My path to becoming a scientist has taken many twists and turns. This is perhaps not unusual to hear. Indeed, in discussions with my colleagues it seems that for many of us the path was never a straight one. Certainly, for me there have been moments when my whole world was encompassed by science and at other times, I have felt strongly that my time in science was up. I like to think that as scientists we ask a lot of questions and, for many of us, those questions extend to our very purpose as a scientist. My intention with this article is not to document my career path in detail or to provide very specific advice. Rather, I hope to describe how questions have defined my journey and to inspire others to occasionally pause and ask themselves what a career in science means to them. Today, I am an Assistant Professor at a major Canadian university, and here are the questions I asked along the way.
{"title":"From the bench to the farm and back again","authors":"Johnathan Canton","doi":"10.1111/imcb.12810","DOIUrl":"10.1111/imcb.12810","url":null,"abstract":"<p>My path to becoming a scientist has taken many twists and turns. This is perhaps not unusual to hear. Indeed, in discussions with my colleagues it seems that for many of us the path was never a straight one. Certainly, for me there have been moments when my whole world was encompassed by science and at other times, I have felt strongly that my time in science was up. I like to think that as scientists we ask a lot of questions and, for many of us, those questions extend to our very purpose as a scientist. My intention with this article is not to document my career path in detail or to provide very specific advice. Rather, I hope to describe how questions have defined my journey and to inspire others to occasionally pause and ask themselves what a career in science means to them. Today, I am an Assistant Professor at a major Canadian university, and here are the questions I asked along the way.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"103 1","pages":"15-18"},"PeriodicalIF":3.2,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12810","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p>In this Special Feature, we bring you the “Highlights of 2023”, a collection of short articles that discuss key research findings published in 2023 that advanced a specific research area of immunology. Booty<span><sup>1</sup></span> discusses recent mechanistic insights in T-cell immunometabolism, highlighting pathways and metabolites that modulate T effector and T regulatory (Treg) cell function in cancer and autoimmunity. Zhang and Chong<span><sup>2</sup></span> review key findings demonstrating the roles of microRNA in T-cell apoptosis and differentiation and Treg proliferation in experimental autoimmune encephalomyelitis and myeloma. Makuyana and Liston<span><sup>3</sup></span> focus on publications revealing new functions for Treg cells in the lung, including in alveolar regeneration. Guo <i>et al</i>.<span><sup>4</sup></span> highlight work that has advanced our understanding of age-related effects on T cells with large-scale analyses showing genetic, transcriptomic and T-cell receptor repertoire changes with age. Pasquin<span><sup>5</sup></span> discusses key findings in the functional characterization and diversity of γδ T cells and mucosal-associated invariant T (MAIT) cells. Cellular therapy was a pivotal theme in 2023. Chinni <i>et al</i>.