Good dispersion stability of engine oil added with graphene is the premise of playing its superior tribology property and also the novelty of this study. As the tribological behaviour of a commercialised, fully synthetic 5W40 engine oil upon the incorporation of reduced graphene oxide in sample (0.02 wt%) like (5W40 engine oil + 0.02 wt% Reduced Graphene Oxide) called rGO6 presented superior tribological properties by exhibiting the lowest COF value in our previous work, the same sample was evaluated through a reciprocating tribometer, using steel ball (100 CR6) on a real polished gasoline engine cylinder liner with 5W-40 engine oil to investigate their wear and friction behaviour in boundary lubrication regime. It was found that a rGO6 nano-additive played an active role in lowering the coefficient of friction (3.29%) and increased surface protection by forming a protective layer on a smooth nanorough on rubbing surfaces.
{"title":"Experimental investigation of the effect of tribological performance of reduced graphene oxide additive added into engine oil on gasoline engine wear","authors":"Emrullah Hakan Kaleli, Selman Demirtaş","doi":"10.1002/ls.1627","DOIUrl":"10.1002/ls.1627","url":null,"abstract":"<p>Good dispersion stability of engine oil added with graphene is the premise of playing its superior tribology property and also the novelty of this study. As the tribological behaviour of a commercialised, fully synthetic 5W40 engine oil upon the incorporation of reduced graphene oxide in sample (0.02 wt%) like (5W40 engine oil + 0.02 wt% Reduced Graphene Oxide) called rGO6 presented superior tribological properties by exhibiting the lowest COF value in our previous work, the same sample was evaluated through a reciprocating tribometer, using steel ball (100 CR6) on a real polished gasoline engine cylinder liner with 5W-40 engine oil to investigate their wear and friction behaviour in boundary lubrication regime. It was found that a rGO6 nano-additive played an active role in lowering the coefficient of friction (3.29%) and increased surface protection by forming a protective layer on a smooth nanorough on rubbing surfaces.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42665216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frederik van de Voort, Daniel Furness, Michael Viset
A new stoichiometric FTIR Base Number (BN) method of significant utility and analytical benefit to the tribology sector has been developed, providing ASTM D4739-comparable BN results in lieu of titration in a fraction of the time. Thirty-six new/in-service oils analysed by both methods were linearly related with a between-method accuracy of ~±1.0 BN and a within-FTIR method reproducibility of ~±0.50 BN. Acid pKa differences and the comparative similarity of the FTIR results to HCl titration are discussed, including analytical benefits. It provides a rapid means of producing quality ASTM-comparable results, taking ~1 min/sample for spectral analysis versus 30–40 min for potentiometric titration. Method protocols are best suited to an open architecture FTIR accessory but can be readily adapted to flow cell equipped FTIRs. As structured, ASTM-like results are obtained rapidly with a major analytical environmental/maintenance footprint reduction, being ideally suited for in-service lubricant or research labs analysing 20–50 samples/day.
{"title":"Titrimetric-comparable BN results determined for in-service lubricants using quantitative FTIR spectroscopy","authors":"Frederik van de Voort, Daniel Furness, Michael Viset","doi":"10.1002/ls.1624","DOIUrl":"10.1002/ls.1624","url":null,"abstract":"<p>A new stoichiometric FTIR Base Number (BN) method of significant utility and analytical benefit to the tribology sector has been developed, providing ASTM D4739-comparable BN results in lieu of titration in a fraction of the time. Thirty-six new/in-service oils analysed by both methods were linearly related with a between-method accuracy of ~±1.0 BN and a within-FTIR method reproducibility of ~±0.50 BN. Acid pK<sub>a</sub> differences and the comparative similarity of the FTIR results to HCl titration are discussed, including analytical benefits. It provides a rapid means of producing quality ASTM-comparable results, taking ~1 min/sample for spectral analysis versus 30–40 min for potentiometric titration. Method protocols are best suited to an open architecture FTIR accessory but can be readily adapted to flow cell equipped FTIRs. As structured, ASTM-like results are obtained rapidly with a major analytical environmental/maintenance footprint reduction, being ideally suited for in-service lubricant or research labs analysing 20–50 samples/day.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45404271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jennifer Eickworth, Jonas Wagner, Philipp Daum, Martin Dienwiebel, Thomas Rühle
Friction modifier additives play a crucial role in controlling friction and wear of lubricated tribological systems. Model experiments in a controllable atmosphere performed by integrating a tribometer into a system of in situ surface analytical methods in vacuum can give insights into the additives functionality. In this work, thin, well-defined layers of an organic friction modifier (OFM) are adsorbed onto an iron oxide surface by means of an effusion cell immediately before measuring friction and wear. The results show that contrary to the assumption that homogeneous layers are formed, this OFM accumulates in droplets on the surface. Droplet number and radius increase with evaporation time. In friction tests, the smallest friction values are found for a low coverage of droplets. For larger droplets, friction increases due to a capillary neck of additive that forms between the sliding surfaces and is dragged along during the friction test.
