Pub Date : 2023-09-19Print Date: 2023-09-01DOI: 10.1101/lm.053765.123
Dan Denis, Ryan Bottary, Tony J Cunningham, Mario-Cyriac Tcheukado, Jessica D Payne
Sleep benefits memory consolidation. However, factors present at initial encoding may moderate this effect. Here, we examined the role that encoding strategy plays in subsequent memory consolidation during sleep. Eighty-nine participants encoded pairs of words using two different strategies. Each participant encoded half of the word pairs using an integrative visualization technique, where the two items were imagined in an integrated scene. The other half were encoded nonintegratively, with each word pair item visualized separately. Memory was tested before and after a period of nocturnal sleep (N = 47) or daytime wake (N = 42) via cued recall tests. Immediate memory performance was significantly better for word pairs encoded using the integrative strategy compared with the nonintegrative strategy (P < 0.001). When looking at the change in recall across the delay, there was significantly less forgetting of integrated word pairs across a night of sleep compared with a day spent awake (P < 0.001), with no significant difference in the nonintegrated pairs (P = 0.19). This finding was driven by more forgetting of integrated compared with not-integrated pairs across the wake delay (P < 0.001), whereas forgetting was equivalent across the sleep delay (P = 0.26). Together, these results show that the strategy engaged in during encoding impacts both the immediate retention of memories and their subsequent consolidation across sleep and wake intervals.
{"title":"The influence of encoding strategy on associative memory consolidation across wake and sleep.","authors":"Dan Denis, Ryan Bottary, Tony J Cunningham, Mario-Cyriac Tcheukado, Jessica D Payne","doi":"10.1101/lm.053765.123","DOIUrl":"https://doi.org/10.1101/lm.053765.123","url":null,"abstract":"<p><p>Sleep benefits memory consolidation. However, factors present at initial encoding may moderate this effect. Here, we examined the role that encoding strategy plays in subsequent memory consolidation during sleep. Eighty-nine participants encoded pairs of words using two different strategies. Each participant encoded half of the word pairs using an integrative visualization technique, where the two items were imagined in an integrated scene. The other half were encoded nonintegratively, with each word pair item visualized separately. Memory was tested before and after a period of nocturnal sleep (<i>N</i> = 47) or daytime wake (<i>N</i> = 42) via cued recall tests. Immediate memory performance was significantly better for word pairs encoded using the integrative strategy compared with the nonintegrative strategy (<i>P</i> < 0.001). When looking at the change in recall across the delay, there was significantly less forgetting of integrated word pairs across a night of sleep compared with a day spent awake (<i>P</i> < 0.001), with no significant difference in the nonintegrated pairs (<i>P</i> = 0.19). This finding was driven by more forgetting of integrated compared with not-integrated pairs across the wake delay (<i>P</i> < 0.001), whereas forgetting was equivalent across the sleep delay (<i>P</i> = 0.26). Together, these results show that the strategy engaged in during encoding impacts both the immediate retention of memories and their subsequent consolidation across sleep and wake intervals.</p>","PeriodicalId":18003,"journal":{"name":"Learning & memory","volume":"30 9","pages":"185-191"},"PeriodicalIF":2.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547373/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41121819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-19Print Date: 2023-09-01DOI: 10.1101/lm.053772.123
Lucia M Sweeney, Hatty Lara, Rebecca L Gómez
Sleep promotes the stabilization of memories in adulthood, with a growing literature on the benefits of sleep for memory in infants and children. In two studies, we examined the role of sleep in the retention and generalization of nonadjacent dependencies (NADs; e.g., a-X-b/c-X-d phrases) in an artificial language. Previously, a study demonstrated that over a delay of 4 h, 15 mo olds who nap after training retain a general memory of the NAD rule instead of memory for specific NADs heard during training. In experiment 1, we designed a replication of the nap condition used in the earlier study but tested 18-mo-old infants. Infants of this age retained veridical memory for specific NADs over a delay containing sleep, providing preliminary evidence of the development of memory processes (experiment 1). In experiment 2, we tested 18 mo olds' ability to generalize the NAD to new vocabulary, finding only infants who napped after training generalized their knowledge of the pattern to completely novel phrases. Overall, by 18 mo of age, children retain specific memories over a period containing sleep, and sleep promotes abstract memories to a greater extent than wakefulness.
