Natural gas plays a pivotal role in the global energy landscape under the dual challenges of energy transition and climate change. However, the impurities present within natural gas pose several disadvantages, including corrosion of transportation pipelines, toxicity, hydrate formation, and a reduction in the fuel's calorific value. Membrane separation technology has been recognized as an ideal approach for natural gas purification owing to its advantages of low energy consumption, operational simplicity, and excellent separation performance. This review summarizes recent progress in the development of advanced membrane materials, including polymer bulk membranes, two-dimensional (2D) nanosheet membranes, mixed-matrix membranes (MMMs), surface-modified membranes, and carbon molecular sieve membranes (CMSMs). The fundamental separation mechanisms-such as solution-diffusion, molecular sieving, adsorption-selectivity, and competitive sorption and surface diffusion-are analyzed in detail. Moreover, the critical scientific questions and technological challenges in this field are discussed in depth. Finally, future research perspectives are proposed to guide the rational design and practical application of high-performance membranes for natural gas separation.
{"title":"Recent Advances in Advanced Membrane Materials for Natural Gas Purification: A Review of Material Design and Separation Mechanisms.","authors":"Qijie Fan, Rui Xiao, Cheng Yang, Meixuan Xin, Xia Zheng, Guangyong Zeng","doi":"10.3390/membranes15120377","DOIUrl":"10.3390/membranes15120377","url":null,"abstract":"<p><p>Natural gas plays a pivotal role in the global energy landscape under the dual challenges of energy transition and climate change. However, the impurities present within natural gas pose several disadvantages, including corrosion of transportation pipelines, toxicity, hydrate formation, and a reduction in the fuel's calorific value. Membrane separation technology has been recognized as an ideal approach for natural gas purification owing to its advantages of low energy consumption, operational simplicity, and excellent separation performance. This review summarizes recent progress in the development of advanced membrane materials, including polymer bulk membranes, two-dimensional (2D) nanosheet membranes, mixed-matrix membranes (MMMs), surface-modified membranes, and carbon molecular sieve membranes (CMSMs). The fundamental separation mechanisms-such as solution-diffusion, molecular sieving, adsorption-selectivity, and competitive sorption and surface diffusion-are analyzed in detail. Moreover, the critical scientific questions and technological challenges in this field are discussed in depth. Finally, future research perspectives are proposed to guide the rational design and practical application of high-performance membranes for natural gas separation.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 12","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12734824/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145819938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-06DOI: 10.3390/membranes15120375
Francesco Volpe, Giuseppe Battaglia, Andrea Cipollina, Giorgio Micale, Alessandro Tamburini
Fouling phenomena are among the main issues in membrane processes, worsening unit performance and membrane properties. So far, few modelling approaches have been proposed to predict colloidal fouling in electromembrane-based technologies. This work presents an original simulation platform that couples computational fluid dynamics (CFD) simulations with electrodialysis (ED) and colloidal fouling models to investigate the impact of colloidal deposition at the channel and unit scales of ED systems. Fluid dynamics, salt transport and fouling layer growth were all addressed. The model was calibrated and validated with colloidal fouling data from the literature. The regions more susceptible to fouling growth were identified. Polarization phenomena, as well as the increase in pressure losses and electrical resistance over time, were evaluated.
