Pub Date : 2024-07-01Epub Date: 2024-07-31DOI: 10.1098/rsif.2024.0124
Hossein Gorji, Noé Stauffer, Ivan Lunati
During the recent COVID-19 pandemic, the instantaneous reproduction number, R(t), has surged as a widely used measure to target public health interventions aiming at curbing the infection rate. In analogy with the basic reproduction number that arises from the linear stability analysis, R(t) is typically interpreted as a threshold parameter that separates exponential growth (R(t) > 1) from exponential decay (R(t) < 1). In real epidemics, however, the finite number of susceptibles, the stratification of the population (e.g. by age or vaccination state), and heterogeneous mixing lead to more complex epidemic courses. In the context of the multidimensional renewal equation, we generalize the scalar R(t) to a reproduction matrix, [Formula: see text], which details the epidemic state of the stratified population, and offers a concise epidemic forecasting scheme. First, the reproduction matrix is computed from the available incidence data (subject to some a priori assumptions), then it is projected into the future by a transfer functional to predict the epidemic course. We demonstrate that this simple scheme allows realistic and accurate epidemic trajectories both in synthetic test cases and with reported incidence data from the COVID-19 pandemic. Accounting for the full heterogeneity and nonlinearity of the infection process, the reproduction matrix improves the prediction of the infection peak. In contrast, the scalar reproduction number overestimates the possibility of sustaining the initial infection rate and leads to an overshoot in the incidence peak. Besides its simplicity, the devised forecasting scheme offers rich flexibility to be generalized to time-dependent mitigation measures, contact rate, infectivity and vaccine protection.
{"title":"Emergence of the reproduction matrix in epidemic forecasting.","authors":"Hossein Gorji, Noé Stauffer, Ivan Lunati","doi":"10.1098/rsif.2024.0124","DOIUrl":"10.1098/rsif.2024.0124","url":null,"abstract":"<p><p>During the recent COVID-19 pandemic, the instantaneous reproduction number, <i>R</i>(<i>t</i>), has surged as a widely used measure to target public health interventions aiming at curbing the infection rate. In analogy with the basic reproduction number that arises from the linear stability analysis, <i>R</i>(<i>t</i>) is typically interpreted as a threshold parameter that separates exponential growth (<i>R</i>(<i>t</i>) > 1) from exponential decay (<i>R</i>(<i>t</i>) < 1). In real epidemics, however, the finite number of susceptibles, the stratification of the population (e.g. by age or vaccination state), and heterogeneous mixing lead to more complex epidemic courses. In the context of the multidimensional renewal equation, we generalize the scalar <i>R</i>(<i>t</i>) to a reproduction matrix, [Formula: see text], which details the epidemic state of the stratified population, and offers a concise epidemic forecasting scheme. First, the reproduction matrix is computed from the available incidence data (subject to some <i>a priori</i> assumptions), then it is projected into the future by a transfer functional to predict the epidemic course. We demonstrate that this simple scheme allows realistic and accurate epidemic trajectories both in synthetic test cases and with reported incidence data from the COVID-19 pandemic. Accounting for the full heterogeneity and nonlinearity of the infection process, the reproduction matrix improves the prediction of the infection peak. In contrast, the scalar reproduction number overestimates the possibility of sustaining the initial infection rate and leads to an overshoot in the incidence peak. Besides its simplicity, the devised forecasting scheme offers rich flexibility to be generalized to time-dependent mitigation measures, contact rate, infectivity and vaccine protection.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 216","pages":"20240124"},"PeriodicalIF":3.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289658/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-07-31DOI: 10.1098/rsif.2023.0682
Mark Cauchi, Andrew R Mills, Allan Lawrie, David G Kiely, Visakan Kadirkamanathan
Monitoring disease progression often involves tracking biomarker measurements over time. Joint models (JMs) for longitudinal and survival data provide a framework to explore the relationship between time-varying biomarkers and patients' event outcomes, offering the potential for personalized survival predictions. In this article, we introduce the linear state space dynamic survival model for handling longitudinal and survival data. This model enhances the traditional linear Gaussian state space model by including survival data. It differs from the conventional JMs by offering an alternative interpretation via differential or difference equations, eliminating the need for creating a design matrix. To showcase the model's effectiveness, we conduct a simulation case study, emphasizing its performance under conditions of limited observed measurements. We also apply the proposed model to a dataset of pulmonary arterial hypertension patients, demonstrating its potential for enhanced survival predictions when compared with conventional risk scores.