{"title":"Gas phase lubrication study with an organic friction modifier","authors":"Jennifer Eickworth, Jonas Wagner, Philipp Daum, Martin Dienwiebel, Thomas Rühle","doi":"10.1002/ls.1620","DOIUrl":"10.1002/ls.1620","url":null,"abstract":"<p>Friction modifier additives play a crucial role in controlling friction and wear of lubricated tribological systems. Model experiments in a controllable atmosphere performed by integrating a tribometer into a system of in situ surface analytical methods in vacuum can give insights into the additives functionality. In this work, thin, well-defined layers of an organic friction modifier (OFM) are adsorbed onto an iron oxide surface by means of an effusion cell immediately before measuring friction and wear. The results show that contrary to the assumption that homogeneous layers are formed, this OFM accumulates in droplets on the surface. Droplet number and radius increase with evaporation time. In friction tests, the smallest friction values are found for a low coverage of droplets. For larger droplets, friction increases due to a capillary neck of additive that forms between the sliding surfaces and is dragged along during the friction test.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ls.1620","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44384832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The thermo-penetrative spreading behaviours of oil in microgrooves on stainless steel 316L surfaces were studied experimentally under temperature gradient conditions. An interface of smooth surface and microgrooved surface was designed to comparatively investigate the penetrative spreading of oil in microgrooves and the apparent spreading of oil on microgrooves and smooth surfaces. Then, microgrooves with different depths but a same width were laser processed to analyse the relationship between the actions of surface texture and temperature gradient on oil directional spreading. Results showed that the apparent oil on microgrooves extended directionally along the temperature gradient, leading to the lubricant loss from the high-temperature region to the lower, while the penetrative oil in microgrooves could spread rapidly from the low-temperature region to the higher under the obstruction of the thermocapillary effect, providing a potential method to enhance the lubrication.
{"title":"Thermo-penetrative spreading behaviours of oil in lasered microgrooves on stainless steel 316L surfaces","authors":"Rong Wang, Shaoxian Bai","doi":"10.1002/ls.1622","DOIUrl":"10.1002/ls.1622","url":null,"abstract":"<p>The thermo-penetrative spreading behaviours of oil in microgrooves on stainless steel 316L surfaces were studied experimentally under temperature gradient conditions. An interface of smooth surface and microgrooved surface was designed to comparatively investigate the penetrative spreading of oil in microgrooves and the apparent spreading of oil on microgrooves and smooth surfaces. Then, microgrooves with different depths but a same width were laser processed to analyse the relationship between the actions of surface texture and temperature gradient on oil directional spreading. Results showed that the apparent oil on microgrooves extended directionally along the temperature gradient, leading to the lubricant loss from the high-temperature region to the lower, while the penetrative oil in microgrooves could spread rapidly from the low-temperature region to the higher under the obstruction of the thermocapillary effect, providing a potential method to enhance the lubrication.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42578636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study had investigated the main degradation mechanism of a roll in hot rolling process, to reduce the wear and oxidation, a type of low-melting glass fabricated by the fuse-polymerisation method was tested as a hot metal forming lubricant by a ball-on-disc tribometer at high temperature. The results revealed that the roll degrades mainly due to the cracks initiated at the interface of carbides/matrix on the roll surface, then propagate along the interface, and being sheared off when the cracks confluence in the subsurface. The high-speed steel (HSS) starts to be oxidised at 500°C, and grows heavily with increasing temperature. The recommended lubricant presented a desired lubrication behaviour for hot rolling process that generating a higher friction coefficient at low temperature and a lower one at high temperature. The friction coefficient, wear rate, and oxidation of HSS roll was reduced materially, which meets the requirements of hot rolling lubricant well.