{"title":"Developmental changes in retention and generalization of nonadjacent dependencies over a period containing sleep in 18-mo-old infants.","authors":"Lucia M Sweeney, Hatty Lara, Rebecca L Gómez","doi":"10.1101/lm.053772.123","DOIUrl":"10.1101/lm.053772.123","url":null,"abstract":"<p><p>Sleep promotes the stabilization of memories in adulthood, with a growing literature on the benefits of sleep for memory in infants and children. In two studies, we examined the role of sleep in the retention and generalization of nonadjacent dependencies (NADs; e.g., a-X-b/c-X-d phrases) in an artificial language. Previously, a study demonstrated that over a delay of 4 h, 15 mo olds who nap after training retain a general memory of the NAD rule instead of memory for specific NADs heard during training. In experiment 1, we designed a replication of the nap condition used in the earlier study but tested 18-mo-old infants. Infants of this age retained veridical memory for specific NADs over a delay containing sleep, providing preliminary evidence of the development of memory processes (experiment 1). In experiment 2, we tested 18 mo olds' ability to generalize the NAD to new vocabulary, finding only infants who napped after training generalized their knowledge of the pattern to completely novel phrases. Overall, by 18 mo of age, children retain specific memories over a period containing sleep, and sleep promotes abstract memories to a greater extent than wakefulness.</p>","PeriodicalId":18003,"journal":{"name":"Learning & memory","volume":"30 9","pages":"212-220"},"PeriodicalIF":1.8,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547371/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41140071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-19Print Date: 2023-09-01DOI: 10.1101/lm.053886.123
{"title":"Special issue on sleep and memory.","authors":"","doi":"10.1101/lm.053886.123","DOIUrl":"10.1101/lm.053886.123","url":null,"abstract":"","PeriodicalId":18003,"journal":{"name":"Learning & memory","volume":"30 9","pages":"v"},"PeriodicalIF":1.8,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547372/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41124751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-19Print Date: 2023-09-01DOI: 10.1101/lm.053753.123
Xiu Miao, Carolin Müller, Nicolas D Lutz, Qing Yang, Florian Waszak, Jan Born, Karsten Rauss
Performing a motor response to a sensory stimulus creates a memory trace whose behavioral correlates are classically investigated in terms of repetition priming effects. Such stimulus-response learning entails two types of associations that are partly independent: (1) an association between the stimulus and the motor response and (2) an association between the stimulus and the classification task in which it is encountered. Here, we tested whether sleep supports long-lasting stimulus-response learning on a task requiring participants (1) for establishing stimulus-classification associations to classify presented objects along two different dimensions ("size" and "mechanical") and (2) as motor response (action) to respond with either the left or right index finger. Moreover, we examined whether strengthening of stimulus-classification associations is preferentially linked to nonrapid eye movement (non-REM) sleep and strengthening of stimulus-action associations to REM sleep. We tested 48 healthy volunteers in a between-subjects design comparing postlearning retention periods of nighttime sleep versus daytime wakefulness. At postretention testing, we found that sleep supports consolidation of both stimulus-action and stimulus-classification associations, as indicated by increased reaction times in "switch conditions"; that is, when, at test, the acutely instructed classification task and/or correct motor response for a given stimulus differed from that during original learning. Polysomnographic recordings revealed that both kinds of associations were correlated with non-REM spindle activity. Our results do not support the view of differential roles for non-REM and REM sleep in the consolidation of stimulus-classification and stimulus-action associations, respectively.
