Hitesh K. Trivedi, David T. Gerardi, Douglas K. Toth, Ruth F. Girouard, Patrick T. Hellman, Garry D. Givan
Polyol-ester lubricants have been used and developed for aviation gas turbine engines for many decades. The newest MIL-PRF-23699 lubricant class, called enhanced ester (EE), provides the best combination of thermal stability, load carrying capability, boundary lubrication and compatibility with fluoroelastomer O-rings. Two candidate EE Class formulations and one high thermal stability class formulation conforming to MIL-PRF-23699G were evaluated for oil degradation with up to 3000 h of bearing operation. Lubricant degradation was studied using VIM VAR M50 bearings with M50 and silicon nitride balls under two operating conditions using two bearing test rigs. Oil degradation in terms of oxidation time, total acid number and viscosity was studied as a function of time with varying results for the three lubricants.
几十年来,多元醇酯润滑剂一直被用于航空燃气涡轮发动机。最新的MIL‐PRF‐23699润滑剂类别被称为增强型酯(EE),可提供热稳定性、承载能力、边界润滑以及与氟弹性体O型环的兼容性的最佳组合。评估了符合MIL‐PRF‐23699G的两种候选EE级配方和一种高热稳定性级配方的油降解率高达3000 h轴承运行。使用带有M50和氮化硅球的VIM VAR M50轴承,在两种操作条件下,使用两个轴承试验台研究了润滑剂的降解。研究了三种润滑油的氧化时间、总酸值和粘度随时间的变化,结果各不相同。
{"title":"Enhanced ester (MIL-PRF-23699G) gas turbine engine lubricant degradation with VIM VAR M50 bearings","authors":"Hitesh K. Trivedi, David T. Gerardi, Douglas K. Toth, Ruth F. Girouard, Patrick T. Hellman, Garry D. Givan","doi":"10.1002/ls.1635","DOIUrl":"10.1002/ls.1635","url":null,"abstract":"<p>Polyol-ester lubricants have been used and developed for aviation gas turbine engines for many decades. The newest MIL-PRF-23699 lubricant class, called enhanced ester (EE), provides the best combination of thermal stability, load carrying capability, boundary lubrication and compatibility with fluoroelastomer O-rings. Two candidate EE Class formulations and one high thermal stability class formulation conforming to MIL-PRF-23699G were evaluated for oil degradation with up to 3000 h of bearing operation. Lubricant degradation was studied using VIM VAR M50 bearings with M50 and silicon nitride balls under two operating conditions using two bearing test rigs. Oil degradation in terms of oxidation time, total acid number and viscosity was studied as a function of time with varying results for the three lubricants.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":"35 4","pages":"237-248"},"PeriodicalIF":1.9,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48953010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Priyanka Agarwal, Suheel K. Porwal, Jyoti Porwal, Raj K. Singh, Naveen Singhal
Nanoadditive with multifunctional properties holds commercial importance in the lubricant industry. Herein, GO-N-PPDA was synthesised as nanoadditive by functionalizing graphene oxide (GO) using N-phenyl-p-phenylenediamine and characterised by Fourier transform infrared spectroscopy, X-ray diffraction analysis, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy analysis. The antioxidant behaviour of GO-N-PPDA was analysed by 2,2-diphenyl-1-picryl-hydrazyl-hydrate. The nanoparticles dispersed mineral base oil (N-250) in 0.2%, 0.4%, 0.6% (w/v) concentrations were evaluated for tribological, rheological and thermophysical analysis by ASTM methods. The flow behaviour of the nanolubricant shows shear thickening behaviour with an increase in shear rate. In contrast, tribological results indicate a significant reduction in wear scar diameter and coefficient of friction to the base oil. Furthermore, GO-N-PPDA shows improved thermophysical properties compared with the mineral base oil. Thus, GO-N-PPDA shows multifunctional behaviour in terms of viscosity index, pour point, antioxidant activity, rheology and tribological properties.