{"title":"Study of a fuse-polymerised inorganic glassy compound as a hot rolling lubricant","authors":"Zhihua Xu, Shaogang Cui, Yahui Niu, Wei Li","doi":"10.1002/ls.1623","DOIUrl":"10.1002/ls.1623","url":null,"abstract":"<p>This study had investigated the main degradation mechanism of a roll in hot rolling process, to reduce the wear and oxidation, a type of low-melting glass fabricated by the fuse-polymerisation method was tested as a hot metal forming lubricant by a ball-on-disc tribometer at high temperature. The results revealed that the roll degrades mainly due to the cracks initiated at the interface of carbides/matrix on the roll surface, then propagate along the interface, and being sheared off when the cracks confluence in the subsurface. The high-speed steel (HSS) starts to be oxidised at 500°C, and grows heavily with increasing temperature. The recommended lubricant presented a desired lubrication behaviour for hot rolling process that generating a higher friction coefficient at low temperature and a lower one at high temperature. The friction coefficient, wear rate, and oxidation of HSS roll was reduced materially, which meets the requirements of hot rolling lubricant well.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41763505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Based on the lubrication angle field and the locus of lubricating weak point, the lubricating characteristic of the toroidal surface enveloping cylindrical worm drive is globally investigated. The nonlinear equation system to determine the lubricating weak point is established by utilising the lubrication angle. Generally speaking, the weak locus always exists roughly in the middle of the tooth surface of cylindrical wormgear and a zone with worse lubricating behaviour is around the locus. By increasing the number of worm thread, the locus of lubricating weak point can be completely removed from the wormgear tooth surface, and the locus approximately is in the shape of the inverse capital letter L. On this occasion, the entire wormgear tooth surface is half surrounded by the locus, and the overall lubrication performance of the worm drive is improved. The current research is an application of elastohydrodynamic lubrication (EHL) on worm drive.
{"title":"Locus of lubricating weak point for the toroidal surface enveloping cylindrical worm drive","authors":"Jian Cui, Yaping Zhao, Shibo Mu, Gongfa Li, Xinyuan Chen","doi":"10.1002/ls.1621","DOIUrl":"10.1002/ls.1621","url":null,"abstract":"<p>Based on the lubrication angle field and the locus of lubricating weak point, the lubricating characteristic of the toroidal surface enveloping cylindrical worm drive is globally investigated. The nonlinear equation system to determine the lubricating weak point is established by utilising the lubrication angle. Generally speaking, the weak locus always exists roughly in the middle of the tooth surface of cylindrical wormgear and a zone with worse lubricating behaviour is around the locus. By increasing the number of worm thread, the locus of lubricating weak point can be completely removed from the wormgear tooth surface, and the locus approximately is in the shape of the inverse capital letter L. On this occasion, the entire wormgear tooth surface is half surrounded by the locus, and the overall lubrication performance of the worm drive is improved. The current research is an application of elastohydrodynamic lubrication (EHL) on worm drive.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46704918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A self-made soot capture device was applied to burn coal-to-liquids and collect its soot (CS), and then modified the CS with nitric acid or nitric acid and oleic acid to obtain nitric acid modified CS (CSN) or nitric acid and oleic acid modified CS (CSNO). The influence of CS, CSN and CSNO on the lubrication performance of 10# white oil (WO) was investigated on a four-ball tester. The structural difference, surface topography, element composition and tribological mechanism of the three types soot were analysed by Fourier transform infrared spectrometer, X-ray photoelectron spectroscopy, scanning electron microscope, high resolution transmission electron microscope, and so on. From the obtained results, after further modification with oleic acid, the solubility of oil is significantly improved. Compared with 10# WO, the average friction coefficient and average wear scar diameter of CS, CSN and CSNO are all reduced. Among them, CSNO has the best anti-friction and anti-wear effect. CSNO is expected to be used as carbon lubricating material from coal-to-liquids soot.
