Pub Date : 2026-01-08DOI: 10.3390/membranes16010038
Dariusz Man, Barbara Pytel, Izabella Pisarek
The aim of this study was to investigate the effects of three lipopolysaccharides (LPS), obtained from Hafnia alvei PCM 1200, Proteus penneri 12, and Proteus vulgaris 9/57, on the fluidity of liposomal lipid membranes. The experiments were performed on liposomes composed of egg yolk lecithin (EYL) in the liquid-crystalline phase and synthetic lecithin (DPPC) in the gel phase. The experimental results were compared with data obtained from a computational model of the membrane surface layer. Membrane fluidity was assessed using EPR spectroscopy with the spin probes TEMPO (surface layer; changes in the F parameter) and 16-DOXYL (hydrophobic core; changes in the τ parameter). In EYL liposomes, all LPS samples induced a reduction in surface-layer fluidity (decrease in the F/F0 ratio). In contrast, effects on the hydrophobic core (τ/τ0) were observed only at low dopant concentrations (<0.2%), above which membrane fluidity plateaued. In DPPC membranes, the response was more complex: local minima in F/F0 and maxima in τ/τ0 were detected, indicating transient alterations in membrane stiffening and plasticization that depended on the specific LPS applied. Computational simulations of the membrane surface further confirmed the greater susceptibility of low-mobility systems (corresponding to the gel phase) to dopant-induced perturbations. In the model, the best agreement with the EPR data was obtained when an effective dopant charge of q = 3 was assumed.
{"title":"Effects of Lipopolysaccharides from <i>Hafnia alvei</i> PCM1200, <i>Proteus penneri</i> 12, and <i>Proteus vulgaris</i> 9/57 on Liposomal Membranes Composed of Natural Egg Yolk Lecithin (EYL) and Synthetic DPPC: An EPR Study and Computer Simulations.","authors":"Dariusz Man, Barbara Pytel, Izabella Pisarek","doi":"10.3390/membranes16010038","DOIUrl":"10.3390/membranes16010038","url":null,"abstract":"<p><p>The aim of this study was to investigate the effects of three lipopolysaccharides (LPS), obtained from <i>Hafnia alvei</i> PCM 1200, <i>Proteus penneri</i> 12, and <i>Proteus vulgaris</i> 9/57, on the fluidity of liposomal lipid membranes. The experiments were performed on liposomes composed of egg yolk lecithin (EYL) in the liquid-crystalline phase and synthetic lecithin (DPPC) in the gel phase. The experimental results were compared with data obtained from a computational model of the membrane surface layer. Membrane fluidity was assessed using EPR spectroscopy with the spin probes TEMPO (surface layer; changes in the F parameter) and 16-DOXYL (hydrophobic core; changes in the <i>τ</i> parameter). In EYL liposomes, all LPS samples induced a reduction in surface-layer fluidity (decrease in the F/F<sub>0</sub> ratio). In contrast, effects on the hydrophobic core (<i>τ</i>/<i>τ</i><sub>0</sub>) were observed only at low dopant concentrations (<0.2%), above which membrane fluidity plateaued. In DPPC membranes, the response was more complex: local minima in F/F<sub>0</sub> and maxima in <i>τ</i>/<i>τ</i><sub>0</sub> were detected, indicating transient alterations in membrane stiffening and plasticization that depended on the specific LPS applied. Computational simulations of the membrane surface further confirmed the greater susceptibility of low-mobility systems (corresponding to the gel phase) to dopant-induced perturbations. In the model, the best agreement with the EPR data was obtained when an effective dopant charge of <i>q</i> = 3 was assumed.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"16 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12843642/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146052915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-06DOI: 10.3390/membranes16010036
Hanna Rosentreter, Marc Walther, André Lerch
There was an error in the original publication [...].