{"title":"Sleep consolidates stimulus-response learning.","authors":"Xiu Miao, Carolin Müller, Nicolas D Lutz, Qing Yang, Florian Waszak, Jan Born, Karsten Rauss","doi":"10.1101/lm.053753.123","DOIUrl":"10.1101/lm.053753.123","url":null,"abstract":"<p><p>Performing a motor response to a sensory stimulus creates a memory trace whose behavioral correlates are classically investigated in terms of repetition priming effects. Such stimulus-response learning entails two types of associations that are partly independent: (1) an association between the stimulus and the motor response and (2) an association between the stimulus and the classification task in which it is encountered. Here, we tested whether sleep supports long-lasting stimulus-response learning on a task requiring participants (1) for establishing stimulus-classification associations to classify presented objects along two different dimensions (\"size\" and \"mechanical\") and (2) as motor response (action) to respond with either the left or right index finger. Moreover, we examined whether strengthening of stimulus-classification associations is preferentially linked to nonrapid eye movement (non-REM) sleep and strengthening of stimulus-action associations to REM sleep. We tested 48 healthy volunteers in a between-subjects design comparing postlearning retention periods of nighttime sleep versus daytime wakefulness. At postretention testing, we found that sleep supports consolidation of both stimulus-action and stimulus-classification associations, as indicated by increased reaction times in \"switch conditions\"; that is, when, at test, the acutely instructed classification task and/or correct motor response for a given stimulus differed from that during original learning. Polysomnographic recordings revealed that both kinds of associations were correlated with non-REM spindle activity. Our results do not support the view of differential roles for non-REM and REM sleep in the consolidation of stimulus-classification and stimulus-action associations, respectively.</p>","PeriodicalId":18003,"journal":{"name":"Learning & memory","volume":"30 9","pages":"175-184"},"PeriodicalIF":1.8,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547380/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41104162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-07Print Date: 2023-08-01DOI: 10.1101/lm.053842.123
Heidrun Schultz, Hanna Stoffregen, Roland G Benoit
Reward improves memory through both encoding and consolidation processes. In this preregistered study, we tested whether reward effects on memory generalize from high-rewarded items to low-rewarded but episodically related items. Fifty-nine human volunteers incidentally encoded associations between unique objects and repeated scenes. Some scenes typically yielded high reward, whereas others typically yielded low reward. Memory was tested immediately after encoding (n = 29) or the next day (n = 30). Overall, reward had only a limited influence on memory. It did not enhance consolidation and its effect did not generalize to episodically related stimuli. We thus contribute to understanding the boundary conditions of reward effects on memory.
{"title":"A reward effect on memory retention, consolidation, and generalization?","authors":"Heidrun Schultz, Hanna Stoffregen, Roland G Benoit","doi":"10.1101/lm.053842.123","DOIUrl":"10.1101/lm.053842.123","url":null,"abstract":"<p><p>Reward improves memory through both encoding and consolidation processes. In this preregistered study, we tested whether reward effects on memory generalize from high-rewarded items to low-rewarded but episodically related items. Fifty-nine human volunteers incidentally encoded associations between unique objects and repeated scenes. Some scenes typically yielded high reward, whereas others typically yielded low reward. Memory was tested immediately after encoding (<i>n</i> = 29) or the next day (<i>n</i> = 30). Overall, reward had only a limited influence on memory. It did not enhance consolidation and its effect did not generalize to episodically related stimuli. We thus contribute to understanding the boundary conditions of reward effects on memory.</p>","PeriodicalId":18003,"journal":{"name":"Learning & memory","volume":"30 8","pages":"169-174"},"PeriodicalIF":1.8,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10519399/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10252435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-24Print Date: 2023-08-01DOI: 10.1101/lm.053797.123
Leeza Kopaeva, Alexandrina Yakimov, Louise Urien, Elizabeth P Bauer
An inability to reduce fear in nonthreatening environments characterizes many anxiety disorders. The pathway from the ventral subiculum (vSUB) to the bed nucleus of the stria terminalis (BNST) is more active in safe contexts than in aversive ones, as indexed by FOS expression. Here, we used chemogenetic techniques to specifically activate the vSUB-BNST pathway during both context and cued fear expression by expressing a Cre-dependent hM3D(Gq) receptor in BNST-projecting vSUB neurons. Activation of the vSUB-BNST pathway reduced context but not cued fear expression. These data suggest that the vSUB-BNST pathway contributes to behavioral responses to nonaversive contexts.