监测疾病进展通常需要跟踪生物标志物随时间变化的测量结果。纵向数据和生存数据的联合模型(JMs)为探索时变生物标志物与患者事件结果之间的关系提供了一个框架,为个性化生存预测提供了可能性。本文介绍了处理纵向和生存数据的线性状态空间动态生存模型。该模型包含了生存数据,从而增强了传统的线性高斯状态空间模型。它与传统的 JM 不同,通过微分方程或差分方程提供了另一种解释,无需创建设计矩阵。为了展示该模型的有效性,我们进行了一项模拟案例研究,强调其在有限观测测量条件下的性能。我们还将提出的模型应用于肺动脉高压患者的数据集,证明与传统风险评分相比,该模型具有提高生存预测的潜力。
{"title":"Individualized survival predictions using state space model with longitudinal and survival data.","authors":"Mark Cauchi, Andrew R Mills, Allan Lawrie, David G Kiely, Visakan Kadirkamanathan","doi":"10.1098/rsif.2023.0682","DOIUrl":"10.1098/rsif.2023.0682","url":null,"abstract":"<p><p>Monitoring disease progression often involves tracking biomarker measurements over time. Joint models (JMs) for longitudinal and survival data provide a framework to explore the relationship between time-varying biomarkers and patients' event outcomes, offering the potential for personalized survival predictions. In this article, we introduce the linear state space dynamic survival model for handling longitudinal and survival data. This model enhances the traditional linear Gaussian state space model by including survival data. It differs from the conventional JMs by offering an alternative interpretation via differential or difference equations, eliminating the need for creating a design matrix. To showcase the model's effectiveness, we conduct a simulation case study, emphasizing its performance under conditions of limited observed measurements. We also apply the proposed model to a dataset of pulmonary arterial hypertension patients, demonstrating its potential for enhanced survival predictions when compared with conventional risk scores.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 216","pages":"20230682"},"PeriodicalIF":3.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289657/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-07-10DOI: 10.1098/rsif.2023.0593
Alyssa Skulborstad, N C Goulbourne
Birds, bats and insects have evolved unique wing structures to achieve a wide range of flight capabilities. Insects have relatively stiff and passive wings, birds have a complex and hierarchical feathered structure and bats have an articulated skeletal system integrated with a highly stretchable skin. The compliant skin of the wing distinguishes bats from all other flying animals and contributes to bats' remarkable, highly manoeuvrable flight performance and high energetic efficiency. The structural and functional complexity of the bat wing skin is one of the least understood although important elements of the bat flight anatomy. The wing skin has two unusual features: a discrete array of very soft elastin fibres and a discrete array of skeletal muscle fibres. The latter is intriguing because skeletal muscle is typically attached to bone, so the arrangement of intramembranous muscle in soft skin raises questions about its role in flight. In this paper, we develop a multi-scale chemo-mechanical constitutive model for bat wing skin. The chemo-mechanical model links cross-bridge cycling to a structure-based continuum model that describes the active viscoelastic behaviour of the soft anisotropic skin tissue. Continuum models at the tissue length-scale are valuable as they are easily implemented in commercial finite element codes to solve problems involving complex geometries, loading and boundary conditions. The constitutive model presented in this paper will be used in detailed finite element simulations to improve our understanding of the mechanics of bat flight in the context of wing kinematics and aerodynamic performance.
