后进行表征。简而言之,在当前的研究中,研究了原生、室外老化 12 个月、紫外线室老化 336 小时以及原生老化玻璃纤维增强 PC/ABS 复合材料混合物的机械、流变和形态特性。由于目前还没有关于不同玻璃纤维含量的 PC/ABS 的自然老化和紫外线老化的研究,因此本研究对确定这些复合材料老化后的行为做出了重要贡献。实验研究发现,一般来说,机械性能会随着自然老化和紫外线老化而降低,但加入纯聚合物后,性能会得到一定程度的保留。
{"title":"UV and outdoor weathering of glass fiber reinforced polycarbonate/acrylonitrile-butadiene-styrene composites and recycling of aged composites","authors":"E. Kuram, B. Ozcelik, H. Koçoğlu, Hamza Ayas, Mehmet Dogan","doi":"10.1177/08927057241270890","DOIUrl":"https://doi.org/10.1177/08927057241270890","url":null,"abstract":"Polymeric materials usage is rising, and they are exposed to some effects such as temperature, light, water throughout their lifetime. Increase in use of polymer has led to waste problems. From an environmental point of view, recycling (reprocessing) of polymers is one of the viable solutions to diminish waste issues. Thus, in this work, the effect of reprocessing for aged glass fiber reinforced polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) composites having different glass fiber content was determined on the mechanical properties (tensile, impact, flexural), melt flow index and morphology. Virgin glass fiber reinforced PC/ABS specimens were exposed to two environments, namely artificial accelerated ageing in a QUV chamber for up to 336 h and natural ageing in Gebze (Turkey) for up to 1 year between January 2018 and January 2019 to determine the influence of a long-term outdoor exposure on the properties. After these ageing steps, naturally and UV aged specimens were ground and the ground specimens were mixed with virgin glass fiber reinforced PC/ABS at ratios of 25%, 50% and 75% by weight. The mixed materials were re-molded to fabricate test specimens and then characterized. In brief, in current research, the mechanical, rheological, and morphological properties of virgin, aged in outdoors for 12 months, aged in UV chamber for 336 h and blends of virgin-aged glass fiber reinforced PC/ABS composites were studied. Because there is no research regarding natural and UV ageing of PC/ABS having different glass fiber content, this study represents an important contribution to determining behavior of these composites after ageing. From experimental study, in general, it was found that mechanical properties decreased with natural and UV ageing, but some retention in properties could be achieved with the incorporation of pure polymer.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141925186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on temperature control of CF-PP induction heating based on improved particle swarm fuzzy PID 基于改进粒子群模糊 PID 的 CF-PP 感应加热温度控制研究
IF 3.3 4区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-08-08 DOI: 10.1177/08927057241271776
Tianyu Fu, Shan Yan, Yunfei Gu
Achieving precise temperature control during the heating process of carbon fibre-reinforced polypropylene thermoplastic composite (CF-PP) using electromagnetic induction heating is crucial for the consolidation effectiveness of the material. This paper begins by constructing a finite element microscopic model for induction heating that incorporates the actual fiber structure and matrix. It systematically analyzes the heating mechanism, temperature field distribution, and surface temperature hysteresis of CF-PP with different fiber weave structures during the heating process. Based on the observed temperature distribution and variation patterns during material heating, an improved particle swarm Fuzzy PID control method is proposed, which effectively reduces temperature overshoot and enhances the system’s resistance to disturbances. Experimental validation demonstrates the effectiveness of this algorithm for controlling the temperature of CF-PP plates during the induction heating process. This research offers an effective control strategy and research approach to enhance the accuracy of temperature control during the CF-PP induction heating process, contributing to improved outcomes in the field.