{"title":"Chemogenetic activation of the ventral subiculum-BNST pathway reduces context fear expression.","authors":"Leeza Kopaeva, Alexandrina Yakimov, Louise Urien, Elizabeth P Bauer","doi":"10.1101/lm.053797.123","DOIUrl":"10.1101/lm.053797.123","url":null,"abstract":"<p><p>An inability to reduce fear in nonthreatening environments characterizes many anxiety disorders. The pathway from the ventral subiculum (vSUB) to the bed nucleus of the stria terminalis (BNST) is more active in safe contexts than in aversive ones, as indexed by FOS expression. Here, we used chemogenetic techniques to specifically activate the vSUB-BNST pathway during both context and cued fear expression by expressing a Cre-dependent hM3D(Gq) receptor in BNST-projecting vSUB neurons. Activation of the vSUB-BNST pathway reduced context but not cued fear expression. These data suggest that the vSUB-BNST pathway contributes to behavioral responses to nonaversive contexts.</p>","PeriodicalId":18003,"journal":{"name":"Learning & memory","volume":"30 8","pages":"164-168"},"PeriodicalIF":1.8,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10519403/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10435030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-15Print Date: 2023-08-01DOI: 10.1101/lm.053782.123
Christopher N Wahlheim, Sydney T Smith, Sydney M Garlitch, Robert W Wiley
Retrieving existing memories before new learning can lead to retroactive facilitation. Three experiments examined whether interpolated retrieval is associated with retroactive facilitation and memory interdependence that reflects integrative encoding. Participants studied two lists of cue-response word pairs that repeated across lists (A-B, A-B), appeared in list 1 (A-B, -), or included the same cues with changed responses in each list (A-B, A-C). For A-B, A-C pairs, the tasks interpolated between lists required recall of list 1 (B) responses (with or without feedback) or restudy of complete list 1 (A-B) pairs. In list 2, participants only studied pairs (experiment 1) or studied pairs, attempted to detect changed (C) responses, and attempted to recall list 1 responses for detected changes (experiments 2 and 3). On a final cued recall test, participants attempted to recall list 1 responses, indicated whether responses changed between lists, and if so, attempted to recall list 2 responses. Interpolated retrieval was associated with subsequent retroactive facilitation and greater memory interdependence for B and C responses. These correlational findings are compatible with the view that retrieval retroactively facilitates memories, promotes coactivation of existing memories and new learning, and enables integrative encoding that veridically binds information across episodes.
{"title":"Interpolated retrieval retroactively increases recall and promotes cross-episode memory interdependence.","authors":"Christopher N Wahlheim, Sydney T Smith, Sydney M Garlitch, Robert W Wiley","doi":"10.1101/lm.053782.123","DOIUrl":"10.1101/lm.053782.123","url":null,"abstract":"<p><p>Retrieving existing memories before new learning can lead to retroactive facilitation. Three experiments examined whether interpolated retrieval is associated with retroactive facilitation and memory interdependence that reflects integrative encoding. Participants studied two lists of cue-response word pairs that repeated across lists (A-B, A-B), appeared in list 1 (A-B, -), or included the same cues with changed responses in each list (A-B, A-C). For A-B, A-C pairs, the tasks interpolated between lists required recall of list 1 (B) responses (with or without feedback) or restudy of complete list 1 (A-B) pairs. In list 2, participants only studied pairs (experiment 1) or studied pairs, attempted to detect changed (C) responses, and attempted to recall list 1 responses for detected changes (experiments 2 and 3). On a final cued recall test, participants attempted to recall list 1 responses, indicated whether responses changed between lists, and if so, attempted to recall list 2 responses. Interpolated retrieval was associated with subsequent retroactive facilitation and greater memory interdependence for B and C responses. These correlational findings are compatible with the view that retrieval retroactively facilitates memories, promotes coactivation of existing memories and new learning, and enables integrative encoding that veridically binds information across episodes.</p>","PeriodicalId":18003,"journal":{"name":"Learning & memory","volume":"30 8","pages":"151-163"},"PeriodicalIF":1.8,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10519378/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10003475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-08Print Date: 2023-07-01DOI: 10.1101/lm.053781.123
Yanfang Xia, Jelena Wehrli, Samuel Gerster, Marijn Kroes, Maxime Houtekamer, Dominik R Bach
Fear conditioning is a laboratory paradigm commonly used to investigate aversive learning and memory. In context fear conditioning, a configuration of elemental cues (conditioned stimulus [CTX]) predicts an aversive event (unconditioned stimulus [US]). To quantify context fear acquisition in humans, previous work has used startle eyeblink responses (SEBRs), skin conductance responses (SCRs), and verbal reports, but different quantification methods have rarely been compared. Moreover, preclinical intervention studies mandate recall tests several days after acquisition, and it is unclear how to induce and measure context fear memory retention over such a time interval. First, we used a semi-immersive virtual reality paradigm. In two experiments (N = 23 and N = 28), we found successful declarative learning and memory retention over 7 d but no evidence of other conditioned responses. Next, we used a configural fear conditioning paradigm with five static room images as CTXs in two experiments (N = 29 and N = 24). Besides successful declarative learning and memory retention after 7 d, SCR and pupil dilation in response to CTX onset differentiated CTX+/CTX- during acquisition training, and SEBR and pupil dilation differentiated CTX+/CTX- during the recall test, with medium to large effect sizes for the most sensitive indices (SEBR: Hedge's g = 0.56 and g = 0.69; pupil dilation: Hedge's g = 0.99 and g = 0.88). Our results demonstrate that with a configural learning paradigm, context fear memory retention can be demonstrated over 7 d, and we provide robust and replicable measurement methods to this end.