纳米添加剂具有多功能特性,在润滑油工业中具有重要的商业价值。本文采用N -苯基-对苯二胺功能化氧化石墨烯(GO),合成了氧化石墨烯- N - PPDA纳米添加剂,并通过傅里叶变换红外光谱、X射线衍射分析、热重分析、扫描电镜和透射电镜分析对其进行了表征。用2,2 -二苯基- 1 -吡咯酰-水合肼分析了氧化石墨烯- N - PPDA的抗氧化行为。纳米颗粒分散的矿物基础油(N‐250)浓度分别为0.2%、0.4%和0.6% (w/v),通过ASTM方法进行摩擦学、流变学和热物理分析。随着剪切速率的增加,纳米润滑剂的流动表现出剪切增稠的特性。相比之下,摩擦学结果表明,磨损疤痕直径和基础油的摩擦系数显著减小。此外,与矿物基础油相比,GO‐N‐PPDA表现出更好的热物理性质。因此,GO‐N‐PPDA在粘度指数、倾点、抗氧化活性、流变学和摩擦学性能方面表现出多功能行为。
{"title":"Chemically functionalized graphene oxide with N-phenyl-p-phenylenediamine as efficient tribo- and rheological modifier for lubricating oil","authors":"Priyanka Agarwal, Suheel K. Porwal, Jyoti Porwal, Raj K. Singh, Naveen Singhal","doi":"10.1002/ls.1636","DOIUrl":"10.1002/ls.1636","url":null,"abstract":"<p>Nanoadditive with multifunctional properties holds commercial importance in the lubricant industry. Herein, GO-<i>N</i>-PPDA was synthesised as nanoadditive by functionalizing graphene oxide (GO) using <i>N</i>-phenyl-<i>p</i>-phenylenediamine and characterised by Fourier transform infrared spectroscopy, X-ray diffraction analysis, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy analysis. The antioxidant behaviour of GO-<i>N</i>-PPDA was analysed by 2,2-diphenyl-1-picryl-hydrazyl-hydrate. The nanoparticles dispersed mineral base oil (N-250) in 0.2%, 0.4%, 0.6% (w/v) concentrations were evaluated for tribological, rheological and thermophysical analysis by ASTM methods. The flow behaviour of the nanolubricant shows shear thickening behaviour with an increase in shear rate. In contrast, tribological results indicate a significant reduction in wear scar diameter and coefficient of friction to the base oil. Furthermore, GO-<i>N</i>-PPDA shows improved thermophysical properties compared with the mineral base oil. Thus, GO-<i>N</i>-PPDA shows multifunctional behaviour in terms of viscosity index, pour point, antioxidant activity, rheology and tribological properties.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":"35 4","pages":"249-259"},"PeriodicalIF":1.9,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43456184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To reduce the agglomeration of graphene and improve the synergistic friction-reducing and anti-wear action of graphene loading copper, one-step preparation of reduced graphene oxide/copper(RGO/Cu) nanoparticles by freeze-drying method was used, the influence of process parameters on particles size of RGO/Cu is studied by orthogonal experiments. The microstructures of RGO/Cu nanoparticles are characterized by SEM and AFM, and the tribological properties of RGO/Cu nanoparticles are studied on a tribometer. The results show that the purity of RGO/Cu nanoparticles prepared by freeze-drying was higher, and the copper nanoparticles 100–200 nm are uniformly attached to the graphene surface. It was found that RGO/Cu nanoparticles have better friction reduction and anti-wear properties than graphene mono-agent as lubricant additive. The synergistic anti-friction and anti-wear performance are better at the addition of 0.10 wt% for RGO/Cu nanoparticles. Compared with the base oil, the friction coefficient decreases by 23.1%, and the width of wear scar decreases by 62.5%.
{"title":"Preparation of graphene-loading copper nanoparticles by freeze drying and its tribological properties","authors":"Runling Peng, Wei Wang, Peng Wang, Jinyue Liu, Shijiao Liu, Haonan Zhai, Junde Guo","doi":"10.1002/ls.1638","DOIUrl":"10.1002/ls.1638","url":null,"abstract":"<p>To reduce the agglomeration of graphene and improve the synergistic friction-reducing and anti-wear action of graphene loading copper, one-step preparation of reduced graphene oxide/copper(RGO/Cu) nanoparticles by freeze-drying method was used, the influence of process parameters on particles size of RGO/Cu is studied by orthogonal experiments. The microstructures of RGO/Cu nanoparticles are characterized by SEM and AFM, and the tribological properties of RGO/Cu nanoparticles are studied on a tribometer. The results show that the purity of RGO/Cu nanoparticles prepared by freeze-drying was higher, and the copper nanoparticles 100–200 nm are uniformly attached to the graphene surface. It was found that RGO/Cu nanoparticles have better friction reduction and anti-wear properties than graphene mono-agent as lubricant additive. The synergistic anti-friction and anti-wear performance are better at the addition of 0.10 wt% for RGO/Cu nanoparticles. Compared with the base oil, the friction coefficient decreases by 23.1%, and the width of wear scar decreases by 62.5%.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":"35 4","pages":"270-278"},"PeriodicalIF":1.9,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42437791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Javier Lara-Romero, Ricardo Rangel, Julián López-Tinoco, Jesús Antonio Carlos-Cornelio, Alejandro Toro-Betancur, Fernando Chiñas-Castillo, Gabriel Alonso-Nuñez, Sergio Jiménez-Sandoval
The friction and wear reducing properties of ammonium thiomolybdate as a water-soluble lubricant additive were evaluated using a pin-on-disck tribometer on a steel-steel contact. The tribological performance of aqueous solutions of thiomolybdate prepared at concentrations between 0.1 and 0.3 wt% Mo were evaluated at the same load (10 N), entrainment speed, sliding distance and temperature. Although there is a reduction of friction and wear compared with pure water, a significant difference is observed, depending on the additive concentration. SEM/EDAX and Raman spectroscopy analyses of the wear tracks of specimens tested at concentrations below 0.3 wt% Mo reveal the formation of FeS which is responsible for gradually reducing the coefficient of friction from values between 0.30 and 0.5 down to ~0.11. At 0.3 wt% Mo, the analyses indicated the formation of a MoS2 which keeps the coefficient of friction in ~0.05, the lowest recorded value.