{"title":"A Hybrid CFD Platform for Colloidal Fouling Prediction in Electrodialysis.","authors":"Francesco Volpe, Giuseppe Battaglia, Andrea Cipollina, Giorgio Micale, Alessandro Tamburini","doi":"10.3390/membranes15120375","DOIUrl":"10.3390/membranes15120375","url":null,"abstract":"<p><p>Fouling phenomena are among the main issues in membrane processes, worsening unit performance and membrane properties. So far, few modelling approaches have been proposed to predict colloidal fouling in electromembrane-based technologies. This work presents an original simulation platform that couples computational fluid dynamics (CFD) simulations with electrodialysis (ED) and colloidal fouling models to investigate the impact of colloidal deposition at the channel and unit scales of ED systems. Fluid dynamics, salt transport and fouling layer growth were all addressed. The model was calibrated and validated with colloidal fouling data from the literature. The regions more susceptible to fouling growth were identified. Polarization phenomena, as well as the increase in pressure losses and electrical resistance over time, were evaluated.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 12","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12735282/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145820021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-06DOI: 10.3390/membranes15120376
Martyna Drużyńska, Nikola Lenar, Beata Paczosa-Bator
Accurate potentiometric sensing critically depends on the stability and reproducibility of the reference electrode potential. Conventional liquid-filled Ag/AgCl or calomel electrodes, though well-established, are poorly compatible with miniaturized, portable, or long-term in situ sensing devices due to electrolyte leakage, junction potential instability, and maintenance requirements. Recent advances in solid-state and membrane-based reference electrodes offer a promising alternative by eliminating the liquid junction while maintaining stable and well-defined potential. This review summarizes the advancements in polymer-based and composite reference membranes, focusing on material strategies, stabilization mechanisms, and integration approaches. Emphasis is placed on ionic-liquid-doped membranes, conducting polymers, lipophilic salts, and carbon nanomaterials as functional components enhancing interfacial stability and charge transfer. The performances of various architectures, solid-contact, liquid-junction-free, and quasi-reference systems, are compared in terms of potential drift, matrix resistance, biocompatibility, and manufacturability. Furthermore, recent developments in printed, microfluidic, and wearable potentiometric platforms demonstrate how reference membrane innovations enable reliable operation in compact, low-cost, and flexible analytical systems. The review outlines current trends, challenges, and future directions toward universal, miniaturized, and leak-free reference electrodes suitable for innovative sensing technologies.
{"title":"Advances in Reference Membranes for Potentiometric Sensing Applications.","authors":"Martyna Drużyńska, Nikola Lenar, Beata Paczosa-Bator","doi":"10.3390/membranes15120376","DOIUrl":"10.3390/membranes15120376","url":null,"abstract":"<p><p>Accurate potentiometric sensing critically depends on the stability and reproducibility of the reference electrode potential. Conventional liquid-filled Ag/AgCl or calomel electrodes, though well-established, are poorly compatible with miniaturized, portable, or long-term in situ sensing devices due to electrolyte leakage, junction potential instability, and maintenance requirements. Recent advances in solid-state and membrane-based reference electrodes offer a promising alternative by eliminating the liquid junction while maintaining stable and well-defined potential. This review summarizes the advancements in polymer-based and composite reference membranes, focusing on material strategies, stabilization mechanisms, and integration approaches. Emphasis is placed on ionic-liquid-doped membranes, conducting polymers, lipophilic salts, and carbon nanomaterials as functional components enhancing interfacial stability and charge transfer. The performances of various architectures, solid-contact, liquid-junction-free, and quasi-reference systems, are compared in terms of potential drift, matrix resistance, biocompatibility, and manufacturability. Furthermore, recent developments in printed, microfluidic, and wearable potentiometric platforms demonstrate how reference membrane innovations enable reliable operation in compact, low-cost, and flexible analytical systems. The review outlines current trends, challenges, and future directions toward universal, miniaturized, and leak-free reference electrodes suitable for innovative sensing technologies.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 12","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12735170/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145820059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-05DOI: 10.3390/membranes15120374
Yujie Guo, Bo Pang, Fujun Cui, Tingxu Fang, Li Tian, Liu Yang, Zeyu Chen, Xuemei Wu
The design of the chemical structure of ion-conductive membranes is critical to enhance proton/vanadium ion selectivity and the performance of vanadium redox flow batteries (VRFBs). Herein, camphorsulfonic acid is proposed as a novel proton-conductive group and grafted on polybenzimidazole (PBICa). The pendant sulfonic acid group on the end of the grafted side chains is flexible to promote the aggregation of ionic clusters at even a relatively low ion-exchange capacity (IEC) of 2.14 mmol g-1. The formation of these high-quality clusters underscores the remarkable efficacy of this structural strategy in driving nanoscale phase separation, which is a prerequisite for creating efficient proton-conducting pathways. The bulky and non-coplanar architecture of the camphorsulfonic acid group helps to increase the proportion of free volume compared with the conventional sulfonated polybenzimidazole, which not only promotes water uptake to facilitate proton transport but also exerts a sieving effect to effectively block vanadium ion permeation. The well-formed ionic clusters, together with the expanded free volume architecture, endow the membrane with both high proton conductivity (30.5 mS cm-1) and low vanadium ion permeability (0.15 × 10-7 cm2 s-1), achieving excellent proton/vanadium ion selectivity of 9.85 × 109 mS s cm-3, which is about 5.6-fold that of a Nafion 212 membrane. Operating at 200 mA cm-2, the PBICa-based VRFB achieves an energy efficiency of 78.4% and a discharge capacity decay rate of 0.32% per cycle, outperforming the Nafion 212-based battery (EE of 76.9%, capacity decay of 0.79% per cycle).