<span><sup>6</sup></span> highlight findings demonstrating how CD4<sup>+</sup> T cells impact the manufacturing and quality of chimeric antigen receptor (CAR) T-cell products and contribute to long-term tumor control and adverse events such as cytokine release syndrome. Lee and Reed<span><sup>7</sup></span> discuss current clinical trials and basic research studies that are improving the specificity, safety and accessibility of CAR T-cell therapy for autoimmune disease. Bourel and Lesage<span><sup>8</sup></span> focus on publications defining the phenotypic, genetic and functional attributes that influence natural killer (NK) cell–mediated killing of tumor cells for the development of NK cellular therapies. Lam and Souza-Fonseca-Guimaraes<span><sup>9</sup></span> continue the NK cell theme, highlighting technological advances in genomics and proteomics that elucidate key functions of NK cells in cancer and infection. Lombard-Vadnais and Lesage<span><sup>10</sup></span> uncover the role of class switching in thymic B cells for negative selection of CD4<sup>+</sup> thymocytes and Treg generation. Barra and Marshall<span><sup>11</sup></span> highlight key findings on the diversity and function of mast cells and how they integrate with host defense to prevent immune-mediated damage in barrier tissues and the central nervous system. Dashwood and Liston<span><sup>12</sup></span> bring us up to date on microglia biology, with mechanistic insights into cognitive development, synaptic pruning and new approaches to evaluate microglia function. Van Nieuwenhove<span><sup>13</sup></span> highlights major translational advances in the detection and treatment of monogenic and polygenic pediatric immune deficienci
在本特辑中,我们将为您带来 "2023 年亮点",这是一组讨论 2023 年发表的、推动免疫学特定研究领域发展的重要研究成果的短文集。Booty1讨论了T细胞免疫代谢的最新机理见解,重点介绍了在癌症和自身免疫中调节T效应细胞和T调节(Treg)细胞功能的途径和代谢产物。Zhang和Chong2回顾了在实验性自身免疫性脑脊髓炎和骨髓瘤中证明微RNA在T细胞凋亡和分化以及Treg增殖中作用的重要发现。Makuyana 和 Liston3 重点介绍了揭示 Treg 细胞在肺部(包括肺泡再生)新功能的论文。Guo 等人4 重点介绍了通过大规模分析显示基因、转录组和 T 细胞受体组随着年龄的增长而发生变化,从而加深了我们对年龄对 T 细胞影响的理解。Pasquin5 讨论了γδ T 细胞和粘膜相关不变 T 细胞(MAIT)的功能特征和多样性方面的重要发现。细胞疗法是2023年的一个重要主题。Chinni等人6重点介绍了CD4+ T细胞如何影响嵌合抗原受体(CAR)T细胞产品的生产和质量,以及如何促进长期肿瘤控制和细胞因子释放综合征等不良反应的研究结果。Lee 和 Reed7 讨论了当前的临床试验和基础研究,这些研究正在提高 CAR T 细胞疗法治疗自身免疫性疾病的特异性、安全性和可及性。Bourel 和 Lesage8 重点介绍了有关影响自然杀伤(NK)细胞介导的肿瘤细胞杀伤的表型、遗传和功能特性的出版物,以开发 NK 细胞疗法。Lam和Souza-Fonseca-Guimaraes9继续以NK细胞为主题,重点介绍了基因组学和蛋白质组学方面的技术进展,这些进展阐明了NK细胞在癌症和感染中的关键功能。Lombard-Vadnais和Lesage10揭示了胸腺B细胞在CD4+胸腺细胞负向选择和Treg生成中的类别转换作用。Barra 和 Marshall11 重点介绍了肥大细胞的多样性和功能,以及肥大细胞如何与宿主防御相结合,防止屏障组织和中枢神经系统中免疫介导的损伤。Dashwood 和 Liston12 为我们介绍了小胶质细胞生物学的最新进展,包括对认知发展、突触修剪和评估小胶质细胞功能的新方法的机理认识。Van Nieuwenhove13 重点介绍了在检测和治疗单基因和多基因小儿免疫缺陷、自身免疫和自身炎症方面取得的重大转化进展。Pankhurst 和 Linterman14 总结了生殖中心领域的许多重要发现以及对长效体液免疫的影响。本研究亮点集旨在更新和庆祝 2023 年免疫学领域的重要发现。
{"title":"ICB Special Feature: Highlights of 2023","authors":"Joanne H Reed","doi":"10.1111/imcb.12792","DOIUrl":"10.1111/imcb.12792","url":null,"abstract":"<p>In this Special Feature, we bring you the “Highlights of 2023”, a collection of short articles that discuss key research findings published in 2023 that advanced a specific research area of immunology. Booty<span><sup>1</sup></span> discusses recent mechanistic insights in T-cell immunometabolism, highlighting pathways and metabolites that modulate T effector and T regulatory (Treg) cell function in cancer and autoimmunity. Zhang and Chong<span><sup>2</sup></span> review key findings demonstrating the roles of microRNA in T-cell apoptosis and differentiation and Treg proliferation in experimental autoimmune encephalomyelitis and myeloma. Makuyana and Liston<span><sup>3</sup></span> focus on publications revealing new functions for Treg cells in the lung, including in alveolar regeneration. Guo <i>et al</i>.<span><sup>4</sup></span> highlight work that has advanced our understanding of age-related effects on T cells with large-scale analyses showing genetic, transcriptomic and T-cell receptor repertoire changes with age. Pasquin<span><sup>5</sup></span> discusses key findings in the functional characterization and diversity of γδ T cells and mucosal-associated invariant T (MAIT) cells. Cellular therapy was a pivotal theme in 2023. Chinni <i>et al</i>.