原文中有个错误[…]
{"title":"Correction: Rosentreter et al. Partial Desalination of Saline Groundwater: Comparison of Nanofiltration, Reverse Osmosis and Membrane Capacitive Deionisation. <i>Membranes</i> 2021, <i>11</i>, 126.","authors":"Hanna Rosentreter, Marc Walther, André Lerch","doi":"10.3390/membranes16010036","DOIUrl":"10.3390/membranes16010036","url":null,"abstract":"<p><p>There was an error in the original publication [...].</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"16 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12844105/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146052795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-06DOI: 10.3390/membranes16010037
Chii-Dong Ho, Ching-Yu Li, Thiam Leng Chew, Yi-Ting Lin
A new DCMD module design that introduces an insulation barrier of negligible thickness to divide the open duct of the hot-saline feed into two subchannels for dual-flow operation was investigated. This configuration enables one subchannel to operate in a cocurrent-flow mode and the other in a countercurrent-flow recycling mode, thereby significantly enhancing the permeate flux. Theoretical and experimental investigations were conducted to develop modeling equations capable of predicting the permeate flux in DCMD modules. These studies demonstrated the technical feasibility of minimizing temperature polarization effects while improving flow characteristics to boost permeate flux. Results indicated that increasing both convective heat-transfer coefficients and residence time generally improved device performance. The dual-flow operation increased fluid velocity and extended residence time, leading to reduced heat-transfer resistance and enhanced heat-transfer efficiency. Theoretical predictions and experimental results consistently showed that the absorption flux improved by up to 40.77% under the double-flow operation with internal recycling configuration compared to a single-pass device of identical dimensions. The effects of inserting the insulation barrier on permeate flux enhancement, power consumption, and overall economic feasibility were also discussed.
{"title":"Theoretical and Experimental Studies of Permeate Fluxes in Double-Flow Direct-Contact Membrane Distillation (DCMD) Modules with Internal Recycle.","authors":"Chii-Dong Ho, Ching-Yu Li, Thiam Leng Chew, Yi-Ting Lin","doi":"10.3390/membranes16010037","DOIUrl":"10.3390/membranes16010037","url":null,"abstract":"<p><p>A new DCMD module design that introduces an insulation barrier of negligible thickness to divide the open duct of the hot-saline feed into two subchannels for dual-flow operation was investigated. This configuration enables one subchannel to operate in a cocurrent-flow mode and the other in a countercurrent-flow recycling mode, thereby significantly enhancing the permeate flux. Theoretical and experimental investigations were conducted to develop modeling equations capable of predicting the permeate flux in DCMD modules. These studies demonstrated the technical feasibility of minimizing temperature polarization effects while improving flow characteristics to boost permeate flux. Results indicated that increasing both convective heat-transfer coefficients and residence time generally improved device performance. The dual-flow operation increased fluid velocity and extended residence time, leading to reduced heat-transfer resistance and enhanced heat-transfer efficiency. Theoretical predictions and experimental results consistently showed that the absorption flux improved by up to 40.77% under the double-flow operation with internal recycling configuration compared to a single-pass device of identical dimensions. The effects of inserting the insulation barrier on permeate flux enhancement, power consumption, and overall economic feasibility were also discussed.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"16 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12844302/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146052929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-05DOI: 10.3390/membranes16010035
Pere Verdugo, Iwona Gulaczyk, Magdalena Olkiewicz, Josep M Montornes, Marta Woźniak-Budych, Filip F Pniewski, Iga Hołyńska-Iwan, Bartosz Tylkowski
Polysulfone (PSU) membranes are widely recognized for their thermal stability, mechanical strength, and chemical resistance, making them suitable for diverse separation applications. This review highlights recent advances in PSU membrane development, focusing on fabrication techniques, structural modifications, and emerging applications. Phase inversion remains the predominant method for membrane synthesis, allowing precise control over morphology and performance. Functional enhancements through blending, chemical grafting, and incorporation of nanomaterials-such as metal-organic frameworks (MOFs), carbon nanotubes, and zwitterionic polymers-have significantly improved gas separation, and water purification., In gas separation, PSU-based mixed matrix membranes demonstrate enhanced CO2/CH4 selectivity, particularly when integrated with MOFs like ZIF-7 and ZIF-8. In water treatment, PSU membranes effectively remove algal toxins and heavy metals, with surface modifications improving hydrophilicity and antifouling properties. Despite these advancements, challenges remain in optimizing cross-linking strategies and understanding structure-property relationships. This review provides a comprehensive overview of PSU membrane technologies and outlines future directions for their development in sustainable and high-performance separation systems.