在使用电磁感应加热碳纤维增强聚丙烯热塑性复合材料(CF-PP)的加热过程中,实现精确的温度控制对材料的固结效果至关重要。本文首先构建了一个包含实际纤维结构和基体的感应加热有限元微观模型。系统分析了不同纤维编织结构的 CF-PP 在加热过程中的加热机理、温度场分布和表面温度滞后。根据观察到的材料加热过程中的温度分布和变化规律,提出了一种改进的粒子群模糊 PID 控制方法,该方法能有效降低温度过冲,增强系统的抗干扰能力。实验验证证明了该算法在感应加热过程中控制 CF-PP 板温度的有效性。这项研究为提高 CF-PP 感应加热过程中的温度控制精确度提供了有效的控制策略和研究方法,有助于改善现场结果。
{"title":"Research on temperature control of CF-PP induction heating based on improved particle swarm fuzzy PID","authors":"Tianyu Fu, Shan Yan, Yunfei Gu","doi":"10.1177/08927057241271776","DOIUrl":"https://doi.org/10.1177/08927057241271776","url":null,"abstract":"Achieving precise temperature control during the heating process of carbon fibre-reinforced polypropylene thermoplastic composite (CF-PP) using electromagnetic induction heating is crucial for the consolidation effectiveness of the material. This paper begins by constructing a finite element microscopic model for induction heating that incorporates the actual fiber structure and matrix. It systematically analyzes the heating mechanism, temperature field distribution, and surface temperature hysteresis of CF-PP with different fiber weave structures during the heating process. Based on the observed temperature distribution and variation patterns during material heating, an improved particle swarm Fuzzy PID control method is proposed, which effectively reduces temperature overshoot and enhances the system’s resistance to disturbances. Experimental validation demonstrates the effectiveness of this algorithm for controlling the temperature of CF-PP plates during the induction heating process. This research offers an effective control strategy and research approach to enhance the accuracy of temperature control during the CF-PP induction heating process, contributing to improved outcomes in the field.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An enhancement in the tensile modulus and bending resistance of polylactic acid/carbon nanotube composite by optimizing FFF process parameters 通过优化 FFF 工艺参数提高聚乳酸/碳纳米管复合材料的拉伸模量和抗弯强度
IF 3.3 4区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-08-07 DOI: 10.1177/08927057241268831
Hatam Hardani, Mahmoud Afshari, Mohammad Reza Samadi, Hossein Afshari, Santi Ago López
Fused-filament fabrication (FFF) is one of the most common 3D printing methods for thermoplastic polymers and composite materials because it is easy to use and is low-cost. The printed polymer parts for industrial applications require desirable mechanical properties. Therefore, in the present research, the process parameters of fused filament fabrication are optimized to enhance the Young’s modulus and bending resistance of polylactic acid/carbon nanotube (PLA/CNT) composite. For this purpose, the response surface method (RSM) and desirability function technique (DFT) are applied to find the optimal values of the effective parameters of CNT content, printing speed and nozzle temperature. The printed samples were examined by using DSC, TGA and SEM analyses. The results of DSC and TGA analyses indicated that the addition of CNT into PLA enhanced the thermal stability of PLA/CNT composite. It was also observed from the optimization results that the Young’s modulus and bending resistance of PLA/CNT composite improved at CNT content of 2.9 wt%, printing speed of 20 mm/s and nozzle temperature of 210°C.
熔融长丝制造(FFF)是热塑性聚合物和复合材料最常见的三维打印方法之一,因为它易于使用且成本低廉。用于工业应用的打印聚合物部件需要理想的机械性能。因此,本研究对熔融长丝制造的工艺参数进行了优化,以提高聚乳酸/碳纳米管(PLA/CNT)复合材料的杨氏模量和抗弯强度。为此,应用响应面法(RSM)和可取函数技术(DFT)找到了 CNT 含量、印刷速度和喷嘴温度等有效参数的最佳值。印刷样品通过 DSC、TGA 和 SEM 分析进行检测。DSC 和 TGA 分析结果表明,在聚乳酸中添加 CNT 增强了聚乳酸/CNT 复合材料的热稳定性。优化结果还表明,当 CNT 含量为 2.9 wt%、打印速度为 20 mm/s、喷嘴温度为 210°C 时,聚乳酸/CNT 复合材料的杨氏模量和抗弯强度都有所提高。