{"title":"A chemo-mechanical constitutive model for muscle activation in bat wing skins.","authors":"Alyssa Skulborstad, N C Goulbourne","doi":"10.1098/rsif.2023.0593","DOIUrl":"10.1098/rsif.2023.0593","url":null,"abstract":"<p><p>Birds, bats and insects have evolved unique wing structures to achieve a wide range of flight capabilities. Insects have relatively stiff and passive wings, birds have a complex and hierarchical feathered structure and bats have an articulated skeletal system integrated with a highly stretchable skin. The compliant skin of the wing distinguishes bats from all other flying animals and contributes to bats' remarkable, highly manoeuvrable flight performance and high energetic efficiency. The structural and functional complexity of the bat wing skin is one of the least understood although important elements of the bat flight anatomy. The wing skin has two unusual features: a discrete array of very soft elastin fibres and a discrete array of skeletal muscle fibres. The latter is intriguing because skeletal muscle is typically attached to bone, so the arrangement of intramembranous muscle in soft skin raises questions about its role in flight. In this paper, we develop a multi-scale chemo-mechanical constitutive model for bat wing skin. The chemo-mechanical model links cross-bridge cycling to a structure-based continuum model that describes the active viscoelastic behaviour of the soft anisotropic skin tissue. Continuum models at the tissue length-scale are valuable as they are easily implemented in commercial finite element codes to solve problems involving complex geometries, loading and boundary conditions. The constitutive model presented in this paper will be used in detailed finite element simulations to improve our understanding of the mechanics of bat flight in the context of wing kinematics and aerodynamic performance.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 216","pages":"20230593"},"PeriodicalIF":3.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286139/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-07-03DOI: 10.1098/rsif.2024.0141
M L Hooper, I Scherl, M Gharib
Natural swimmers and flyers can fully recover from catastrophic propulsor damage by altering stroke mechanics: some fish can lose even 76% of their propulsive surface without loss of thrust. We consider applying these principles to enable robotic flapping propulsors to autonomously repair functionality. However, direct transference of these alterations from an organism to a robotic flapping propulsor may be suboptimal owing to irrelevant evolutionary pressures. Instead, we use machine learning techniques to compare these alterations with those optimal for a robotic system. We implement an online artificial evolution with hardware-in-the-loop, performing experimental evaluations with a flexible plate. To recoup thrust, the learned strategy increased amplitude, frequency and angle of attack (AOA) amplitude, and phase-shifted AOA by approximately 110°. Only amplitude increase is reported by most fish literature. When recovering side force, we find that force direction is correlated with AOA. No clear amplitude or frequency trend is found, whereas frequency increases in most insect literature. These results suggest that how mechanical flapping propulsors most efficiently adjust to damage may not align with natural swimmers and flyers.