{"title":"Synergistic effect on the tribological characteristics for coal-to-liquids soot modified by nitric acid and oleic acid","authors":"Jian Wang, Tianxia Liu, Jian Qin","doi":"10.1002/ls.1626","DOIUrl":"10.1002/ls.1626","url":null,"abstract":"<p>A self-made soot capture device was applied to burn coal-to-liquids and collect its soot (CS), and then modified the CS with nitric acid or nitric acid and oleic acid to obtain nitric acid modified CS (CSN) or nitric acid and oleic acid modified CS (CSNO). The influence of CS, CSN and CSNO on the lubrication performance of 10<sup>#</sup> white oil (WO) was investigated on a four-ball tester. The structural difference, surface topography, element composition and tribological mechanism of the three types soot were analysed by Fourier transform infrared spectrometer, X-ray photoelectron spectroscopy, scanning electron microscope, high resolution transmission electron microscope, and so on. From the obtained results, after further modification with oleic acid, the solubility of oil is significantly improved. Compared with 10<sup>#</sup> WO, the average friction coefficient and average wear scar diameter of CS, CSN and CSNO are all reduced. Among them, CSNO has the best anti-friction and anti-wear effect. CSNO is expected to be used as carbon lubricating material from coal-to-liquids soot.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44224769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emmanuel E. Ubuo, Vesselin N. Paunov, Tommy S. Horozov
Surface designs and wetting mechanisms of Nepenthes pitcher plant provide useful guiding principles for achieving control over the wettability of solid surfaces as mimicked in slippery liquid-infused porous surfaces (SLIPS). Here, the effect of the over-layer thicknesses was investigated by gradual impregnation of porous silica coatings with squalane. Characterisation and wettability of the coatings at various stages of the impregnation were studied using fluorescence microscopy, gravimetric analysis and water contact/sliding angle measurements. The technique allowed us to progressively generate variable thicknesses of the oil over-layers and systematically tune the wetting behaviour of the coatings. The results clarify that very thin oil over-layer may not lead to slippery surface and the slipperiness of the coated surfaces was observed to increase with increase in the thickness of the over-layer. It is suggested that fabricated SLIPSs be accompanied with specified workable thickness of the oil over-layer in order to clearly evaluate their efficiencies.
{"title":"Slippery or sticky nano-porous silica coatings impregnated with squalane: The role of oil over-layer","authors":"Emmanuel E. Ubuo, Vesselin N. Paunov, Tommy S. Horozov","doi":"10.1002/ls.1619","DOIUrl":"10.1002/ls.1619","url":null,"abstract":"<p>Surface designs and wetting mechanisms of Nepenthes pitcher plant provide useful guiding principles for achieving control over the wettability of solid surfaces as mimicked in slippery liquid-infused porous surfaces (SLIPS). Here, the effect of the over-layer thicknesses was investigated by gradual impregnation of porous silica coatings with squalane. Characterisation and wettability of the coatings at various stages of the impregnation were studied using fluorescence microscopy, gravimetric analysis and water contact/sliding angle measurements. The technique allowed us to progressively generate variable thicknesses of the oil over-layers and systematically tune the wetting behaviour of the coatings. The results clarify that very thin oil over-layer may not lead to slippery surface and the slipperiness of the coated surfaces was observed to increase with increase in the thickness of the over-layer. It is suggested that fabricated SLIPSs be accompanied with specified workable thickness of the oil over-layer in order to clearly evaluate their efficiencies.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42508717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This article studies the lubrication state of the arc tooth cylindrical gears during injection lubrication. The mathematical model of arc tooth cylindrical gears are established based on meshing principle. The lubrication characteristics of arc tooth cylindrical gears under different injection methods and conditions are analysed by using computational fluid dynamics (CFD) model. The variation law of oil volume fraction in the gear-meshing zone is obtained. Comparing the two oil jet methods in into mesh lubrication, when the ratio of the pitch line velocity to the injection velocity is less than 1.5 times, the best lubrication is gained through the concave surface injection method, when the ratio of the pitch line velocity to the injection velocity is more than 1.5 times, the best lubrication is gained through the convex surface injection method. It shows that the tooth shape has significant influence on lubrication when the lubricating oil is injected.