离子导电膜的化学结构设计对提高钒离子的选择性和钒氧化还原液流电池的性能至关重要。本文提出将樟脑磺酸作为一种新型的质子导电基团接枝到聚苯并咪唑(PBICa)上。在相对较低的离子交换容量(IEC)为2.14 mmol g-1时,接枝侧链末端的磺酸基团具有一定的柔韧性,可以促进离子团簇的聚集。这些高质量团簇的形成强调了这种结构策略在驱动纳米级相分离方面的显着效果,这是创造高效质子传导途径的先决条件。樟脑磺酸基团体积庞大,非共面结构,与常规磺化聚苯并咪唑相比,有助于增加自由体积的比例,既促进水分吸收,方便质子运输,又起到筛分作用,有效阻断钒离子的渗透。形成良好的离子团簇,加上膨胀的自由体积结构,使膜具有较高的质子电导率(30.5 mS cm-1)和较低的钒离子渗透性(0.15 × 10-7 cm2 s-1),实现了9.85 × 109 mS s cm-3的质子/钒离子选择性,约为Nafion 212膜的5.6倍。基于pbica的VRFB在200 mA cm-2下工作,能量效率为78.4%,每循环放电容量衰减率为0.32%,优于基于Nafion 212的电池(EE为76.9%,每循环放电容量衰减率为0.79%)。
{"title":"A Camphorsulfonic Acid-Grafted Polybenzimidazole Ion Selectivity Membrane for Vanadium Redox Flow Battery.","authors":"Yujie Guo, Bo Pang, Fujun Cui, Tingxu Fang, Li Tian, Liu Yang, Zeyu Chen, Xuemei Wu","doi":"10.3390/membranes15120374","DOIUrl":"10.3390/membranes15120374","url":null,"abstract":"<p><p>The design of the chemical structure of ion-conductive membranes is critical to enhance proton/vanadium ion selectivity and the performance of vanadium redox flow batteries (VRFBs). Herein, camphorsulfonic acid is proposed as a novel proton-conductive group and grafted on polybenzimidazole (PBICa). The pendant sulfonic acid group on the end of the grafted side chains is flexible to promote the aggregation of ionic clusters at even a relatively low ion-exchange capacity (IEC) of 2.14 mmol g<sup>-1</sup>. The formation of these high-quality clusters underscores the remarkable efficacy of this structural strategy in driving nanoscale phase separation, which is a prerequisite for creating efficient proton-conducting pathways. The bulky and non-coplanar architecture of the camphorsulfonic acid group helps to increase the proportion of free volume compared with the conventional sulfonated polybenzimidazole, which not only promotes water uptake to facilitate proton transport but also exerts a sieving effect to effectively block vanadium ion permeation. The well-formed ionic clusters, together with the expanded free volume architecture, endow the membrane with both high proton conductivity (30.5 mS cm<sup>-1</sup>) and low vanadium ion permeability (0.15 × 10<sup>-7</sup> cm<sup>2</sup> s<sup>-1</sup>), achieving excellent proton/vanadium ion selectivity of 9.85 × 10<sup>9</sup> mS s cm<sup>-3</sup>, which is about 5.6-fold that of a Nafion 212 membrane. Operating at 200 mA cm<sup>-2</sup>, the PBICa-based VRFB achieves an energy efficiency of 78.4% and a discharge capacity decay rate of 0.32% per cycle, outperforming the Nafion 212-based battery (EE of 76.9%, capacity decay of 0.79% per cycle).</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 12","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12734638/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145820064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-03DOI: 10.3390/membranes15120372
Margarita Kuznetsova, Christophe Castel, Bernardetta Addis, Veronica Piccialli, Eric Favre
Natural gas is currently increasingly used in an energy transition framework and systematically requires upgrading processes in order to respect pipeline specifications. Carbon dioxide, and in some case hydrogen sulfide removal, is the major target of the purification step and can be achieved thanks to gas liquid absorption with chemical solvents or membrane separation. A systematic comparison of the cheap, currently used polymeric membranes and an expensive, high-performance zeolite material is reported on a natural gas upgrading case study (CH4/CO2 mixture), thanks to a dedicated process synthesis and optimization code (MIND). The zeolite membrane is shown to offer a simple, cost-effective one-stage process, while polymeric materials require more expensive classical two-stage processes. In a second step the impact of concentration polarization is more specifically investigated, through a process simulation study. The zeolite membrane remains the simplest, best cost-effective and most interesting process (one stage without compression, expander or vacuum pump).