{"title":"Bio-inspired compensatory strategies for damage to flapping robotic propulsors.","authors":"M L Hooper, I Scherl, M Gharib","doi":"10.1098/rsif.2024.0141","DOIUrl":"10.1098/rsif.2024.0141","url":null,"abstract":"<p><p>Natural swimmers and flyers can fully recover from catastrophic propulsor damage by altering stroke mechanics: some fish can lose even 76% of their propulsive surface without loss of thrust. We consider applying these principles to enable robotic flapping propulsors to autonomously repair functionality. However, direct transference of these alterations from an organism to a robotic flapping propulsor may be suboptimal owing to irrelevant evolutionary pressures. Instead, we use machine learning techniques to compare these alterations with those optimal for a robotic system. We implement an online artificial evolution with hardware-in-the-loop, performing experimental evaluations with a flexible plate. To recoup thrust, the learned strategy increased amplitude, frequency and angle of attack (AOA) amplitude, and phase-shifted AOA by approximately 110°. Only amplitude increase is reported by most fish literature. When recovering side force, we find that force direction is correlated with AOA. No clear amplitude or frequency trend is found, whereas frequency increases in most insect literature. These results suggest that how mechanical flapping propulsors most efficiently adjust to damage may not align with natural swimmers and flyers.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 216","pages":"20240141"},"PeriodicalIF":3.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11335061/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-07-17DOI: 10.1098/rsif.2024.0076
Shih-Jung Hsu, Hankun Deng, Junshi Wang, Haibo Dong, Bo Cheng
Insect wings are flexible structures that exhibit deformations of complex spatiotemporal patterns. Existing studies on wing deformation underscore the indispensable role of wing deformation in enhancing aerodynamic performance. Here, we investigated forward flight in bluebottle flies, flying semi-freely in a magnetic flight mill; we quantified wing surface deformation using high-speed videography and marker-less surface reconstruction and studied the effects on aerodynamic forces, power and efficiency using computational fluid dynamics. The results showed that flies' wings exhibited substantial camber near the wing root and twisted along the wingspan, as they were coupled effects of deflection primarily about the claval flexion line. Such deflection was more substantial for supination during the upstroke when most thrust was produced. Compared with deformed wings, the undeformed wings generated 59-98% of thrust and 54-87% of thrust efficiency (i.e. ratio of thrust and power). Wing twist moved the aerodynamic centre of pressure proximally and posteriorly, likely improving aerodynamic efficiency.
{"title":"Wing deformation improves aerodynamic performance of forward flight of bluebottle flies flying in a flight mill.","authors":"Shih-Jung Hsu, Hankun Deng, Junshi Wang, Haibo Dong, Bo Cheng","doi":"10.1098/rsif.2024.0076","DOIUrl":"10.1098/rsif.2024.0076","url":null,"abstract":"<p><p>Insect wings are flexible structures that exhibit deformations of complex spatiotemporal patterns. Existing studies on wing deformation underscore the indispensable role of wing deformation in enhancing aerodynamic performance. Here, we investigated forward flight in bluebottle flies, flying semi-freely in a magnetic flight mill; we quantified wing surface deformation using high-speed videography and marker-less surface reconstruction and studied the effects on aerodynamic forces, power and efficiency using computational fluid dynamics. The results showed that flies' wings exhibited substantial camber near the wing root and twisted along the wingspan, as they were coupled effects of deflection primarily about the claval flexion line. Such deflection was more substantial for supination during the upstroke when most thrust was produced. Compared with deformed wings, the undeformed wings generated 59-98% of thrust and 54-87% of thrust efficiency (i.e. ratio of thrust and power). Wing twist moved the aerodynamic centre of pressure proximally and posteriorly, likely improving aerodynamic efficiency.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 216","pages":"20240076"},"PeriodicalIF":3.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253209/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-07-31DOI: 10.1098/rsif.2024.0100
Jacob Knight, Paula García-Galindo, Johannes Pausch, Gunnar Pruessner
Biological systems such as axonal growth cones perform chemotaxis at micrometre-level length scales, where chemotactic molecules are sparse. Such systems lie outside the range of validity of existing models, which assume smoothly varying chemical gradients. We investigate the effect of introducing discrete chemoattractant molecules by constructing a minimal dynamical model consisting of a chemotactic cell without internal memory. Significant differences are found in the behaviour of the cell as the chemical gradient is changed from smoothly varying to discrete, including the emergence of a homing radius beyond which chemotaxis is not reliably performed.