{"title":"An enhancement in the tensile modulus and bending resistance of polylactic acid/carbon nanotube composite by optimizing FFF process parameters","authors":"Hatam Hardani, Mahmoud Afshari, Mohammad Reza Samadi, Hossein Afshari, Santi Ago López","doi":"10.1177/08927057241268831","DOIUrl":"https://doi.org/10.1177/08927057241268831","url":null,"abstract":"Fused-filament fabrication (FFF) is one of the most common 3D printing methods for thermoplastic polymers and composite materials because it is easy to use and is low-cost. The printed polymer parts for industrial applications require desirable mechanical properties. Therefore, in the present research, the process parameters of fused filament fabrication are optimized to enhance the Young’s modulus and bending resistance of polylactic acid/carbon nanotube (PLA/CNT) composite. For this purpose, the response surface method (RSM) and desirability function technique (DFT) are applied to find the optimal values of the effective parameters of CNT content, printing speed and nozzle temperature. The printed samples were examined by using DSC, TGA and SEM analyses. The results of DSC and TGA analyses indicated that the addition of CNT into PLA enhanced the thermal stability of PLA/CNT composite. It was also observed from the optimization results that the Young’s modulus and bending resistance of PLA/CNT composite improved at CNT content of 2.9 wt%, printing speed of 20 mm/s and nozzle temperature of 210°C.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Navigating the frontier: Additive Manufacturing’s role in synthesizing piezoelectric materials for flexible electronics 领航前沿:快速成型技术在合成用于柔性电子器件的压电材料中的作用
IF 3.3 4区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-08-06 DOI: 10.1177/08927057241270729
Sudhir Kumar, Ravinder Kumar Duvedi, Sandeep Kumar Sharma, Ajay Batish
Additive manufacturing (AM) has significantly transformed the fabrication of functional materials, particularly in electronics and biomedical engineering. This study reviews stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), direct ink writing (DIW), and inkjet printing for flexible electronic applications. The review highlights SLA-based 3D printing’s better ability to optimize material compositions, printing procedures, and post-processing methods to improve material characteristics. Photosensitive materials and shrinkage-induced internal tensions seems to be its major constraint. Additionally, SLS 3D printing has improved composite materials' electrical, mechanical, and thermal properties. It has drawbacks including permeable structures and internal tensions. In FDM 3D printing, mechanical and electrical qualities are improved for piezoelectric sensor manufacture. Warping and nozzle blockage require additional study. DIW’s versatility in constructing complicated structures with increased features for energy harvesting and sensor development is also mentioned. We identify ink development and printer nozzle clogging issues. The review concludes that inkjet printing can provide a variety of materials for flexible electronics. Since it integrates the latest discoveries with technological developments, this study may help guide future research and promote innovation in the sector. Overall, additive manufacturing methods provide a new era of sensor technology by offering unrivalled flexibility and versatility.
快速成型制造(AM)极大地改变了功能材料的制造,尤其是在电子和生物医学工程领域。本研究综述了用于柔性电子应用的立体光刻(SLA)、选择性激光烧结(SLS)、熔融沉积建模(FDM)、直接墨水写入(DIW)和喷墨打印技术。综述重点介绍了基于 SLA 的 3D 打印技术在优化材料成分、打印程序和后处理方法以改善材料特性方面的更佳能力。光敏材料和收缩引起的内部张力似乎是其主要制约因素。此外,SLS 三维打印技术还改善了复合材料的电气、机械和热性能。但它也存在渗透结构和内部张力等缺点。在 FDM 三维打印中,压电传感器制造的机械和电气性能得到了改善。翘曲和喷嘴堵塞问题需要进一步研究。此外,我们还提到了 DIW 在构建复杂结构方面的多功能性,可增加能量收集和传感器开发所需的功能。我们发现了墨水开发和打印机喷嘴堵塞问题。综述的结论是,喷墨打印可为柔性电子产品提供多种材料。由于本研究将最新发现与技术发展融为一体,因此有助于指导未来的研究并促进该领域的创新。总之,增材制造方法提供了无与伦比的灵活性和多功能性,开创了传感器技术的新纪元。
{"title":"Navigating the frontier: Additive Manufacturing’s role in synthesizing piezoelectric materials for flexible electronics","authors":"Sudhir Kumar, Ravinder Kumar Duvedi, Sandeep Kumar Sharma, Ajay Batish","doi":"10.1177/08927057241270729","DOIUrl":"https://doi.org/10.1177/08927057241270729","url":null,"abstract":"Additive manufacturing (AM) has significantly transformed the fabrication of functional materials, particularly in electronics and biomedical engineering. This study reviews stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), direct ink writing (DIW), and inkjet printing for flexible electronic applications. The review highlights SLA-based 3D printing’s better ability to optimize material compositions, printing procedures, and