<span><sup>6</sup></span> highlight findings demonstrating how CD4<sup>+</sup> T cells impact the manufacturing and quality of chimeric antigen receptor (CAR) T-cell products and contribute to long-term tumor control and adverse events such as cytokine release syndrome. Lee and Reed<span><sup>7</sup></span> discuss current clinical trials and basic research studies that are improving the specificity, safety and accessibility of CAR T-cell therapy for autoimmune disease. Bourel and Lesage<span><sup>8</sup></span> focus on publications defining the phenotypic, genetic and functional attributes that influence natural killer (NK) cell–mediated killing of tumor cells for the development of NK cellular therapies. Lam and Souza-Fonseca-Guimaraes<span><sup>9</sup></span> continue the NK cell theme, highlighting technological advances in genomics and proteomics that elucidate key functions of NK cells in cancer and infection. Lombard-Vadnais and Lesage<span><sup>10</sup></span> uncover the role of class switching in thymic B cells for negative selection of CD4<sup>+</sup> thymocytes and Treg generation. Barra and Marshall<span><sup>11</sup></span> highlight key findings on the diversity and function of mast cells and how they integrate with host defense to prevent immune-mediated damage in barrier tissues and the central nervous system. Dashwood and Liston<span><sup>12</sup></span> bring us up to date on microglia biology, with mechanistic insights into cognitive development, synaptic pruning and new approaches to evaluate microglia function. Van Nieuwenhove<span><sup>13</sup></span> highlights major translational advances in the detection and treatment of monogenic and polygenic pediatric immune deficienci","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"102 6","pages":"412-413"},"PeriodicalIF":3.2,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12792","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bangyan Xu, Bethany M Anderson, Justine D Mintern, Laura E Edgington-Mitchell
Cysteine cathepsins are lysosomal proteases subject to dynamic regulation within antigen-presenting cells during the immune response and associated diseases. To investigate the regulation of cathepsin X, a carboxy-mono-exopeptidase, during maturation of dendritic cells (DCs), we exposed immortalized mouse DCs to various Toll-like receptor agonists. Using a cathepsin X-selective activity-based probe, sCy5-Nle-SY, we observed a significant increase in cathepsin X activation upon TLR-9 agonism with CpG, and to a lesser extent with Pam3 (TLR1/2), FSL-1 (TLR2/6) and LPS (TLR4). Despite clear maturation of DCs in response to Poly I:C (TLR3), cathepsin X activity was only slightly increased by this agonist, suggesting differential regulation of cathepsin X downstream of TLR activation. We demonstrated that cathepsin X was upregulated at the transcriptional level in response to CpG. This occurred at late time points and was not dampened by NF-κB inhibition. Factors secreted from CpG-treated cells were able to provoke cathepsin X upregulation when applied to naïve cells. Among these factors was IL-6, which on its own was sufficient to induce transcriptional upregulation and activation of cathepsin X. IL-6 is highly secreted by DCs in response to CpG but much less so in response to poly I:C, and inhibition of the IL-6 receptor subunit glycoprotein 130 prevented CpG-mediated cathepsin X upregulation. Collectively, these results demonstrate that cathepsin X is differentially transcribed during DC maturation in response to diverse stimuli, and that secreted IL-6 is critical for its dynamic regulation.