{"title":"Memoryless chemotaxis with discrete cues.","authors":"Jacob Knight, Paula García-Galindo, Johannes Pausch, Gunnar Pruessner","doi":"10.1098/rsif.2024.0100","DOIUrl":"10.1098/rsif.2024.0100","url":null,"abstract":"<p><p>Biological systems such as axonal growth cones perform chemotaxis at micrometre-level length scales, where chemotactic molecules are sparse. Such systems lie outside the range of validity of existing models, which assume smoothly varying chemical gradients. We investigate the effect of introducing <i>discrete</i> chemoattractant molecules by constructing a minimal dynamical model consisting of a chemotactic cell without internal memory. Significant differences are found in the behaviour of the cell as the chemical gradient is changed from smoothly varying to discrete, including the emergence of a homing radius beyond which chemotaxis is not reliably performed.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 216","pages":"20240100"},"PeriodicalIF":3.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289677/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-07-31DOI: 10.1098/rsif.2024.0123
Jonas O Wolff, Leah J Ashley, Clemens Schmitt, Celine Heu, Denitza Denkova, Maitry Jani, Veronika Řezáčová, Sean J Blamires, Stanislav N Gorb, Jessica Garb, Sara L Goodacre, Milan Řezáč
Spider webs that serve as snares are one of the most fascinating and abundant type of animal architectures. In many cases they include an adhesive coating of silk lines-so-called viscid silk-for prey capture. The evolutionary switch from silk secretions forming solid fibres to soft aqueous adhesives remains an open question in the understanding of spider silk evolution. Here we functionally and chemically characterized the secretions of two types of silk glands and their behavioural use in the cellar spider, Pholcus phalangioides. Both being derived from the same ancestral gland type that produces fibres with a solidifying glue coat, the two types produce respectively a quickly solidifying glue applied in thread anchorages and prey wraps, or a permanently tacky glue deployed in snares. We found that the latter is characterized by a high concentration of organic salts and reduced spidroin content, showing up a possible pathway for the evolution of viscid properties by hygroscopic-salt-mediated hydration of solidifying adhesives. Understanding the underlying molecular basis for such radical switches in material properties not only helps to better understand the evolutionary origins and versatility of ecologically impactful spider web architectures, but also informs the bioengineering of spider silk-based products with tailored properties.
{"title":"From fibres to adhesives: evolution of spider capture threads from web anchors by radical changes in silk gland function.","authors":"Jonas O Wolff, Leah J Ashley, Clemens Schmitt, Celine Heu, Denitza Denkova, Maitry Jani, Veronika Řezáčová, Sean J Blamires, Stanislav N Gorb, Jessica Garb, Sara L Goodacre, Milan Řezáč","doi":"10.1098/rsif.2024.0123","DOIUrl":"10.1098/rsif.2024.0123","url":null,"abstract":"<p><p>Spider webs that serve as snares are one of the most fascinating and abundant type of animal architectures. In many cases they include an adhesive coating of silk lines-so-called viscid silk-for prey capture. The evolutionary switch from silk secretions forming solid fibres to soft aqueous adhesives remains an open question in the understanding of spider silk evolution. Here we functionally and chemically characterized the secretions of two types of silk glands and their behavioural use in the cellar spider, <i>Pholcus phalangioides.</i> Both being derived from the same ancestral gland type that produces fibres with a solidifying glue coat, the two types produce respectively a quickly solidifying glue applied in thread anchorages and prey wraps, or a permanently tacky glue deployed in snares. We found that the latter is characterized by a high concentration of organic salts and reduced spidroin content, showing up a possible pathway for the evolution of viscid properties by hygroscopic-salt-mediated hydration of solidifying adhesives. Understanding the underlying molecular basis for such radical switches in material properties not only helps to better understand the evolutionary origins and versatility of ecologically impactful spider web architectures, but also informs the bioengineering of spider silk-based products with tailored properties.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 216","pages":"20240123"},"PeriodicalIF":3.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289648/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-07-31DOI: 10.1098/rsif.2024.0157
Ahmet Gungor, Muhammad Saif Ullah Khalid, Arman Hemmati
This study introduces novel physics-based scaling laws to estimate the propulsive performance of synchronously pitching foils in various schooling configurations. These relations are derived from quasi-steady lift-based and added mass forces. Hydrodynamic interactions among the schooling foils are considered through vortex-induced velocities imposed on them, constituting the ground effect. Generalized scaling equations are formulated for cycle-averaged coefficients of thrust and power. These equations encompass both the pure-pitching and induced velocity terms, capturing their combined effects. The equations are compared to computational results obtained from two-foil systems, exhibiting foil arrangements over a wide range of parameter space, including Strouhal number (0.15 ≤ St ≤ 0.4), pitching amplitude ([Formula: see text]) and phase difference ([Formula: see text]) at Re = 1000-10 000. The individual contributions of pure-pitching and induced velocity terms to propulsive performance elucidate that solely relying on the pure-pitching terms leads to inadequate estimation, emphasizing the significance of the induced velocity terms. The validity of the approach is further assessed by testing it with three-foil and five-foil configurations, which displays a collapse of estimated and measured results. This indicates that the scaling laws are applicable to multi-foil arrangements.
