Monitoring aromatic hydrocarbons is environmentally important because these chemical pollutants are ubiquitous. While waiting for powerful sensors capable of detecting hydrocarbons at extremely low levels, the current study demonstrates how each of the pure gas mixtures can be quickly and accurately identified. A noise removal unit was created for the chemical sensor data and then processed on the basis of the proposed algorithms in order to achieve matching and calibration. This method can be extended to other important aromatic hydrocarbon pollutants.
{"title":"Optimizing the Spectral Properties of the Chemical Sensor to Detect Concentrations of Gas Mixtures","authors":"None Muthana Alboedam, None A. A. Al-Rubaiee","doi":"10.56801/mme987","DOIUrl":"https://doi.org/10.56801/mme987","url":null,"abstract":"Monitoring aromatic hydrocarbons is environmentally important because these chemical pollutants are ubiquitous. While waiting for powerful sensors capable of detecting hydrocarbons at extremely low levels, the current study demonstrates how each of the pure gas mixtures can be quickly and accurately identified. A noise removal unit was created for the chemical sensor data and then processed on the basis of the proposed algorithms in order to achieve matching and calibration. This method can be extended to other important aromatic hydrocarbon pollutants.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135951269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benoit Ndiwe, Paul KAh, Francois Miterand Njock Bayock, Daniel Agili Uchechukwu, Harrison Onyeji
This study aimed to investigate the effect of the welding heat input on the heat affected zone (HAZ) of AW 6005-T6 aluminium alloy for a butt-welded joint using gas metal arc welding. The determination of the thermal cycles, metallography, and the resulting mechanical properties in the zone makes its possible. The study involved using a welding experiment, numerical simulation, physical simulation, and mechanical tests. The welding was carried out using the pulsed gas metal arc welding (GMAW) transfer and type J thermocouples were used to develop the thermal cycles in the HAZ. Simufact® Welding was utilized for the numerical simulation. Optical microscope was used to evaluate the microstructures and Vickers microhardness test was done along the weld cross-section. The HAZ was located on the weld cross-section with a mean hardness of 63.7 HV0.1, which is considerably lower when compared with the base metal (BM) which has a hardness of 100 HV0.1. This indicates thermal softening occurred due to the heat input to the material. There is a match in the hardness values of the Gleeble samples and the locations on the weld cross section suggested by the model showing validity of the simulation. It is important to note the fact that there is an influence of heat input into aluminum AW 6005-T6 weld joints and its mechanical properties in the design of welding process parameters for automotive parts. The welding parameters can be optimized to decrease the heat input into the weld, as this can directly affects the mechanical properties in the HAZ.
{"title":"Numerical and experimental investigations of mechanical properties of AW 6005-T6 Aluminium alloy butt weld joint using GMAW process","authors":"Benoit Ndiwe, Paul KAh, Francois Miterand Njock Bayock, Daniel Agili Uchechukwu, Harrison Onyeji","doi":"10.56801/mme907","DOIUrl":"https://doi.org/10.56801/mme907","url":null,"abstract":"This study aimed to investigate the effect of the welding heat input on the heat affected zone (HAZ) of AW 6005-T6 aluminium alloy for a butt-welded joint using gas metal arc welding. The determination of the thermal cycles, metallography, and the resulting mechanical properties in the zone makes its possible. The study involved using a welding experiment, numerical simulation, physical simulation, and mechanical tests. The welding was carried out using the pulsed gas metal arc welding (GMAW) transfer and type J thermocouples were used to develop the thermal cycles in the HAZ. Simufact® Welding was utilized for the numerical simulation. Optical microscope was used to evaluate the microstructures and Vickers microhardness test was done along the weld cross-section. The HAZ was located on the weld cross-section with a mean hardness of 63.7 HV0.1, which is considerably lower when compared with the base metal (BM) which has a hardness of 100 HV0.1. This indicates thermal softening occurred due to the heat input to the material. There is a match in the hardness values of the Gleeble samples and the locations on the weld cross section suggested by the model showing validity of the simulation. It is important to note the fact that there is an influence of heat input into aluminum AW 6005-T6 weld joints and its mechanical properties in the design of welding process parameters for automotive parts. The welding parameters can be optimized to decrease the heat input into the weld, as this can directly affects the mechanical properties in the HAZ.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"103 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135821815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HOMER (Hybrid Optimization of Multiple Electric Renewable) streamlines the design of distributed generation (DG) systems for a variety of grid-connected and off-grid applications. In Sudan, it is difficult to acquire an effective photovoltaic array for residential use due to a lack of energy consumption in power generation and access to technological, social, and environmental constraints. A model of a low-energy, solar-powered house that is suitable for Sudanese social and economic norms requires a high-quality architectural design. Method Using the HOMER software, the charge advantage analysis of a hybrid system was studied and assessed using the value for each kilowatt of grid-connected systems or utility grid. The simulation results have been presented as the most efficient and cost-effective method for achieving various home counts. At the current price, the hybrid system has a refund term of about fifty-four years. If turbine prices in Khartoum decline, the overall cost of energy will be reduced.