半胱氨酸酪蛋白是一种溶酶体蛋白酶,在免疫反应和相关疾病过程中会受到抗原递呈细胞内的动态调控。为了研究在树突状细胞(DCs)成熟过程中对羧基单外肽酶 X 的调控,我们将永生化小鼠 DCs 暴露于各种 Toll 样受体激动剂。通过使用基于活性的酪蛋白酶 X 选择性探针 sCy5-Nle-SY,我们观察到当 TLR-9 与 CpG(TLR1/2)、Pam3(TLR2/6)、FSL-1(TLR2/6)和 LPS(TLR4)激动时,酪蛋白酶 X 的活化显著增加。尽管直流细胞对 Poly I:C(TLR3)有明显的成熟反应,但这种激动剂只略微提高了酪蛋白酶 X 的活性,这表明酪蛋白酶 X 在 TLR 激活的下游有不同的调节作用。我们证实,CpG 在转录水平上上调了 cathepsin X 的活性。这种上调发生在晚期时间点,并且不会受到 NF-κB 抑制的抑制。将 CpG 处理过的细胞分泌的因子应用于天真细胞时,能够引起酪蛋白酶 X 的上调。这些因子中包括 IL-6,它本身就足以诱导转录上调和激活 cathepsin X。IL-6 在对 CpG 作出反应时由 DC 分泌得很高,但在对 poly I:C 作出反应时分泌得少得多,抑制 IL-6 受体亚基糖蛋白 130 能阻止 CpG 介导的 cathepsin X 上调。总之,这些结果表明,在 DC 成熟过程中,针对不同的刺激,酪蛋白酶 X 的转录是不同的,而分泌的 IL-6 对其动态调节至关重要。
{"title":"TLR9-dependent dendritic cell maturation promotes IL-6-mediated upregulation of cathepsin X","authors":"Bangyan Xu, Bethany M Anderson, Justine D Mintern, Laura E Edgington-Mitchell","doi":"10.1111/imcb.12806","DOIUrl":"10.1111/imcb.12806","url":null,"abstract":"<p>Cysteine cathepsins are lysosomal proteases subject to dynamic regulation within antigen-presenting cells during the immune response and associated diseases. To investigate the regulation of cathepsin X, a carboxy-mono-exopeptidase, during maturation of dendritic cells (DCs), we exposed immortalized mouse DCs to various Toll-like receptor agonists. Using a cathepsin X-selective activity-based probe, sCy5-Nle-SY, we observed a significant increase in cathepsin X activation upon TLR-9 agonism with CpG, and to a lesser extent with Pam3 (TLR1/2), FSL-1 (TLR2/6) and LPS (TLR4). Despite clear maturation of DCs in response to Poly I:C (TLR3), cathepsin X activity was only slightly increased by this agonist, suggesting differential regulation of cathepsin X downstream of TLR activation. We demonstrated that cathepsin X was upregulated at the transcriptional level in response to CpG. This occurred at late time points and was not dampened by NF-κB inhibition. Factors secreted from CpG-treated cells were able to provoke cathepsin X upregulation when applied to naïve cells. Among these factors was IL-6, which on its own was sufficient to induce transcriptional upregulation and activation of cathepsin X. IL-6 is highly secreted by DCs in response to CpG but much less so in response to poly I:C, and inhibition of the IL-6 receptor subunit glycoprotein 130 prevented CpG-mediated cathepsin X upregulation. Collectively, these results demonstrate that cathepsin X is differentially transcribed during DC maturation in response to diverse stimuli, and that secreted IL-6 is critical for its dynamic regulation.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"102 9","pages":"787-800"},"PeriodicalIF":3.2,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12806","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141557651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
UNC93B1 is essential for the stability and endosomal trafficking of nucleic-acid sensing Toll-like receptors (TLRs) including TLR7 and TLR8. Increased TLR7 responses are associated with lupus autoimmunity in both mice and humans. In a recent article, Al-Azab et al. demonstrate the role of a variant of UNC93B1 (p.V117L) in the induction of pediatric systemic lupus erythematosus in patients and in mice through TLR7/8 hyperresponsiveness. They also highlight a potential role for the pharmacological inhibition of interleukin-1 receptor–associated kinase (IRAK) 1 and/or 4 in ameliorating disease.