本研究介绍了基于物理学的新缩放定律,用于估算同步俯仰箔片在各种学校教育配置下的推进性能。这些关系由准稳定升力和附加质量力推导得出。通过施加在校准箔片上的涡流诱导速度(构成地面效应),考虑了校准箔片之间的流体动力学相互作用。为推力和功率的循环平均系数制定了通用比例方程。这些方程包括纯俯仰和诱导速度项,捕捉了它们的综合效应。这些方程与双箔片系统的计算结果进行了比较,显示了在 Re = 1000-10 000 条件下广泛参数空间内的箔片排列,包括斯特劳哈尔数(0.15 ≤ St ≤ 0.4)、俯仰振幅([计算公式:见正文])和相位差([计算公式:见正文])。纯俯仰项和诱导速度项对推进性能的单独贡献阐明,仅仅依靠纯俯仰项会导致估计不足,从而强调了诱导速度项的重要性。通过对三翼和五翼配置进行测试,进一步评估了该方法的有效性。这表明缩放定律适用于多翼布置。
{"title":"Physics-informed scaling laws for the performance of pitching foils in schooling configurations.","authors":"Ahmet Gungor, Muhammad Saif Ullah Khalid, Arman Hemmati","doi":"10.1098/rsif.2024.0157","DOIUrl":"10.1098/rsif.2024.0157","url":null,"abstract":"<p><p>This study introduces novel physics-based scaling laws to estimate the propulsive performance of synchronously pitching foils in various schooling configurations. These relations are derived from quasi-steady lift-based and added mass forces. Hydrodynamic interactions among the schooling foils are considered through vortex-induced velocities imposed on them, constituting the ground effect. Generalized scaling equations are formulated for cycle-averaged coefficients of thrust and power. These equations encompass both the pure-pitching and induced velocity terms, capturing their combined effects. The equations are compared to computational results obtained from two-foil systems, exhibiting foil arrangements over a wide range of parameter space, including Strouhal number (0.15 ≤ <i>St</i> ≤ 0.4), pitching amplitude ([Formula: see text]) and phase difference ([Formula: see text]) at <i>Re</i> = 1000-10 000. The individual contributions of pure-pitching and induced velocity terms to propulsive performance elucidate that solely relying on the pure-pitching terms leads to inadequate estimation, emphasizing the significance of the induced velocity terms. The validity of the approach is further assessed by testing it with three-foil and five-foil configurations, which displays a collapse of estimated and measured results. This indicates that the scaling laws are applicable to multi-foil arrangements.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 216","pages":"20240157"},"PeriodicalIF":3.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289834/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-07-31DOI: 10.1098/rsif.2024.0056
Veit Krause, Axel Voigt
Wrinkling instabilities of thin elastic sheets can be used to generate periodic structures over a wide range of length scales. Viscosity of the thin elastic sheet or its surrounding medium has been shown to be responsible for dynamic processes. We here consider wrinkling of fluid deformable surfaces. In contrast with thin elastic sheets, with in-plane and out-of-plane elasticity, these surfaces are characterized by in-plane viscous flow and out-of-plane elasticity and have been established as model systems for biomembranes and cellular sheets. We use this hydrodynamic theory and numerically explore the formation of wrinkles and their coarsening, either by a continuous reduction of the enclosed volume or by the continuous increase of the surface area. Both lead to almost identical results for wrinkle formation and the coarsening process, for which a scaling law for the wavenumber is obtained for a broad range of surface viscosity and rate of change of volume or area. However, for large Reynolds numbers and small changes in volume or area, wrinkling can be suppressed and surface hydrodynamics allows for global shape changes following the minimal energy configurations of the Helfrich energy for corresponding reduced volumes.