{"title":"High-Performance Zeolite Membranes and Natural Gas Upgrading.","authors":"Margarita Kuznetsova, Christophe Castel, Bernardetta Addis, Veronica Piccialli, Eric Favre","doi":"10.3390/membranes15120372","DOIUrl":"10.3390/membranes15120372","url":null,"abstract":"<p><p>Natural gas is currently increasingly used in an energy transition framework and systematically requires upgrading processes in order to respect pipeline specifications. Carbon dioxide, and in some case hydrogen sulfide removal, is the major target of the purification step and can be achieved thanks to gas liquid absorption with chemical solvents or membrane separation. A systematic comparison of the cheap, currently used polymeric membranes and an expensive, high-performance zeolite material is reported on a natural gas upgrading case study (CH<sub>4</sub>/CO<sub>2</sub> mixture), thanks to a dedicated process synthesis and optimization code (MIND). The zeolite membrane is shown to offer a simple, cost-effective one-stage process, while polymeric materials require more expensive classical two-stage processes. In a second step the impact of concentration polarization is more specifically investigated, through a process simulation study. The zeolite membrane remains the simplest, best cost-effective and most interesting process (one stage without compression, expander or vacuum pump).</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 12","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12735048/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145819934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-03DOI: 10.3390/membranes15120373
Yasith Indigahawela Gamage, Jianjun Pan
The cell-penetrating peptide Pep-1 interacts with lipid membranes through combined electrostatic and hydrophobic forces, yet the structural details of its membrane remodeling activity remain unclear. Using atomic force microscopy (AFM), we examined how Pep-1 perturbs supported lipid bilayers of varying composition and geometry. In zwitterionic POPC bilayer patches, Pep-1 preferentially targeted patch boundaries, where lipid packing is less constrained, leading to edge erosion and detergent-like disintegration. Incorporation of anionic POPS enhanced peptide binding and localized disruption, giving rise to elevated annular rims, holes, and peptide-lipid aggregates. In cholesterol-containing POPC bilayer patches, Pep-1 induced extensive surface reorganization marked by protruded, ridge-like features, consistent with lipid redistribution and curvature generation. In continuous POPC/POPS bilayers lacking free edges, Pep-1 formed discrete, flower-like protrusions that coalesced into an interconnected network of thickened peptide-rich domains. These findings reveal composition-dependent remodeling pathways in which Pep-1 destabilizes, reorganizes, or curves membranes according to their mechanical and electrostatic properties, providing new insight into peptide-membrane interactions relevant to cell-penetrating peptide translocation.