{"title":"UNCovering new causes of monogenic systemic lupus erythematosus","authors":"Julia I Ellyard, Michael P Gantier","doi":"10.1111/imcb.12807","DOIUrl":"10.1111/imcb.12807","url":null,"abstract":"<p>UNC93B1 is essential for the stability and endosomal trafficking of nucleic-acid sensing Toll-like receptors (TLRs) including TLR7 and TLR8. Increased TLR7 responses are associated with lupus autoimmunity in both mice and humans. In a recent article, Al-Azab <i>et al.</i> demonstrate the role of a variant of <i>UNC93B1</i> (p.V117L) in the induction of pediatric systemic lupus erythematosus in patients and in mice through TLR7/8 hyperresponsiveness. They also highlight a potential role for the pharmacological inhibition of interleukin-1 receptor–associated kinase (IRAK) 1 and/or 4 in ameliorating disease.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"102 8","pages":"651-654"},"PeriodicalIF":3.2,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12807","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this article, we discuss new insights into the distinct mechanisms for V(D)J recombination for different immunoglobulin loci. This follows the recent revelation that recombination signal sequences (RSS) within the IGKV locus have evolved to be more efficient mediators of recombination activating gene (RAG) recombination compared to the same elements in the IGH locus. This difference in RSS strength is proposed to be driven by different molecular mechanisms for RAG-mediated recombination between the two loci.
{"title":"RAGging on recombination signal sequence strength for diffusion-mediated recombination","authors":"Katherine JL Jackson","doi":"10.1111/imcb.12803","DOIUrl":"10.1111/imcb.12803","url":null,"abstract":"<p>In this article, we discuss new insights into the distinct mechanisms for V(D)J recombination for different immunoglobulin loci. This follows the recent revelation that recombination signal sequences (RSS) within the IGKV locus have evolved to be more efficient mediators of recombination activating gene (RAG) recombination compared to the same elements in the IGH locus. This difference in RSS strength is proposed to be driven by different molecular mechanisms for RAG-mediated recombination between the two loci.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"102 8","pages":"648-650"},"PeriodicalIF":3.2,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12803","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141553801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Puspendu Sardar, Alexandre Almeida, Virginia A Pedicord
Microbial metabolites can be viewed as the cytokines of the microbiome, transmitting information about the microbial and metabolic environment of the gut to orchestrate and modulate local and systemic immune responses. Still, many immunology studies focus solely on the taxonomy and community structure of the gut microbiota rather than its functions. Early sequencing-based microbiota profiling approaches relied on PCR amplification of small regions of bacterial and fungal genomes to facilitate identification of the microbes present. However, recent microbiome analysis methods, particularly shotgun metagenomic sequencing, now enable culture-independent profiling of microbiome functions and metabolites in addition to taxonomic characterization. In this review, we showcase recent advances in functional metagenomics methods and applications and discuss the current limitations and potential avenues for future development. Importantly, we highlight a few examples of key areas of opportunity in immunology research where integrating functional metagenomic analyses of the microbiome can substantially enhance a mechanistic understanding of microbiome–immune interactions and their contributions to health and disease states.