post-processing methods to improve material characteristics. Photosensitive materials and shrinkage-induced internal tensions seems to be its major constraint. Additionally, SLS 3D printing has improved composite materials' electrical, mechanical, and thermal properties. It has drawbacks including permeable structures and internal tensions. In FDM 3D printing, mechanical and electrical qualities are improved for piezoelectric sensor manufacture. Warping and nozzle blockage require additional study. DIW’s versatility in constructing complicated structures with increased features for energy harvesting and sensor development is also mentioned. We identify ink development and printer nozzle clogging issues. The review concludes that inkjet printing can provide a variety of materials for flexible electronics. Since it integrates the latest discoveries with technological developments, this study may help guide future research and promote innovation in the sector. Overall, additive manufacturing methods provide a new era of sensor technology by offering unrivalled flexibility and versatility.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of thermoplastic composite joints fabricated by the combined refill friction stir spot welding and riveting process 通过组合式填充摩擦搅拌点焊和铆接工艺制造的热塑性复合材料接头的特性分析
IF 3.3 4区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-08-02 DOI: 10.1177/08927057241270859
Ryoji Ohashi, Ryoichi Hatano, Shunsuke Haruna
Carbon fiber-reinforced thermoplastics have been extensively studied to reduce the weight of transportation equipment. In this study, to enhance the interlocking effect of Ti-6Al-4V rivets, the new riveting process combined with refill friction stir spot welding (FSSW) was attempted. Consequently, the successful combination of refill FSSW and riveting resulted in a flared trumpet-shaped rivet, expanding the diameter of its tip significantly. Tensile shear tests exhibited both the stirred zone induced by refill FSSW and the flared rivet affected the fracture behavior. The cross-sectional observations revealed the existence of cracks at the boundary between the stirred zone and base material during tensile shear tests. Furthermore, a unique arrangement of the fiber caused by the stirring action was identified by observing the fracture surface using scanning electron microscopy. The study findings clarify the advantages of combining refill FSSW with riveting, providing insights into the potential implementation of this combined process in thermoplastic composites.
为减轻运输设备的重量,人们对碳纤维增强热塑性塑料进行了广泛的研究。在这项研究中,为了增强 Ti-6Al-4V 铆钉的互锁效果,尝试了结合填充式搅拌摩擦点焊(FSSW)的新型铆接工艺。结果,成功地将填充式摩擦搅拌点焊与铆接结合在一起,形成了喇叭形铆钉,并显著扩大了铆钉尖端的直径。拉伸剪切试验结果表明,由填充高速钢引起的搅拌区和喇叭形铆钉都对断裂行为产生了影响。横截面观察结果表明,在拉伸剪切试验中,搅拌区和基体材料之间的边界存在裂缝。此外,通过使用扫描电子显微镜观察断裂表面,还发现了由搅拌作用引起的纤维独特排列。研究结果阐明了将填充式无缝钢管与铆接相结合的优势,为在热塑性复合材料中采用这种组合工艺的可能性提供了启示。
{"title":"Characterization of thermoplastic composite joints fabricated by the combined refill friction stir spot welding and riveting process","authors":"Ryoji Ohashi, Ryoichi Hatano, Shunsuke Haruna","doi":"10.1177/08927057241270859","DOIUrl":"https://doi.org/10.1177/08927057241270859","url":null,"abstract":"Carbon fiber-reinforced thermoplastics have been extensively studied to reduce the weight of transportation equipment. In this study, to enhance the interlocking effect of Ti-6Al-4V rivets, the new riveting process combined with refill friction stir spot welding (FSSW) was attempted. Consequently, the successful combination of refill FSSW and riveting resulted in a flared trumpet-shaped rivet, expanding the diameter of its tip significantly. Tensile shear tests exhibited both the stirred zone induced by refill FSSW and the flared rivet affected the fracture behavior. The cross-sectional observations revealed the existence of cracks at the boundary between the stirred zone and base material during tensile shear tests. Furthermore, a unique arrangement of the fiber caused by the stirring action was identified by observing the fracture surface using scanning electron microscopy. The study findings clarify the advantages of combining refill FSSW with riveting, providing insights into the potential implementation of this combined process in thermoplastic composites.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of cadmium sulfide spheres on structural, mechanical, and optical properties of polyvinyl butyral/cadmium sulfide nanocomposite films 硫化镉球对聚乙烯醇缩丁醛/硫化镉纳米复合薄膜的结构、机械和光学性能的影响