{"title":"Curvature-Induced Membrane Remodeling by the Cell-Penetrating Peptide Pep-1.","authors":"Yasith Indigahawela Gamage, Jianjun Pan","doi":"10.3390/membranes15120373","DOIUrl":"10.3390/membranes15120373","url":null,"abstract":"<p><p>The cell-penetrating peptide Pep-1 interacts with lipid membranes through combined electrostatic and hydrophobic forces, yet the structural details of its membrane remodeling activity remain unclear. Using atomic force microscopy (AFM), we examined how Pep-1 perturbs supported lipid bilayers of varying composition and geometry. In zwitterionic POPC bilayer patches, Pep-1 preferentially targeted patch boundaries, where lipid packing is less constrained, leading to edge erosion and detergent-like disintegration. Incorporation of anionic POPS enhanced peptide binding and localized disruption, giving rise to elevated annular rims, holes, and peptide-lipid aggregates. In cholesterol-containing POPC bilayer patches, Pep-1 induced extensive surface reorganization marked by protruded, ridge-like features, consistent with lipid redistribution and curvature generation. In continuous POPC/POPS bilayers lacking free edges, Pep-1 formed discrete, flower-like protrusions that coalesced into an interconnected network of thickened peptide-rich domains. These findings reveal composition-dependent remodeling pathways in which Pep-1 destabilizes, reorganizes, or curves membranes according to their mechanical and electrostatic properties, providing new insight into peptide-membrane interactions relevant to cell-penetrating peptide translocation.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 12","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12735085/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145820012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-02DOI: 10.3390/membranes15120370
Carlos Pacheco, Alfonso Navarro, Enrique Escobedo, Romeli Barbosa
The transport efficiency of anisotropic functional membranes is largely dictated by the geometry and orientation of their internal pores. In this study, a numerical finite-volume framework was developed to evaluate how elliptical pore eccentricity (εcc) and orientation influence charge transport and effective conductivity (ek) within two-dimensional porous membrane microstructures. Canonical stochastic domains with controlled porosity were generated, considering parallel and perpendicular aligned configurations of the major pore axis relative to the imposed potential gradient. Results demonstrated a strong orientation dependence: under perpendicular alignment, the effective conductivity decreased by up to 70% as εcc increased from 0.5 to 0.999, while parallel alignment maintained at ek > 0.8 even for highly elongated pores. The aspect ratio (b/a) was identified as a secondary geometric modulator producing opposite conductivity trends depending on orientation. Through isotropy-error analysis, a critical morphological threshold at εcc ≈ 0.9 was found, indicating the onset of structural anisotropy and loss of isotropic transport. These results establish a quantitative structure-property relationship linking pore geometry to macroscopic transport performance. The proposed stochastic FVM-based approach provides a generalizable and computationally efficient tool for the design and optimization of anisotropic porous membranes used in electrochemical and energy-conversion devices.
{"title":"Numerical Assessment of Elliptical Pore Orientation and Eccentricity Effects on Charge Transport in Anisotropic Functional Membranes.","authors":"Carlos Pacheco, Alfonso Navarro, Enrique Escobedo, Romeli Barbosa","doi":"10.3390/membranes15120370","DOIUrl":"10.3390/membranes15120370","url":null,"abstract":"<p><p>The transport efficiency of anisotropic functional membranes is largely dictated by the geometry and orientation of their internal pores. In this study, a numerical finite-volume framework was developed to evaluate how elliptical pore eccentricity (εcc) and orientation influence charge transport and effective conductivity (ek) within two-dimensional porous membrane microstructures. Canonical stochastic domains with controlled porosity were generated, considering parallel and perpendicular aligned configurations of the major pore axis relative to the imposed potential gradient. Results demonstrated a strong orientation dependence: under perpendicular alignment, the effective conductivity decreased by up to 70% as <i>εcc</i> increased from 0.5 to 0.999, while parallel alignment maintained at ek > 0.8 even for highly elongated pores. The aspect ratio (b/a) was identified as a secondary geometric modulator producing opposite conductivity trends depending on orientation. Through isotropy-error analysis, a critical morphological threshold at εcc ≈ 0.9 was found, indicating the onset of structural anisotropy and loss of isotropic transport. These results establish a quantitative structure-property relationship linking pore geometry to macroscopic transport performance. The proposed stochastic FVM-based approach provides a generalizable and computationally efficient tool for the design and optimization of anisotropic porous membranes used in electrochemical and energy-conversion devices.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 12","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12735207/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145819951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-02DOI: 10.3390/membranes15120369