{"title":"Polysulfone Membranes: Here, There and Everywhere.","authors":"Pere Verdugo, Iwona Gulaczyk, Magdalena Olkiewicz, Josep M Montornes, Marta Woźniak-Budych, Filip F Pniewski, Iga Hołyńska-Iwan, Bartosz Tylkowski","doi":"10.3390/membranes16010035","DOIUrl":"10.3390/membranes16010035","url":null,"abstract":"<p><p>Polysulfone (PSU) membranes are widely recognized for their thermal stability, mechanical strength, and chemical resistance, making them suitable for diverse separation applications. This review highlights recent advances in PSU membrane development, focusing on fabrication techniques, structural modifications, and emerging applications. Phase inversion remains the predominant method for membrane synthesis, allowing precise control over morphology and performance. Functional enhancements through blending, chemical grafting, and incorporation of nanomaterials-such as metal-organic frameworks (MOFs), carbon nanotubes, and zwitterionic polymers-have significantly improved gas separation, and water purification., In gas separation, PSU-based mixed matrix membranes demonstrate enhanced CO<sub>2</sub>/CH<sub>4</sub> selectivity, particularly when integrated with MOFs like ZIF-7 and ZIF-8. In water treatment, PSU membranes effectively remove algal toxins and heavy metals, with surface modifications improving hydrophilicity and antifouling properties. Despite these advancements, challenges remain in optimizing cross-linking strategies and understanding structure-property relationships. This review provides a comprehensive overview of PSU membrane technologies and outlines future directions for their development in sustainable and high-performance separation systems.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"16 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12843741/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146052913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-05DOI: 10.3390/membranes16010034
Omid Jazani, Simona Liguori
The biogas dry reforming reaction offers a promising route for syngas production while simultaneously mitigating greenhouse gas emissions. Membrane reactors have proven to be an excellent option for hydrogen production and separation in a single unit, where conversion and yield can be enhanced over conventional processes. In this study, a Pd/YSZ membrane integrated with a Ru/CeO2 catalyst was evaluated for biogas reaction under varying operating conditions. The selective removal of hydrogen through the palladium membrane improved reactant conversion and suppressed side reactions such as methanation and the reverse water-gas shift. Experiments were performed at temperatures ranging from 500 to 600 °C, pressures of 1-6 bar, and a gas hourly space velocity (GHSV) of 800 h-1. Maximum conversions of CH4 (43%) and CO2 (46.7%) were achieved at 600 °C and 2 bar, while the maximum hydrogen recovery of 78% was reached at 6 bar. The membrane reactor outperformed a conventional reactor, offering up to 10% higher CH4 conversion and improved hydrogen production and yield. Also, a comparative analysis between Ru/CeO2 and Ni/Al2O3 catalysts revealed that while the Ni-based catalyst provided higher CH4 conversion, it also promoted methane decomposition reaction and coke formation. In contrast, the Ru/CeO2 catalyst exhibited excellent resistance to coke formation, attributable to ceria's redox properties and oxygen storage capacity. The combined system of Ru/CeO2 catalyst and Pd/YSZ membrane offers an effective and sustainable approach for hydrogen-rich syngas production from biogas, with improved performance and long-term stability.
{"title":"Investigation of Biogas Dry Reforming over Ru/CeO<sub>2</sub> Catalysts and Pd/YSZ Membrane Reactor.","authors":"Omid Jazani, Simona Liguori","doi":"10.3390/membranes16010034","DOIUrl":"10.3390/membranes16010034","url":null,"abstract":"<p><p>The biogas dry reforming reaction offers a promising route for syngas production while simultaneously mitigating greenhouse gas emissions. Membrane reactors have proven to be an excellent option for hydrogen production and separation in a single unit, where conversion and yield can be enhanced over conventional processes. In this study, a Pd/YSZ membrane integrated with a Ru/CeO<sub>2</sub> catalyst was evaluated for biogas reaction under varying operating conditions. The selective removal of hydrogen through the palladium membrane improved reactant conversion and suppressed side reactions such as methanation and the reverse water-gas shift. Experiments were performed at temperatures ranging from 500 to 600 °C, pressures of 1-6 bar, and a gas hourly space velocity (GHSV) of 800 h<sup>-1</sup>. Maximum conversions of CH<sub>4</sub> (43%) and CO<sub>2</sub> (46.7%) were achieved at 600 °C and 2 bar, while the maximum hydrogen recovery of 78% was reached at 6 bar. The membrane reactor outperformed a conventional reactor, offering up to 10% higher CH<sub>4</sub> conversion and improved hydrogen production and yield. Also, a comparative analysis between Ru/CeO<sub>2</sub> and Ni/Al<sub>2</sub>O<sub>3</sub> catalysts revealed that while the Ni-based catalyst provided higher CH<sub>4</sub> conversion, it also promoted methane decomposition reaction and coke formation. In contrast, the Ru/CeO<sub>2</sub> catalyst exhibited excellent resistance to coke formation, attributable to ceria's redox properties and oxygen storage capacity. The combined system of Ru/CeO<sub>2</sub> catalyst and Pd/YSZ membrane offers an effective and sustainable approach for hydrogen-rich syngas production from biogas, with improved performance and long-term stability.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"16 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12843909/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146052879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-04DOI: 10.3390/membranes16010031