{"title":"Integrating functional metagenomics to decipher microbiome–immune interactions","authors":"Puspendu Sardar, Alexandre Almeida, Virginia A Pedicord","doi":"10.1111/imcb.12798","DOIUrl":"10.1111/imcb.12798","url":null,"abstract":"<p>Microbial metabolites can be viewed as the cytokines of the microbiome, transmitting information about the microbial and metabolic environment of the gut to orchestrate and modulate local and systemic immune responses. Still, many immunology studies focus solely on the taxonomy and community structure of the gut microbiota rather than its functions. Early sequencing-based microbiota profiling approaches relied on PCR amplification of small regions of bacterial and fungal genomes to facilitate identification of the microbes present. However, recent microbiome analysis methods, particularly shotgun metagenomic sequencing, now enable culture-independent profiling of microbiome functions and metabolites in addition to taxonomic characterization. In this review, we showcase recent advances in functional metagenomics methods and applications and discuss the current limitations and potential avenues for future development. Importantly, we highlight a few examples of key areas of opportunity in immunology research where integrating functional metagenomic analyses of the microbiome can substantially enhance a mechanistic understanding of microbiome–immune interactions and their contributions to health and disease states.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"102 8","pages":"680-691"},"PeriodicalIF":3.2,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12798","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141475547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nurturing a positive research culture within your organization","authors":"Adrian Liston, Denise C Fitzgerald","doi":"10.1111/imcb.12804","DOIUrl":"10.1111/imcb.12804","url":null,"abstract":"<p><i>Immunology & Cell Biology</i> 2024; <b>102</b>: 526; https://doi.org/10.1111/imcb.12804</p><p>Correction to: <i>Immunology & Cell Biology</i> 2023; https://doi.org/10.1111/imcb.12795</p><p>The authors would like to correct the descriptions for Figures 2 and 3. Please refer to the correct captions as shown below.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"102 6","pages":"526"},"PeriodicalIF":3.2,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12804","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this article for the Highlight of 2023 series, we discuss recent advances in the fundamental biology of the germinal center response. These discoveries provide important insights as to how the germinal center contributes to protection against infection, and also highlights opportunities for future vaccine development.
{"title":"Highlight of 2023: Advances in germinal centers","authors":"Theresa E Pankhurst, Michelle A Linterman","doi":"10.1111/imcb.12800","DOIUrl":"10.1111/imcb.12800","url":null,"abstract":"<p>In this article for the Highlight of 2023 series, we discuss recent advances in the fundamental biology of the germinal center response. These discoveries provide important insights as to how the germinal center contributes to protection against infection, and also highlights opportunities for future vaccine development.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"102 6","pages":"463-466"},"PeriodicalIF":3.2,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12800","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141464653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This Commentary recounts an academic journey from dentistry to neuroimmunology, highlighting pivotal moments such as a PhD fraught with challenges and an unexpected postdoctoral experience in France. My decision to settle in Belgium for a postdoc and subsequent transition to an assistant professorship at KU Leuven reflects resilience, adaptability and a commitment to both scientific exploration and family life. Balancing career uncertainties, motherhood and academic achievements, it encapsulates a trajectory shaped by a passion for neuroimmunology.
{"title":"From dentistry to immunology: navigating challenges and building a career in neuroimmunology","authors":"Lidia Yshii","doi":"10.1111/imcb.12797","DOIUrl":"10.1111/imcb.12797","url":null,"abstract":"<p>This Commentary recounts an academic journey from dentistry to neuroimmunology, highlighting pivotal moments such as a PhD fraught with challenges and an unexpected postdoctoral experience in France. My decision to settle in Belgium for a postdoc and subsequent transition to an assistant professorship at KU Leuven reflects resilience, adaptability and a commitment to both scientific exploration and family life. Balancing career uncertainties, motherhood and academic achievements, it encapsulates a trajectory shaped by a passion for neuroimmunology.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"103 1","pages":"12-14"},"PeriodicalIF":3.2,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12797","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141454176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A new study by Yamada-Hunter et al. reveals a novel approach to promote synergy—rather than antagonism—between macrophages and engineered T cells, leading to enhanced antitumor immunity.
Yamada-Hunter 等人的一项新研究揭示了一种促进巨噬细胞与工程 T 细胞之间协同作用而非拮抗作用的新方法,从而增强了抗肿瘤免疫力。
{"title":"Striking an alliance between T cells and macrophages for enhanced cancer immunotherapy","authors":"Tessa Gargett, Lisa M Ebert","doi":"10.1111/imcb.12799","DOIUrl":"10.1111/imcb.12799","url":null,"abstract":"<p>A new study by Yamada-Hunter <i>et al.</i> reveals a novel approach to promote synergy—rather than antagonism—between macrophages and engineered T cells, leading to enhanced antitumor immunity.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"102 7","pages":"535-537"},"PeriodicalIF":3.2,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12799","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141454178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}