{"title":"Measuring human context fear conditioning and retention after consolidation.","authors":"Yanfang Xia, Jelena Wehrli, Samuel Gerster, Marijn Kroes, Maxime Houtekamer, Dominik R Bach","doi":"10.1101/lm.053781.123","DOIUrl":"10.1101/lm.053781.123","url":null,"abstract":"<p><p>Fear conditioning is a laboratory paradigm commonly used to investigate aversive learning and memory. In context fear conditioning, a configuration of elemental cues (conditioned stimulus [CTX]) predicts an aversive event (unconditioned stimulus [US]). To quantify context fear acquisition in humans, previous work has used startle eyeblink responses (SEBRs), skin conductance responses (SCRs), and verbal reports, but different quantification methods have rarely been compared. Moreover, preclinical intervention studies mandate recall tests several days after acquisition, and it is unclear how to induce and measure context fear memory retention over such a time interval. First, we used a semi-immersive virtual reality paradigm. In two experiments (<i>N</i> = 23 and <i>N</i> = 28), we found successful declarative learning and memory retention over 7 d but no evidence of other conditioned responses. Next, we used a configural fear conditioning paradigm with five static room images as CTXs in two experiments (<i>N</i> = 29 and <i>N</i> = 24). Besides successful declarative learning and memory retention after 7 d, SCR and pupil dilation in response to CTX onset differentiated CTX<sup>+</sup>/CTX<sup>-</sup> during acquisition training, and SEBR and pupil dilation differentiated CTX<sup>+</sup>/CTX<sup>-</sup> during the recall test, with medium to large effect sizes for the most sensitive indices (SEBR: Hedge's <i>g</i> = 0.56 and <i>g</i> = 0.69; pupil dilation: Hedge's <i>g</i> = 0.99 and <i>g</i> = 0.88). Our results demonstrate that with a configural learning paradigm, context fear memory retention can be demonstrated over 7 d, and we provide robust and replicable measurement methods to this end.</p>","PeriodicalId":18003,"journal":{"name":"Learning & memory","volume":"30 7","pages":"139-150"},"PeriodicalIF":2.0,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10519410/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10002973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-24Print Date: 2023-07-01DOI: 10.1101/lm.053795.123
Virginie Oberto, Hongying Gao, Ana Biondi, Susan J Sara, Sidney I Wiener
Prefrontal cortical and striatal areas have been identified by inactivation or lesion studies to be required for behavioral flexibility, including selecting and processing of different types of information. In order to identify these networks activated selectively during the acquisition of new reward contingency rules, rats were trained to discriminate orientations of bars presented in pseudorandom sequence on two video monitors positioned behind the goal sites on a T-maze with return arms. A second group already trained in the visual discrimination task learned to alternate left and right goal arm visits in the same maze while ignoring the visual cues still being presented. In each experimental group, once the rats reached criterion performance, the brains were prepared after a 90-min delay for later processing for c-fos immunohistochemistry. While both groups extinguished a prior strategy and acquired a new rule, they differed by the identity of the strategies and previous learning experience. Among the 28 forebrain areas examined, there were significant increases in the relative density of c-fos immunoreactive cell bodies after learning the second rule in the prefrontal cortex cingulate, the prelimbic and infralimbic areas, the dorsomedial striatum and the core of the nucleus accumbens, the ventral subiculum, and the central nucleus of the amygdala. These largely correspond to structures previously identified in inactivation studies, and their neurons fire synchronously during learning and strategy shifts. The data suggest that this dynamic network may underlie reward-based selection for action-a type of cognitive flexibility.