Ana Luisa Aguilar-Ruiz, Tomás Jesús Madera-Santana, Reyna G Sánchez-Duarte, Yedidia Villegas-Peralta, Ana Alejandra Aguilar-Ruiz, Víctor Manuel Orozco-Carmona
Polymeric membranes based on chitosan (Cs) were extracted from shrimp shells and evaluated. These membranes were modified using polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), and glycerol (Gly) and crosslinked with glutaraldehyde (GA) to examine their suitability for water filtration processes. The Cs exhibited high purity, a total nitrogen content of 6.49%, and an average molecular weight of 456 kDa, all of which are suitable for membrane formation. Four membranes (Cs-GA, B2: Cs-PEG, B5: Cs-PEG-PVP, and B7: Cs-Gly) were characterized by means of FTIR, SEM, AFM, thickness, contact angle, tensile testing, TGA, DSC, and filtration with distilled water at 4.83 bar. B2 and B5 showed thicknesses of 207 and 190 μm and contact angles of 56.7° and 58.9°, lower than that of Cs-GA (89.4°). In filtration, B2 achieved a flux of 2222.70 LMH, a permeance of 460.19 LMH·bar-1, and a hydraulic resistance of 8.79 × 1011 m-1, while Cs-GA, B5, and B7 exhibited fluxes of 24.10, 40.43, and 24.77 LMH, respectively, permeances of 9.75, 8.37, and 5.13 LMH·bar-1, and hydraulic resistances of 4.15 × 1013, 4.83 × 1013, and 7.89 × 1013 m-1, in the same order. Overall, membranes B2 and B5 are recognized as the most promising for water filtration under pressured operating conditions.
{"title":"Development of Chitosan Polymer Membranes with Potential Use in Filtration Processes.","authors":"Ana Luisa Aguilar-Ruiz, Tomás Jesús Madera-Santana, Reyna G Sánchez-Duarte, Yedidia Villegas-Peralta, Ana Alejandra Aguilar-Ruiz, Víctor Manuel Orozco-Carmona","doi":"10.3390/membranes16010031","DOIUrl":"10.3390/membranes16010031","url":null,"abstract":"<p><p>Polymeric membranes based on chitosan (Cs) were extracted from shrimp shells and evaluated. These membranes were modified using polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), and glycerol (Gly) and crosslinked with glutaraldehyde (GA) to examine their suitability for water filtration processes. The Cs exhibited high purity, a total nitrogen content of 6.49%, and an average molecular weight of 456 kDa, all of which are suitable for membrane formation. Four membranes (Cs-GA, B2: Cs-PEG, B5: Cs-PEG-PVP, and B7: Cs-Gly) were characterized by means of FTIR, SEM, AFM, thickness, contact angle, tensile testing, TGA, DSC, and filtration with distilled water at 4.83 bar. B2 and B5 showed thicknesses of 207 and 190 μm and contact angles of 56.7° and 58.9°, lower than that of Cs-GA (89.4°). In filtration, B2 achieved a flux of 2222.70 LMH, a permeance of 460.19 LMH·bar<sup>-1</sup>, and a hydraulic resistance of 8.79 × 10<sup>11</sup> m<sup>-1</sup>, while Cs-GA, B5, and B7 exhibited fluxes of 24.10, 40.43, and 24.77 LMH, respectively, permeances of 9.75, 8.37, and 5.13 LMH·bar<sup>-1</sup>, and hydraulic resistances of 4.15 × 10<sup>13</sup>, 4.83 × 10<sup>13</sup>, and 7.89 × 10<sup>13</sup> m<sup>-1</sup>, in the same order. Overall, membranes B2 and B5 are recognized as the most promising for water filtration under pressured operating conditions.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"16 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2026-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12843804/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146052816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-04DOI: 10.3390/membranes16010029
Zhengwei Wang, Rulu Ouyang, Guorui Zhang, Chunhai Wei, Shiming Ji, Qixuan Li, Chunyang Tao, Hongwei Rong
Reverse osmosis (RO) is the key process for textile dyeing wastewater reuse applications. Membrane fouling reduces both permeability and rejection capability, negatively affecting the technological economy of RO process. Membrane cleaning is critical to recovery of the permeability of fouled RO membranes. Based on multi-batch filtration and cleaning experiments, this study systematically evaluated the RO membrane fouling potential of pre-treated textile dyeing wastewater by a membrane bioreactor and the recovery performance of fouled RO membranes after different cleaning methods. A significant decline (more than 15%) in RO membrane permeability occurred after RO membrane permeate production of 625 L/m2 at a water recovery ratio of 60%. Protein-like substances and soluble microbial products were identified as the primary organic foulants via three-dimensional fluorescence excitation-emission matrix spectrometry (3D-FEEM). The single forward flushing with either pure water, acid, alkaline, or sodium hypochlorite solutions with a low active chlorine concentration showed very limited recovery of