{"title":"Tribological performance of ammonium thiomolybdate as water-soluble lubricant additive for steel-steel contacts","authors":"Javier Lara-Romero, Ricardo Rangel, Julián López-Tinoco, Jesús Antonio Carlos-Cornelio, Alejandro Toro-Betancur, Fernando Chiñas-Castillo, Gabriel Alonso-Nuñez, Sergio Jiménez-Sandoval","doi":"10.1002/ls.1637","DOIUrl":"10.1002/ls.1637","url":null,"abstract":"<p>The friction and wear reducing properties of ammonium thiomolybdate as a water-soluble lubricant additive were evaluated using a pin-on-disck tribometer on a steel-steel contact. The tribological performance of aqueous solutions of thiomolybdate prepared at concentrations between 0.1 and 0.3 wt% Mo were evaluated at the same load (10 N), entrainment speed, sliding distance and temperature. Although there is a reduction of friction and wear compared with pure water, a significant difference is observed, depending on the additive concentration. SEM/EDAX and Raman spectroscopy analyses of the wear tracks of specimens tested at concentrations below 0.3 wt% Mo reveal the formation of FeS which is responsible for gradually reducing the coefficient of friction from values between 0.30 and 0.5 down to ~0.11. At 0.3 wt% Mo, the analyses indicated the formation of a MoS<sub>2</sub> which keeps the coefficient of friction in ~0.05, the lowest recorded value.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":"35 4","pages":"260-269"},"PeriodicalIF":1.9,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48512353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, the static performance analysis of journal bearing having full and partial surface waviness has been presented. The surface waviness is to be considered in the full, first half, second half, and pressure-increasing and decreasing regions of the bearing for analysis. The effect of surface waviness is considered by modifying the lubricant flow governing Reynolds equation with the film thickness equation and it is solved with the finite element method to get performance parameters like bearing load capacity, friction coefficient, and so forth operating under eccentricity ratios range of 0.2–0.8. The waviness geometrical parameters like waviness numbers and amplitudes are also considered in circumferential, axial, and both directions in the selected regions. The maximum performance has been found for waviness in the full and pressure-increasing region in the circumferential direction at a high eccentricity ratio.
{"title":"Impact of partial surface waviness on the tribological performance of hydrodynamic journal bearing","authors":"Arun Bangotra, Sanjay Sharma","doi":"10.1002/ls.1633","DOIUrl":"10.1002/ls.1633","url":null,"abstract":"<p>In this paper, the static performance analysis of journal bearing having full and partial surface waviness has been presented. The surface waviness is to be considered in the full, first half, second half, and pressure-increasing and decreasing regions of the bearing for analysis. The effect of surface waviness is considered by modifying the lubricant flow governing Reynolds equation with the film thickness equation and it is solved with the finite element method to get performance parameters like bearing load capacity, friction coefficient, and so forth operating under eccentricity ratios range of 0.2–0.8. The waviness geometrical parameters like waviness numbers and amplitudes are also considered in circumferential, axial, and both directions in the selected regions. The maximum performance has been found for waviness in the full and pressure-increasing region in the circumferential direction at a high eccentricity ratio.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":"35 3","pages":"207-224"},"PeriodicalIF":1.9,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44003550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The performance of cylinder liner piston ring (CLPR) that worked under harsh conditions significantly affected the reliability of diesel engines. Nano-copper lubricant additives have recently been introduced due to their good anti-wear properties. This study aims to gain insights into the interactions between concentrations of nano-copper lubricant additives and the tribological performance of CLPR. Tests are performed on a reciprocating sliding test rig under different operating conditions, and the tribological performances are characterized by the friction coefficient, wear mass losses, and morphologies of worn surface. The experimental results indicated that the optimal concentration of nano-copper additives is 2 wt%. Additionally, deposition of the Cu nanoparticles on the worn surface during the friction process facilitates the formation of the mending layer. These findings would aid to provide a technical reference for the application of nano-copper additives in diesel engines.