{"title":"Utilizing Homer Power Optimization Software for A Techno-Economic Feasibility, Study of a Sustainable Grid-Connected Design for Urban Electricity in, Khartoum","authors":"None Zeinab A. Elhassan","doi":"10.56801/mme988","DOIUrl":"https://doi.org/10.56801/mme988","url":null,"abstract":"HOMER (Hybrid Optimization of Multiple Electric Renewable) streamlines the design of distributed generation (DG) systems for a variety of grid-connected and off-grid applications. In Sudan, it is difficult to acquire an effective photovoltaic array for residential use due to a lack of energy consumption in power generation and access to technological, social, and environmental constraints. A model of a low-energy, solar-powered house that is suitable for Sudanese social and economic norms requires a high-quality architectural design. Method Using the HOMER software, the charge advantage analysis of a hybrid system was studied and assessed using the value for each kilowatt of grid-connected systems or utility grid. The simulation results have been presented as the most efficient and cost-effective method for achieving various home counts. At the current price, the hybrid system has a refund term of about fifty-four years. If turbine prices in Khartoum decline, the overall cost of energy will be reduced.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135822136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Copper indium selenide CuInSe2 (CISe) is one of the most promising absorber materials in high efficiency heterojunction thin-film solar cells due to its high conversion efficiency and known high stability. This paper describes a simple method for preparing CuInSe2 films from pre-prepared CuInSe2 ingot powder using a flash evaporation method. The primary goal of this work is to investigate the effect of feeding flow rate on CuInSe2 film characteristics. The powder feeding flow rate into the evaporator has been adjusted to control the film growth rate. Structure, composition, morphology, electrical and optical properties have all been studied for films deposited at different feeding flow rates. The results show that varying the feeding flow rate affects film characteristics, and that lower feeding rates yield films with better characteristics, which should be considered in future semiconductor film processing.
{"title":"Effect of feeding flow rate on characteristics of CuInSe2 films prepared by flash evaporation","authors":"C. Ali, Abdelwahab Hamdi, Hikmat S. Hilal","doi":"10.56801/mme867","DOIUrl":"https://doi.org/10.56801/mme867","url":null,"abstract":"Copper indium selenide CuInSe2 (CISe) is one of the most promising absorber materials in high efficiency heterojunction thin-film solar cells due to its high conversion efficiency and known high stability. This paper describes a simple method for preparing CuInSe2 films from pre-prepared CuInSe2 ingot powder using a flash evaporation method. The primary goal of this work is to investigate the effect of feeding flow rate on CuInSe2 film characteristics. The powder feeding flow rate into the evaporator has been adjusted to control the film growth rate. Structure, composition, morphology, electrical and optical properties have all been studied for films deposited at different feeding flow rates. The results show that varying the feeding flow rate affects film characteristics, and that lower feeding rates yield films with better characteristics, which should be considered in future semiconductor film processing.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90119837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Jandieri, D. Sakhvadze, I. Janelidze, O. Mikadze
Based on a critical analysis of the current state and prospects of development of the problem of pyrometallurgical recovery/extraction of aluminum from aluminum-bearing industrial waste, the need to replace traditional, electrocarbonothermic processes and melting process units with innovative, plasma carbothermal processes and furnace-reactors, with the possibility of reverse feeding and recovery of gasified during melting metal and metal oxide components is substantiated. On the basis of this analysis a new technological scheme of smelting with a new design of plasma-arc furnace-reactor, which provides a solution to the problem using a special hollow double-shell graphite cathode connected to the system of circulating supply of gases separated from the reaction zone, was developed and presented. The proposed technological scheme also differs in the use of such highly active liquid and gaseous reagents as carbon-containing reducing agents as calcium carbide (CaC2) and methane (CH4). The main features of chemism of reducing processes are described. It is shown that by replacing traditional coke with anodized calcium carbide and natural gas (methane) the recovery rate of aluminum oxide (Al 29-34%) and silica (SiO2) and hematite (Fe2O3) present with it increases to 80-99%. Specific power consumption is reduced by 35-40%, the 90-95% reduction in the loss of target elements, the 80% reduction in the emission of greenhouse carbon dioxide, which is replaced by a very valuable recyclable synthesis gas - CO-H2. By additionally feeding separate portions of quartzite and steel-rolling scale in the furnace-reactor, a complex alloy-ligature of Fe-Si-Al-Ca system is melted, with the ratio of components: 1:[1.3-2]:[1.3-1.2]:[0.9-1.25]. With the introduction into industrial practice of the plasma carbothermal process of aluminum reduction from secondary aluminum dumping slags accumulated in the world (4 million tons/year), it will be possible to return up to 1-1.5 million tons/year of aluminum to the production processing cycle.