{"title":"Lubrication characteristic of tooth surface on arc tooth cylindrical gears","authors":"Shuai Mo, Bingrui Luo, Heyu Dang, Yingxin Zhang, Guojian Cen, Yunsheng Huang","doi":"10.1002/ls.1618","DOIUrl":"10.1002/ls.1618","url":null,"abstract":"<p>This article studies the lubrication state of the arc tooth cylindrical gears during injection lubrication. The mathematical model of arc tooth cylindrical gears are established based on meshing principle. The lubrication characteristics of arc tooth cylindrical gears under different injection methods and conditions are analysed by using computational fluid dynamics (CFD) model. The variation law of oil volume fraction in the gear-meshing zone is obtained. Comparing the two oil jet methods in into mesh lubrication, when the ratio of the pitch line velocity to the injection velocity is less than 1.5 times, the best lubrication is gained through the concave surface injection method, when the ratio of the pitch line velocity to the injection velocity is more than 1.5 times, the best lubrication is gained through the convex surface injection method. It shows that the tooth shape has significant influence on lubrication when the lubricating oil is injected.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46652254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingze Cui, Qiong Tang, Chen Chen, Hong Xu, Lei Liu, Jinxiang Dong
Producing lubricating base oils from coal-based chemicals is an alternative route for replacing the conventional petro-based lubricants. Herein, we firstly reported the synthesis of high-viscosity polyalkylphenanthrene oils derived from the coal-based chemicals (phenanthrene, C6/C8-olefins) by alkylation with acidic ionic liquid (Et3NHCl∙2AlCl3) as catalyst. Their primary physicochemical properties were studied in detail to reveal their structure–property relationships, the existence of the phenanthrene ring in their molecular structure led to some good property, such as high-kinematic viscosity (12.6–30.2 mm2·s−1 at 100°C), better flash point (>230°C), high-oxidative onset time (>230°C) and good polarity. Moreover, the tribological performances of the synthetic oils and the commercial PAO-20 lubricating base oil were studied for comparison, these alkylated phenanthrenes, especially PHP-3 and POP-3, exhibited much higher load-carrying capacity, reducing friction and anti-wear property than that observed on PAO-20.
{"title":"High-viscosity polyalkylphenanthrene oils: Synthesis and evaluation of lubricating properties","authors":"Jingze Cui, Qiong Tang, Chen Chen, Hong Xu, Lei Liu, Jinxiang Dong","doi":"10.1002/ls.1606","DOIUrl":"10.1002/ls.1606","url":null,"abstract":"<p>Producing lubricating base oils from coal-based chemicals is an alternative route for replacing the conventional petro-based lubricants. Herein, we firstly reported the synthesis of high-viscosity polyalkylphenanthrene oils derived from the coal-based chemicals (phenanthrene, C6/C8-olefins) by alkylation with acidic ionic liquid (Et<sub>3</sub>NHCl∙2AlCl<sub>3</sub>) as catalyst. Their primary physicochemical properties were studied in detail to reveal their structure–property relationships, the existence of the phenanthrene ring in their molecular structure led to some good property, such as high-kinematic viscosity (12.6–30.2 mm<sup>2</sup>·s<sup>−1</sup> at 100°C), better flash point (>230°C), high-oxidative onset time (>230°C) and good polarity. Moreover, the tribological performances of the synthetic oils and the commercial PAO-20 lubricating base oil were studied for comparison, these alkylated phenanthrenes, especially PHP-3 and POP-3, exhibited much higher load-carrying capacity, reducing friction and anti-wear property than that observed on PAO-20.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41298001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}