fouled RO membrane permeability. The combined forward flushing with acid followed by alkaline solutions restored fouled membrane permeability by up to 87% of a new RO membrane. The addition of pure water backwashing at a transmembrane pressure (TMP) of 0.5 MPa after both acid and alkaline solutions combined forward flushing restored fouled membrane permeability by up to 97% of a new RO membrane but deteriorated the rejection capability of the RO membrane. The backwashing parameters were further optimized at a TMP of 0.125 MPa and crossflow velocity (CFV) of 0.5 m/s, achieving fouled RO membrane permeability by up to 96% of a new RO membrane, and there were no negative effects on the rejection capability of the RO membrane. Alkaline forward flushing followed by pure water backwashing was the dominant contributor for fouled RO membrane permeability recovery. A preliminary economic analysis showed that the total chemical cost per RO production was 0.763 CNY/m3 and could be further reduced via removing acid cleaning and replacing combined alkaline flushing and pure water backwashing with alkaline backwashing.
{"title":"Reverse Osmosis Membrane Cleaning Optimization from Textile Dyeing Wastewater Reuse Applications.","authors":"Zhengwei Wang, Rulu Ouyang, Guorui Zhang, Chunhai Wei, Shiming Ji, Qixuan Li, Chunyang Tao, Hongwei Rong","doi":"10.3390/membranes16010029","DOIUrl":"10.3390/membranes16010029","url":null,"abstract":"<p><p>Reverse osmosis (RO) is the key process for textile dyeing wastewater reuse applications. Membrane fouling reduces both permeability and rejection capability, negatively affecting the technological economy of RO process. Membrane cleaning is critical to recovery of the permeability of fouled RO membranes. Based on multi-batch filtration and cleaning experiments, this study systematically evaluated the RO membrane fouling potential of pre-treated textile dyeing wastewater by a membrane bioreactor and the recovery performance of fouled RO membranes after different cleaning methods. A significant decline (more than 15%) in RO membrane permeability occurred after RO membrane permeate production of 625 L/m<sup>2</sup> at a water recovery ratio of 60%. Protein-like substances and soluble microbial products were identified as the primary organic foulants via three-dimensional fluorescence excitation-emission matrix spectrometry (3D-FEEM). The single forward flushing with either pure water, acid, alkaline, or sodium hypochlorite solutions with a low active chlorine concentration showed very limited recovery of fouled RO membrane permeability. The combined forward flushing with acid followed by alkaline solutions restored fouled membrane permeability by up to 87% of a new RO membrane. The addition of pure water backwashing at a transmembrane pressure (TMP) of 0.5 MPa after both acid and alkaline solutions combined forward flushing restored fouled membrane permeability by up to 97% of a new RO membrane but deteriorated the rejection capability of the RO membrane. The backwashing parameters were further optimized at a TMP of 0.125 MPa and crossflow velocity (CFV) of 0.5 m/s, achieving fouled RO membrane permeability by up to 96% of a new RO membrane, and there were no negative effects on the rejection capability of the RO membrane. Alkaline forward flushing followed by pure water backwashing was the dominant contributor for fouled RO membrane permeability recovery. A preliminary economic analysis showed that the total chemical cost per RO production was 0.763 CNY/m<sup>3</sup> and could be further reduced via removing acid cleaning and replacing combined alkaline flushing and pure water backwashing with alkaline backwashing.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"16 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2026-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12844062/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146052903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-04DOI: 10.3390/membranes16010033
Paween Mahinthichaichan, Ahmad Raeisi Najafi, Fraser J Moss, Ardeschir Vahedi-Faridi, Walter F Boron, Emad Tajkhorshid
The permeation of different chemical substances across the membrane is of utmost importance to the life and health of a living cell. Depending on the nature of the permeant, the process is mediated by either the protein (e.g., membrane channels) or lipid phases of the membrane, or both. In the case of small and physiologically important gas molecules, namely O2 and CO2, the literature supports the involvement of both pathways in their transport. The extent of involvement of the lipid phase, however, is directly dependent on the nature of the lipid constituents of the membrane that determine its various structural and physicochemical properties. In this study, we use molecular dynamics simulation, as a method with sufficient spatial and temporal resolutions, to analyze these properties in heterogeneous lipid bilayers, composed of phospholipids with varied tails, sphingomyelin, and cholesterol, to different degrees. Together with the calculation of the free energy profiles, diffusion constants, and gas diffusivity, the results shed light on the importance of the lipid phase of membranes in gas transport rate and how they can be modulated by their lipid composition.