{"title":"Development and investigation of the technological process of plasma carbothermal reduction of slag from secondary metallurgy of aluminum","authors":"G. Jandieri, D. Sakhvadze, I. Janelidze, O. Mikadze","doi":"10.56801/mme842","DOIUrl":"https://doi.org/10.56801/mme842","url":null,"abstract":"Based on a critical analysis of the current state and prospects of development of the problem of pyrometallurgical recovery/extraction of aluminum from aluminum-bearing industrial waste, the need to replace traditional, electrocarbonothermic processes and melting process units with innovative, plasma carbothermal processes and furnace-reactors, with the possibility of reverse feeding and recovery of gasified during melting metal and metal oxide components is substantiated. On the basis of this analysis a new technological scheme of smelting with a new design of plasma-arc furnace-reactor, which provides a solution to the problem using a special hollow double-shell graphite cathode connected to the system of circulating supply of gases separated from the reaction zone, was developed and presented. The proposed technological scheme also differs in the use of such highly active liquid and gaseous reagents as carbon-containing reducing agents as calcium carbide (CaC2) and methane (CH4). The main features of chemism of reducing processes are described. It is shown that by replacing traditional coke with anodized calcium carbide and natural gas (methane) the recovery rate of aluminum oxide (Al 29-34%) and silica (SiO2) and hematite (Fe2O3) present with it increases to 80-99%. Specific power consumption is reduced by 35-40%, the 90-95% reduction in the loss of target elements, the 80% reduction in the emission of greenhouse carbon dioxide, which is replaced by a very valuable recyclable synthesis gas - CO-H2. By additionally feeding separate portions of quartzite and steel-rolling scale in the furnace-reactor, a complex alloy-ligature of Fe-Si-Al-Ca system is melted, with the ratio of components: 1:[1.3-2]:[1.3-1.2]:[0.9-1.25]. With the introduction into industrial practice of the plasma carbothermal process of aluminum reduction from secondary aluminum dumping slags accumulated in the world (4 million tons/year), it will be possible to return up to 1-1.5 million tons/year of aluminum to the production processing cycle.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"68 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90496720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heavy metals contaminate underground and surface waters from illegally constructed industrial and municipal landfills. Numerous papers on the subject contain undeniable evidence, and they have determined heavy metal migration into nature by measuring concentrations in underground and surface waters near tailings ponds and landfills. Heavy metal measured values exceed the WHO limit quota. The characteristics of heavy metals and their negative impact on the environment and people's health have prompted a large number of investigations into this global problem. This paper provides an overview of the literature on the subject, with the goal of emphasizing the anthropogenic influence of heavy metal pollution as a critical issue, particularly in developing countries.
{"title":"Distribution of heavy metals from tailings ponds and landfills into underground and surface waters","authors":"Bojana Živković, Jelena Đokić","doi":"10.56801/mme859","DOIUrl":"https://doi.org/10.56801/mme859","url":null,"abstract":"Heavy metals contaminate underground and surface waters from illegally constructed industrial and municipal landfills. Numerous papers on the subject contain undeniable evidence, and they have determined heavy metal migration into nature by measuring concentrations in underground and surface waters near tailings ponds and landfills. Heavy metal measured values exceed the WHO limit quota. The characteristics of heavy metals and their negative impact on the environment and people's health have prompted a large number of investigations into this global problem. This paper provides an overview of the literature on the subject, with the goal of emphasizing the anthropogenic influence of heavy metal pollution as a critical issue, particularly in developing countries.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76145090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This research paper presents the mathematical model to design a stepped pin profile tool and its durability index. A mathematical model is being developed by considering tools that should generate the same heat as conventional conical tools and stepped tools by varying the shoulder to pin diameter ratio (D/d). Aluminum alloy AA6061-T6 with a thickness of 6 mm fabricated using a butt-type weld configuration and newly developed conical stepped pin profile tools with water as a cooling medium. The result shows that a conical stepped tool shows better mechanical properties of the welded joints compared with a conventional conical tool. When compared to other stepped conical pin profile tools, one with a (D/d) of 3 has superior mechanical and microstructural properties and as the D/d ratio increases, the tool pin durability index falls.