{"title":"Wrinkling of fluid deformable surfaces.","authors":"Veit Krause, Axel Voigt","doi":"10.1098/rsif.2024.0056","DOIUrl":"10.1098/rsif.2024.0056","url":null,"abstract":"<p><p>Wrinkling instabilities of thin elastic sheets can be used to generate periodic structures over a wide range of length scales. Viscosity of the thin elastic sheet or its surrounding medium has been shown to be responsible for dynamic processes. We here consider wrinkling of fluid deformable surfaces. In contrast with thin elastic sheets, with in-plane and out-of-plane elasticity, these surfaces are characterized by in-plane viscous flow and out-of-plane elasticity and have been established as model systems for biomembranes and cellular sheets. We use this hydrodynamic theory and numerically explore the formation of wrinkles and their coarsening, either by a continuous reduction of the enclosed volume or by the continuous increase of the surface area. Both lead to almost identical results for wrinkle formation and the coarsening process, for which a scaling law for the wavenumber is obtained for a broad range of surface viscosity and rate of change of volume or area. However, for large Reynolds numbers and small changes in volume or area, wrinkling can be suppressed and surface hydrodynamics allows for global shape changes following the minimal energy configurations of the Helfrich energy for corresponding reduced volumes.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 216","pages":"20240056"},"PeriodicalIF":3.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289638/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-07-31DOI: 10.1098/rsif.2024.0169
Arunava Nag, Floris van Breugel
Odour plumes in turbulent environments are intermittent and sparse. Laboratory-scaled experiments suggest that information about the source distance may be encoded in odour signal statistics, yet it is unclear whether useful and continuous distance estimates can be made under real-world flow conditions. Here, we analyse odour signals from outdoor experiments with a sensor moving across large spatial scales in desert and forest environments to show that odour signal statistics can yield useful estimates of distance. We show that achieving accurate estimates of distance requires integrating statistics from 5 to 10 s, with a high temporal encoding of the olfactory signal of at least 20 Hz. By combining distance estimates from a linear model with wind-relative motion dynamics, we achieved source distance estimates in a 60 × 60 m2 search area with median errors of 3-8 m, a distance at which point odour sources are often within visual range for animals such as mosquitoes.
{"title":"Odour source distance is predictable from a time history of odour statistics for large scale outdoor plumes.","authors":"Arunava Nag, Floris van Breugel","doi":"10.1098/rsif.2024.0169","DOIUrl":"10.1098/rsif.2024.0169","url":null,"abstract":"<p><p>Odour plumes in turbulent environments are intermittent and sparse. Laboratory-scaled experiments suggest that information about the source distance may be encoded in odour signal statistics, yet it is unclear whether useful and continuous distance estimates can be made under real-world flow conditions. Here, we analyse odour signals from outdoor experiments with a sensor moving across large spatial scales in desert and forest environments to show that odour signal statistics can yield useful estimates of distance. We show that achieving accurate estimates of distance requires integrating statistics from 5 to 10 s, with a high temporal encoding of the olfactory signal of at least 20 Hz. By combining distance estimates from a linear model with wind-relative motion dynamics, we achieved source distance estimates in a 60 × 60 m<sup>2</sup> search area with median errors of 3-8 m, a distance at which point odour sources are often within visual range for animals such as mosquitoes.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 216","pages":"20240169"},"PeriodicalIF":3.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288670/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}