{"title":"Effect of copper nanoparticle concentration on tribological performances of cylinder liner piston ring","authors":"Huabing Yin, Xuecheng Zhang, Zhiwei Guo, Zhongzhi Liu, Xiang Rao, Chengqing Yuan","doi":"10.1002/ls.1634","DOIUrl":"10.1002/ls.1634","url":null,"abstract":"<p>The performance of cylinder liner piston ring (CLPR) that worked under harsh conditions significantly affected the reliability of diesel engines. Nano-copper lubricant additives have recently been introduced due to their good anti-wear properties. This study aims to gain insights into the interactions between concentrations of nano-copper lubricant additives and the tribological performance of CLPR. Tests are performed on a reciprocating sliding test rig under different operating conditions, and the tribological performances are characterized by the friction coefficient, wear mass losses, and morphologies of worn surface. The experimental results indicated that the optimal concentration of nano-copper additives is 2 wt%. Additionally, deposition of the Cu nanoparticles on the worn surface during the friction process facilitates the formation of the mending layer. These findings would aid to provide a technical reference for the application of nano-copper additives in diesel engines.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":"35 4","pages":"225-236"},"PeriodicalIF":1.9,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41485713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ehsan Fatourehchi, Hamed Shahmohamadi, Ramin Rahmani, Homer Rahnejat, Mark Johnson, Ian Wilson
Dust stop seals are widely used in powder and rubber mixing industries. Design of the sealing system requires a continuous supply of pressurised lubricant, which is not recycled because of the risk of contamination. There is also the potential of large volume leakage of oil due to poor sealing, increasing operational costs and necessitating remedial measures to avoid environmental protection. Furthermore, the seal faces are prone to failure in relatively short periods of time due to reduced gap and lubricant leakage. The paper presents an analytical method and numerical predictions based on Reynolds equation under combined hydrodynamic and hydrostatic conditions with the entrant lubricant through hydraulically loaded feedholes. The validity of these methods is ascertained through comparison with a more complex but time-consuming solution of Navier–Stokes equations. The numerical predictions allow for determining the prevailing tribological contact conditions and assessing its suitability for evaluating the sealing performance of mixing machinery.
{"title":"Tribology of dust-stop seals of mixing machines","authors":"Ehsan Fatourehchi, Hamed Shahmohamadi, Ramin Rahmani, Homer Rahnejat, Mark Johnson, Ian Wilson","doi":"10.1002/ls.1632","DOIUrl":"10.1002/ls.1632","url":null,"abstract":"<p>Dust stop seals are widely used in powder and rubber mixing industries. Design of the sealing system requires a continuous supply of pressurised lubricant, which is not recycled because of the risk of contamination. There is also the potential of large volume leakage of oil due to poor sealing, increasing operational costs and necessitating remedial measures to avoid environmental protection. Furthermore, the seal faces are prone to failure in relatively short periods of time due to reduced gap and lubricant leakage. The paper presents an analytical method and numerical predictions based on Reynolds equation under combined hydrodynamic and hydrostatic conditions with the entrant lubricant through hydraulically loaded feedholes. The validity of these methods is ascertained through comparison with a more complex but time-consuming solution of Navier–Stokes equations. The numerical predictions allow for determining the prevailing tribological contact conditions and assessing its suitability for evaluating the sealing performance of mixing machinery.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":"35 3","pages":"193-206"},"PeriodicalIF":1.9,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ls.1632","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44436223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Four oil‐soluble ionic liquids (ILs) with different structures were synthesised: N88816‐Doss (N/S), P88816‐Doss (P/S), N88816 phosphate (N/P) and P88816 phosphate (P/P). The effects of the four ILs synthesised with conventional lubricating additives isobutylene sulfide (T321), zinc dialkyl dithiophosphate (ZDDP) and tricresyl phosphate (T306) as PAO10 additives on the physicochemical properties of the prepared oil samples were systematically investigated at the same dosing rates. The antifriction and antiwear properties and extreme pressure performance of oil samples prepared by four ILs and three conventional additives were investigated by a four‐ball friction and a wear testing machine. The results showed that P/S improved the thermal stability of PAO10. The addition of N/S significantly improved the tribological performance of PAO10 at room temperature and under heavy loading. The coefficient of friction was reduced by 90%, the wear spot diameter is decreased by 28%, the last non‐seizure load PB is doubled, and the resistance to sintering did not improve.