IF 3.3 4区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-08-02 DOI: 10.1177/08927057241270750
Mohammed O Alziyadi, Asma Alkabsh, Basmat Amal M Said, Mustafa S. Shalaby
Herein, cadmium sulfide (CdS) nanospheres were synthesized using the hydrothermal method and then inserted into a polyvinyl butyral (PVB) matrix at different concentrations (0%, 2%, and 4% wt.) using the solution casting method. This work examines the effects of varying percentages of CdS spheres on the structural characteristics, mechanical properties, surface/volume energy loss functions, dielectric constants, and linear/non-linear optical properties of PVB nanocomposite films. The findings confirmed the successful synthesis of sphere-like CdS with a cubic structural phase. The stress-strain curves of PVB and its composites with nano CdS spheres were examined. The PVB has a direct/indirect energy gap of 5.1 eV (4.1 eV). With a CdS doping level of 2% and 4%, the values correspondingly decreased to 4.76 eV (3.36 eV) and 4.49 eV (2.45 eV). The EU values for PVB, PVB-2 wt.% CdS, and PVB-4 wt.% CdS nanocomposite are 15.3, 11.2, and 14.1 meV, respectively. CdS nanospheres decreased the volume and surface energy losses (VELF & SELF) of PVB films. The research demonstrates that the mechanical properties and optical parameters of PVB/CdS nanocomposite films positively correlate with the concentration of CdS nanospheres. These attributes make them well-suited for incorporation into flexible electronic devices.
本文采用水热法合成了硫化镉(CdS)纳米球,然后采用溶液浇注法将不同浓度(0%、2% 和 4% wt.)的 CdS 球放入聚乙烯醇缩丁醛(PVB)基体中。这项研究考察了不同比例的 CdS 球体对 PVB 纳米复合薄膜的结构特征、机械性能、表面/体积能量损失函数、介电常数以及线性/非线性光学性能的影响。研究结果证实成功合成了具有立方结构相的球状 CdS。研究还考察了 PVB 及其与纳米 CdS 球复合材料的应力-应变曲线。PVB 的直接/间接能隙为 5.1 eV (4.1 eV)。当 CdS 掺杂水平为 2% 和 4% 时,其值相应地降至 4.76 eV (3.36 eV) 和 4.49 eV (2.45 eV)。PVB、PVB-2 wt.% CdS 和 PVB-4 wt.% CdS 纳米复合材料的 EU 值分别为 15.3、11.2 和 14.1 meV。CdS 纳米球降低了 PVB 薄膜的体积和表面能量损失(VELF & SELF)。研究表明,PVB/CdS 纳米复合薄膜的机械性能和光学参数与 CdS 纳米球的浓度呈正相关。这些特性使它们非常适合集成到柔性电子设备中。
{"title":"Effect of cadmium sulfide spheres on structural, mechanical, and optical properties of polyvinyl butyral/cadmium sulfide nanocomposite films","authors":"Mohammed O Alziyadi, Asma Alkabsh, Basmat Amal M Said, Mustafa S. Shalaby","doi":"10.1177/08927057241270750","DOIUrl":"https://doi.org/10.1177/08927057241270750","url":null,"abstract":"Herein, cadmium sulfide (CdS) nanospheres were synthesized using the hydrothermal method and then inserted into a polyvinyl butyral (PVB) matrix at different concentrations (0%, 2%, and 4% wt.) using the solution casting method. This work examines the effects of varying percentages of CdS spheres on the structural characteristics, mechanical properties, surface/volume energy loss functions, dielectric constants, and linear/non-linear optical properties of PVB nanocomposite films. The findings confirmed the successful synthesis of sphere-like CdS with a cubic structural phase. The stress-strain curves of PVB and its composites with nano CdS spheres were examined. The PVB has a direct/indirect energy gap of 5.1 eV (4.1 eV). With a CdS doping level of 2% and 4%, the values correspondingly decreased to 4.76 eV (3.36 eV) and 4.49 eV (2.45 eV). The E<jats:sub>U</jats:sub> values for PVB, PVB-2 wt.% CdS, and PVB-4 wt.% CdS nanocomposite are 15.3, 11.2, and 14.1 meV, respectively. CdS nanospheres decreased the volume and surface energy losses (VELF &amp; SELF) of PVB films. The research demonstrates that the mechanical properties and optical parameters of PVB/CdS nanocomposite films positively correlate with the concentration of CdS nanospheres. These attributes make them well-suited for incorporation into flexible electronic devices.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Thermoplastic Composite Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1