{"title":"Activation of prefrontal cortex and striatal regions in rats after shifting between rules in a T-maze.","authors":"Virginie Oberto, Hongying Gao, Ana Biondi, Susan J Sara, Sidney I Wiener","doi":"10.1101/lm.053795.123","DOIUrl":"10.1101/lm.053795.123","url":null,"abstract":"<p><p>Prefrontal cortical and striatal areas have been identified by inactivation or lesion studies to be required for behavioral flexibility, including selecting and processing of different types of information. In order to identify these networks activated selectively during the acquisition of new reward contingency rules, rats were trained to discriminate orientations of bars presented in pseudorandom sequence on two video monitors positioned behind the goal sites on a T-maze with return arms. A second group already trained in the visual discrimination task learned to alternate left and right goal arm visits in the same maze while ignoring the visual cues still being presented. In each experimental group, once the rats reached criterion performance, the brains were prepared after a 90-min delay for later processing for c-fos immunohistochemistry. While both groups extinguished a prior strategy and acquired a new rule, they differed by the identity of the strategies and previous learning experience. Among the 28 forebrain areas examined, there were significant increases in the relative density of c-fos immunoreactive cell bodies after learning the second rule in the prefrontal cortex cingulate, the prelimbic and infralimbic areas, the dorsomedial striatum and the core of the nucleus accumbens, the ventral subiculum, and the central nucleus of the amygdala. These largely correspond to structures previously identified in inactivation studies, and their neurons fire synchronously during learning and strategy shifts. The data suggest that this dynamic network may underlie reward-based selection for action-a type of cognitive flexibility.</p>","PeriodicalId":18003,"journal":{"name":"Learning & memory","volume":"30 7","pages":"133-138"},"PeriodicalIF":1.8,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10519402/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9940435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-24Print Date: 2023-07-01DOI: 10.1101/lm.053836.123
Niek Brosens, Sylvie L Lesuis, Ilse Bassie, Lara Reyes, Priya Gajadien, Paul J Lucassen, Harm J Krugers
Glucocorticoids are potent memory modulators that can modify behavior in an adaptive or maladaptive manner. Elevated glucocorticoid levels after learning promote memory consolidation at recent time points, but their effects on remote time points are not well established. Here we set out to assess whether corticosterone (CORT) given after learning modifies remote fear memory. To that end, mice were exposed to a mild auditory fear conditioning paradigm followed by a single 2 mg/kg CORT injection, and after 28 d, auditory memory was assessed. Neuronal activation was investigated using immunohistochemistry for the immediate early gene c-Fos, and coactivation of brain regions was determined using a correlation matrix analysis. CORT-treated mice displayed significantly less remote auditory memory retrieval. While the net activity of studied brain regions was similar compared with the control condition, CORT-induced remote memory impairment was associated with altered correlated activity between brain regions. Specifically, connectivity of the lateral amygdala with the basal amygdala and the dorsal dentate gyrus was significantly reduced in CORT-treated mice, suggesting disrupted network connectivity that may underlie diminished remote memory retrieval. Elucidating the pathways underlying these effects could help provide mechanistic insight into the effects of stress on memory and possibly provide therapeutic targets for psychopathology.
{"title":"Elevated corticosterone after fear learning impairs remote auditory memory retrieval and alters brain network connectivity.","authors":"Niek Brosens, Sylvie L Lesuis, Ilse Bassie, Lara Reyes, Priya Gajadien, Paul J Lucassen, Harm J Krugers","doi":"10.1101/lm.053836.123","DOIUrl":"10.1101/lm.053836.123","url":null,"abstract":"<p><p>Glucocorticoids are potent memory modulators that can modify behavior in an adaptive or maladaptive manner. Elevated glucocorticoid levels after learning promote memory consolidation at recent time points, but their effects on remote time points are not well established. Here we set out to assess whether corticosterone (CORT) given after learning modifies remote fear memory. To that end, mice were exposed to a mild auditory fear conditioning paradigm followed by a single 2 mg/kg CORT injection, and after 28 d, auditory memory was assessed. Neuronal activation was investigated using immunohistochemistry for the immediate early gene <i>c</i>-<i>Fos</i>, and coactivation of brain regions was determined using a correlation matrix analysis. CORT-treated mice displayed significantly less remote auditory memory retrieval. While the net activity of studied brain regions was similar compared with the control condition, CORT-induced remote memory impairment was associated with altered correlated activity between brain regions. Specifically, connectivity of the lateral amygdala with the basal amygdala and the dorsal dentate gyrus was significantly reduced in CORT-treated mice, suggesting disrupted network connectivity that may underlie diminished remote memory retrieval. Elucidating the pathways underlying these effects could help provide mechanistic insight into the effects of stress on memory and possibly provide therapeutic targets for psychopathology.</p>","PeriodicalId":18003,"journal":{"name":"Learning & memory","volume":"30 7","pages":"125-132"},"PeriodicalIF":1.8,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10519398/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10244687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}