Mohammad A Afzal, Kaitlyn P Brickey, Enrique D Gomez, Andrew L Zydney
Protein fouling can significantly reduce the filtrate flux, capacity, and virus retention during processing of plasma- or mammalian cell-derived biopharmaceuticals through virus removal filters. We use focused ion beam (FIB) milling and scanning electron microscopy (SEM) to directly evaluate changes in 3D pore structure in a Viresolve® Pro membrane due to fouling by human serum immunoglobulin G. Protein fouling causes a significant reduction in the membrane porosity, which decreases by approximately 40% in the size-selective region near the exit of the highly asymmetric Viresolve® Pro membrane after the filter is fouled to 90% flux decline. There is a corresponding reduction in the number of small pores by more than a factor of two. Model simulations of flow and particle transport in the protein-fouled membrane are in good agreement with independent experimental measurements of the permeability and location of particle capture. Simulations show an upstream shift in the location of nanoparticle capture (away from the filter exit) by about 0.4 µm for the membrane fouled to 90% flux decline. This is due to pore constriction from protein deposition, highlighting how fouling redistributes flow paths within the membrane. These results demonstrate the capability of using FIB-SEM to directly evaluate the effects of protein fouling on the 3D pore structure in virus removal filters, providing important insights into how protein fouling alters the performance of these highly selective membranes.
{"title":"Quantitative Analysis of Protein Fouling in Virus Removal Filtration Membranes Through Electron Tomography.","authors":"Mohammad A Afzal, Kaitlyn P Brickey, Enrique D Gomez, Andrew L Zydney","doi":"10.3390/membranes15120369","DOIUrl":"10.3390/membranes15120369","url":null,"abstract":"<p><p>Protein fouling can significantly reduce the filtrate flux, capacity, and virus retention during processing of plasma- or mammalian cell-derived biopharmaceuticals through virus removal filters. We use focused ion beam (FIB) milling and scanning electron microscopy (SEM) to directly evaluate changes in 3D pore structure in a Viresolve<sup>®</sup> Pro membrane due to fouling by human serum immunoglobulin G. Protein fouling causes a significant reduction in the membrane porosity, which decreases by approximately 40% in the size-selective region near the exit of the highly asymmetric Viresolve<sup>®</sup> Pro membrane after the filter is fouled to 90% flux decline. There is a corresponding reduction in the number of small pores by more than a factor of two. Model simulations of flow and particle transport in the protein-fouled membrane are in good agreement with independent experimental measurements of the permeability and location of particle capture. Simulations show an upstream shift in the location of nanoparticle capture (away from the filter exit) by about 0.4 µm for the membrane fouled to 90% flux decline. This is due to pore constriction from protein deposition, highlighting how fouling redistributes flow paths within the membrane. These results demonstrate the capability of using FIB-SEM to directly evaluate the effects of protein fouling on the 3D pore structure in virus removal filters, providing important insights into how protein fouling alters the performance of these highly selective membranes.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 12","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12734478/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145819933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-02DOI: 10.3390/membranes15120371
Hyeongrak Cho, Seoyeon Lee, Yongjun Choi, Sangho Lee, Seung-Hyun Kim
Membrane distillation (MD) is a promising technology for reducing the volume of high-salinity brines generated from desalination plants, yet limited knowledge exists regarding its fouling behavior under long-term operation. In this study, fouling was investigated through the autopsy of a hollow fiber MD module operated for 120 days in a direct contact membrane distillation (DCMD) configuration using real desalination brine. Despite stable salt rejection exceeding 99%, a gradual decline in flux and permeability was observed, indicating progressive fouling and partial wetting. Post-operation analyses, including SEM, EDS, ICP-OES, and FT-IR, revealed that the dominant foulants were inorganic scales, particularly calcium carbonate (CaCO3), with minor contributions from suspended particles (SiO2, Fe) and organic matter. Fouling was more severe in the inlet and inner regions of the module due to intensified temperature and concentration polarization, which promoted supersaturation and scale deposition. These combined effects led to a reduction in membrane hydrophobicity and liquid entry pressure, ultimately accelerating partial wetting and performance deterioration. The findings provide valuable insights into the spatial fouling behavior and mechanisms in MD systems, highlighting the importance of hydrodynamic optimization and fouling mitigation strategies for long-term brine concentration applications.