{"title":"Impact of Lipid Composition on Membrane Partitioning and Permeability of Gas Molecules.","authors":"Paween Mahinthichaichan, Ahmad Raeisi Najafi, Fraser J Moss, Ardeschir Vahedi-Faridi, Walter F Boron, Emad Tajkhorshid","doi":"10.3390/membranes16010033","DOIUrl":"10.3390/membranes16010033","url":null,"abstract":"<p><p>The permeation of different chemical substances across the membrane is of utmost importance to the life and health of a living cell. Depending on the nature of the permeant, the process is mediated by either the protein (e.g., membrane channels) or lipid phases of the membrane, or both. In the case of small and physiologically important gas molecules, namely O<sub>2</sub> and CO<sub>2</sub>, the literature supports the involvement of both pathways in their transport. The extent of involvement of the lipid phase, however, is directly dependent on the nature of the lipid constituents of the membrane that determine its various structural and physicochemical properties. In this study, we use molecular dynamics simulation, as a method with sufficient spatial and temporal resolutions, to analyze these properties in heterogeneous lipid bilayers, composed of phospholipids with varied tails, sphingomyelin, and cholesterol, to different degrees. Together with the calculation of the free energy profiles, diffusion constants, and gas diffusivity, the results shed light on the importance of the lipid phase of membranes in gas transport rate and how they can be modulated by their lipid composition.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"16 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2026-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12843641/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146052918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-04DOI: 10.3390/membranes16010030
Shengzheng Ji, Guogang Yang, Hao Wang
As a critical component of high-temperature proton exchange membrane fuel cells (HT-PEMFCs), the catalytic layer (CL) significantly influences the overall performance of these systems. In this study, a pore-scale lattice Boltzmann (LB) model was established to simulate the multi-component mass transport in the HT-PEMFC catalyst layer. Based on the reconstruction of CL, the transport behavior of phosphoric acid was simulated. The effects of different carbon carrier diameters, porosity values, and Pt/C mass ratios on the transport of phosphoric acid in CL were studied. The distribution of phosphoric acid and air concentration, as well as the electrochemical surface area, was qualitatively and quantitatively analyzed. Finally, the optimal design parameters of CL structure were determined. The results show that, with increases in carbon carrier diameter, porosity, and Pt/C mass ratio, the distribution of phosphoric acid concentration shows an upward trend, and the distribution of air concentration shows a downward trend. The optimal ranges of carbon carrier diameter, porosity, and Pt/C mass ratio are 50-80 nm, 60-70%, and 40-50%, respectively. This study provides a new idea for further understanding the mass transport mechanism in the HT-PEMFC catalyst layer and provides effective suggestions for the optimization design of the HT-PEMFC catalyst layer structure.