{"title":"Tribological performance study of oil-soluble ILs as lubricant additives by the four-ball method","authors":"Zhaozhao Yang, Yijing Liang, Qing Huang, Xingwei Wang, Chunyu Zhou, Ruozheng Wang, Xiaoyan Yan, Bo Yu, Qiangliang Yu, Meirong Cai, Feng Zhou","doi":"10.1002/ls.1631","DOIUrl":"10.1002/ls.1631","url":null,"abstract":"Four oil‐soluble ionic liquids (ILs) with different structures were synthesised: N88816‐Doss (N/S), P88816‐Doss (P/S), N88816 phosphate (N/P) and P88816 phosphate (P/P). The effects of the four ILs synthesised with conventional lubricating additives isobutylene sulfide (T321), zinc dialkyl dithiophosphate (ZDDP) and tricresyl phosphate (T306) as PAO10 additives on the physicochemical properties of the prepared oil samples were systematically investigated at the same dosing rates. The antifriction and antiwear properties and extreme pressure performance of oil samples prepared by four ILs and three conventional additives were investigated by a four‐ball friction and a wear testing machine. The results showed that P/S improved the thermal stability of PAO10. The addition of N/S significantly improved the tribological performance of PAO10 at room temperature and under heavy loading. The coefficient of friction was reduced by 90%, the wear spot diameter is decreased by 28%, the last non‐seizure load PB is doubled, and the resistance to sintering did not improve.","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":"35 3","pages":"183-192"},"PeriodicalIF":1.9,"publicationDate":"2022-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48576477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Research was focused on understanding the degradation kinetics of cold rolling oil used in the rolling mill at Tata Steel. Aged rolling oil leads to various surface defects. Ageing phenomenon is influenced through thermo-mechanical behaviour, oxidation, hydrolysis and presence of iron fines. Ageing of cold rolling oil in presence of iron fines was systematically performed at various temperature followed by thermo-mechanical wear tests. With variation in intensity of ageing, change in physico-chemical parameters and fatty acid distribution (FAD) within triglycerides could be observed. The impact of the controlled ageing on performance parameters like lubrication, evaporation kinetics and oxidative stability were also studied. Thermo-oxidative ageing depletes antioxidant concentration within the rolling oil resulting in rapid oxidation of unsaturated fats. This leads to rapid build-up of high molecular weight ingredients resulting in formation of fatty acid soaps or scum. The resultant scum negatively impacts the boundary lubrication and evaporation kinetics of rolling oil.
{"title":"Kinetics study of cold rolling lubricant degradation through advanced instrumental techniques","authors":"Subho Chakraborty, Suvendu Sekhar Giri, Ashwin Pandit, Amarnath Bhagat, Ajay Kumar Jha","doi":"10.1002/ls.1630","DOIUrl":"10.1002/ls.1630","url":null,"abstract":"<p>Research was focused on understanding the degradation kinetics of cold rolling oil used in the rolling mill at Tata Steel. Aged rolling oil leads to various surface defects. Ageing phenomenon is influenced through thermo-mechanical behaviour, oxidation, hydrolysis and presence of iron fines. Ageing of cold rolling oil in presence of iron fines was systematically performed at various temperature followed by thermo-mechanical wear tests. With variation in intensity of ageing, change in physico-chemical parameters and fatty acid distribution (FAD) within triglycerides could be observed. The impact of the controlled ageing on performance parameters like lubrication, evaporation kinetics and oxidative stability were also studied. Thermo-oxidative ageing depletes antioxidant concentration within the rolling oil resulting in rapid oxidation of unsaturated fats. This leads to rapid build-up of high molecular weight ingredients resulting in formation of fatty acid soaps or scum. The resultant scum negatively impacts the boundary lubrication and evaporation kinetics of rolling oil.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":"35 3","pages":"171-182"},"PeriodicalIF":1.9,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46445845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}