{"title":"Analysis of Fouling in Hollow Fiber Membrane Distillation Modules for Desalination Brine Reduction.","authors":"Hyeongrak Cho, Seoyeon Lee, Yongjun Choi, Sangho Lee, Seung-Hyun Kim","doi":"10.3390/membranes15120371","DOIUrl":"10.3390/membranes15120371","url":null,"abstract":"<p><p>Membrane distillation (MD) is a promising technology for reducing the volume of high-salinity brines generated from desalination plants, yet limited knowledge exists regarding its fouling behavior under long-term operation. In this study, fouling was investigated through the autopsy of a hollow fiber MD module operated for 120 days in a direct contact membrane distillation (DCMD) configuration using real desalination brine. Despite stable salt rejection exceeding 99%, a gradual decline in flux and permeability was observed, indicating progressive fouling and partial wetting. Post-operation analyses, including SEM, EDS, ICP-OES, and FT-IR, revealed that the dominant foulants were inorganic scales, particularly calcium carbonate (CaCO<sub>3</sub>), with minor contributions from suspended particles (SiO<sub>2</sub>, Fe) and organic matter. Fouling was more severe in the inlet and inner regions of the module due to intensified temperature and concentration polarization, which promoted supersaturation and scale deposition. These combined effects led to a reduction in membrane hydrophobicity and liquid entry pressure, ultimately accelerating partial wetting and performance deterioration. The findings provide valuable insights into the spatial fouling behavior and mechanisms in MD systems, highlighting the importance of hydrodynamic optimization and fouling mitigation strategies for long-term brine concentration applications.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 12","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12734494/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145820005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01DOI: 10.3390/membranes15120368
Vitor Hugo Balasco Serrão
The application of cryo-electron microscopy (cryo-EM) in membrane protein structural biology has catalyzed unprecedented advances in our understanding of fundamental biological processes and transformed drug discovery paradigms. This review briefly describes the biological achievements enabled using cryo-EM techniques, including single particle analysis (SPA), micro-electron diffraction (microED), and subtomogram averaging (STA), in elucidating the structures and functions of membrane proteins, ion channels, transporters, and viral glycoproteins. We highlight how these structural insights have revealed druggable sites, enabled structure-based drug design, and provided mechanistic understanding of disease processes. Key biological targets include G protein-coupled receptors (GPCRs), ion channels implicated in neurological disorders, respiratory chain complexes, viral entry machinery, and membrane transporters. The integration of cryo-EM with computational drug design has already yielded clinical candidates and approved therapeutics, marking a new era in membrane protein pharmacology.
{"title":"Biological Breakthroughs and Drug Discovery Revolution via Cryo-Electron Microscopy of Membrane Proteins.","authors":"Vitor Hugo Balasco Serrão","doi":"10.3390/membranes15120368","DOIUrl":"10.3390/membranes15120368","url":null,"abstract":"<p><p>The application of cryo-electron microscopy (cryo-EM) in membrane protein structural biology has catalyzed unprecedented advances in our understanding of fundamental biological processes and transformed drug discovery paradigms. This review briefly describes the biological achievements enabled using cryo-EM techniques, including single particle analysis (SPA), micro-electron diffraction (microED), and subtomogram averaging (STA), in elucidating the structures and functions of membrane proteins, ion channels, transporters, and viral glycoproteins. We highlight how these structural insights have revealed druggable sites, enabled structure-based drug design, and provided mechanistic understanding of disease processes. Key biological targets include G protein-coupled receptors (GPCRs), ion channels implicated in neurological disorders, respiratory chain complexes, viral entry machinery, and membrane transporters. The integration of cryo-EM with computational drug design has already yielded clinical candidates and approved therapeutics, marking a new era in membrane protein pharmacology.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 12","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12734563/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145820075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}