{"title":"Lattice Boltzmann Simulation of Mass Transfer Characteristics in Catalyst Layer of High-Temperature Proton Exchange Membrane Fuel Cells.","authors":"Shengzheng Ji, Guogang Yang, Hao Wang","doi":"10.3390/membranes16010030","DOIUrl":"10.3390/membranes16010030","url":null,"abstract":"<p><p>As a critical component of high-temperature proton exchange membrane fuel cells (HT-PEMFCs), the catalytic layer (CL) significantly influences the overall performance of these systems. In this study, a pore-scale lattice Boltzmann (LB) model was established to simulate the multi-component mass transport in the HT-PEMFC catalyst layer. Based on the reconstruction of CL, the transport behavior of phosphoric acid was simulated. The effects of different carbon carrier diameters, porosity values, and Pt/C mass ratios on the transport of phosphoric acid in CL were studied. The distribution of phosphoric acid and air concentration, as well as the electrochemical surface area, was qualitatively and quantitatively analyzed. Finally, the optimal design parameters of CL structure were determined. The results show that, with increases in carbon carrier diameter, porosity, and Pt/C mass ratio, the distribution of phosphoric acid concentration shows an upward trend, and the distribution of air concentration shows a downward trend. The optimal ranges of carbon carrier diameter, porosity, and Pt/C mass ratio are 50-80 nm, 60-70%, and 40-50%, respectively. This study provides a new idea for further understanding the mass transport mechanism in the HT-PEMFC catalyst layer and provides effective suggestions for the optimization design of the HT-PEMFC catalyst layer structure.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"16 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2026-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12843995/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146052933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Silicalite nanosheet (SN) laminated membranes are promising for pervaporation (PV) desalination of concentrated brines for water purification and critical material concentration and recovery. However, scaling up the SN-based membranes is limited by inefficient synthesis of monodispersed open-pore SN single crystals (SNS). Here, we report a scalable approach to fabricate multilayered silicalite nanosheet plate (SNP) laminated membranes on porous alumina and PVDF substrates and demonstrate their excellent PV desalination performance for simulated brines containing lithium and high total dissolved salts (TDS). At 73 ± 3 °C, the SNP laminated membrane on alumina support achieved a remarkable water flux (Jw) of nearly 20 L/m2·h, significantly outperforming the alumina-supported SNS laminated membrane (Jw = 9.56 L/m2·h), while both provided near-complete salt rejection (ri ~99.9%) when operating with vacuum pressure on the permeate side. The PVDF-supported SNS and SNP laminated membranes exhibited excellent Jw (14.0 L/m2·h) and near-complete ri (>99.9%), surpassing the alumina-support SNP laminated membranes when operating by air sweep on the permeate side. However, the ri of the PVDF-supported membranes was found to decline when operating with vacuum pressure on the permeate side that was apparently caused by minimal liquid permeation through the inter-SNP spaces driven by the transmembrane pressure. With scalable SNP production, SNP-A membranes show potential for PV desalination of high-TDS solutions, especially in harsh environments unsuitable for polymer membranes.
{"title":"Silicalite Nanosheet Laminated Membranes: Effects of Layered Structure on the Performance in Pervaporation Desalination.","authors":"Xinhui Sun, Yukta Sharma, Landysh Iskhakova, Zishu Cao, Junhang Dong","doi":"10.3390/membranes16010032","DOIUrl":"10.3390/membranes16010032","url":null,"abstract":"<p><p>Silicalite nanosheet (SN) laminated membranes are promising for pervaporation (PV) desalination of concentrated brines for water purification and critical material concentration and recovery. However, scaling up the SN-based membranes is limited by inefficient synthesis of monodispersed open-pore SN single crystals (SNS). Here, we report a scalable approach to fabricate multilayered silicalite nanosheet plate (SNP) laminated membranes on porous alumina and PVDF substrates and demonstrate their excellent PV desalination performance for simulated brines containing lithium and high total dissolved salts (TDS). At 73 ± 3 °C, the SNP laminated membrane on alumina support achieved a remarkable water flux (Jw) of nearly 20 L/m<sup>2</sup>·h, significantly outperforming the alumina-supported SNS laminated membrane (Jw = 9.56 L/m<sup>2</sup>·h), while both provided near-complete salt rejection (ri ~99.9%) when operating with vacuum pressure on the permeate side. The PVDF-supported SNS and SNP laminated membranes exhibited excellent Jw (14.0 L/m<sup>2</sup>·h) and near-complete ri (>99.9%), surpassing the alumina-support SNP laminated membranes when operating by air sweep on the permeate side. However, the ri of the PVDF-supported membranes was found to decline when operating with vacuum pressure on the permeate side that was apparently caused by minimal liquid permeation through the inter-SNP spaces driven by the transmembrane pressure. With scalable SNP production, SNP-A membranes show potential for PV desalination of high-TDS solutions, especially in harsh environments unsuitable for polymer membranes.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"16 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2026-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12844254/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146052936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}