{"title":"Mathematical and experimental examination of the effect of the stepped pin tool profile on the characterization of AA 6061-T6 underwater friction stir welding","authors":"K. Wakchaure, A. Thakur","doi":"10.56801/mme869","DOIUrl":"https://doi.org/10.56801/mme869","url":null,"abstract":"This research paper presents the mathematical model to design a stepped pin profile tool and its durability index. A mathematical model is being developed by considering tools that should generate the same heat as conventional conical tools and stepped tools by varying the shoulder to pin diameter ratio (D/d). Aluminum alloy AA6061-T6 with a thickness of 6 mm fabricated using a butt-type weld configuration and newly developed conical stepped pin profile tools with water as a cooling medium. The result shows that a conical stepped tool shows better mechanical properties of the welded joints compared with a conventional conical tool. When compared to other stepped conical pin profile tools, one with a (D/d) of 3 has superior mechanical and microstructural properties and as the D/d ratio increases, the tool pin durability index falls.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90802839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dr. Francois Njock Bayock, P. Mejouyo, M. S. Bisong, P. Kah
The paper focuses on the technical challenges of producing high-quality welds in modern extreme climate conditions structures, as welds are typically the weakest part of welded structures. Welding is particularly difficult with high-strength and ultra-high-strength steels (HSS-UHSS), which are used in structures to reduce weight. The microstructural compositions and mechanical properties of dissimilar high-strength and ultra-high-strength steels were investigated in this study, which was performed with three different heat inputs (0.8, 1.2, and 1.8 kJ/mm). There was a 2.3Cr, 0.4Si, and 2.8Mn increase on the FGHAZ microstructure of the S960QC side, confirming the temperature increase in that zone. Microhardness results show softening (160 HV5) in the E500 side's fine grain heat-affected zone (FGHAZ). Bending test results show that when the maximum force applied was 4000N, the fracture angle was close to 149°, and that the fracture zone was oriented exclusively in the FGHAZ, which had the higher softening zone. Tensile results show the fracture zone, which was oriented in the E500 side's FGHAZ. It was suggested that a heat input of 1.2 kJ/mm be applied to the weld dissimilar joint of TMCP E500-S960QC, which will be beneficial for extreme climate conditions.
{"title":"Investigation of microstructure, and mechanical properties of dissimilar high and ultra-high steel welded joints: application for extreme climate conditions","authors":"Dr. Francois Njock Bayock, P. Mejouyo, M. S. Bisong, P. Kah","doi":"10.56801/mme861","DOIUrl":"https://doi.org/10.56801/mme861","url":null,"abstract":"The paper focuses on the technical challenges of producing high-quality welds in modern extreme climate conditions structures, as welds are typically the weakest part of welded structures. Welding is particularly difficult with high-strength and ultra-high-strength steels (HSS-UHSS), which are used in structures to reduce weight. The microstructural compositions and mechanical properties of dissimilar high-strength and ultra-high-strength steels were investigated in this study, which was performed with three different heat inputs (0.8, 1.2, and 1.8 kJ/mm). There was a 2.3Cr, 0.4Si, and 2.8Mn increase on the FGHAZ microstructure of the S960QC side, confirming the temperature increase in that zone. Microhardness results show softening (160 HV5) in the E500 side's fine grain heat-affected zone (FGHAZ). Bending test results show that when the maximum force applied was 4000N, the fracture angle was close to 149°, and that the fracture zone was oriented exclusively in the FGHAZ, which had the higher softening zone. Tensile results show the fracture zone, which was oriented in the E500 side's FGHAZ. It was suggested that a heat input of 1.2 kJ/mm be applied to the weld dissimilar joint of TMCP E500-S960QC, which will be beneficial for extreme climate conditions.\u0000 ","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"70 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84102138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Sahai, D. Biswas, Manishkumar D. Yadav, A. Samui, S. Kamble
The present work deals with the effect of water absorption on the mechanical properties of untreated, 10% alkali-treated, and 10% alkali plus 1% silane treated sisal fibers (5%, 10%, and 15%) reinforced polyester composites. Hand lay-up was used to create the composite. The samples were prepared in accordance with ASTM standards, and tests for tensile strength, flexural strength, impact strength, and water absorption were performed. An increase in the tensile, flexural and impact strength was observed with an increase in fibre loading for untreated, alkali-treated and alkali plus silane treated sisal fibre reinforced polyester composites without water absorption, the increase being maximum for 10% alkali plus 1% silane treated fibre composite. Water absorption reduces tensile strength while increasing flexural and impact strength in untreated sisal fiber reinforced composites. There is an increase in tensile, flexural, and impact strength with higher fiber loading for 10% alkali-treated and 10% alkali-treated plus 1% silane treated sisal fiber reinforced polyester composites with and without water absorption. The tensile, flexural, and impact strength of alkali plus silane treated fiber is maximum at any given fiber loading, indicating that the alkali plus silane treatment is effective in improving the fiber matrix interface. Water absorption increases with fiber loading in untreated, 10% alkali-treated, and 10% alkali plus 1% silane treated sisal fiber reinforced polyester composites, with the rate being lowest in alkali plus silane treated fiber reinforced composites.
{"title":"Effect of alkali and silane treatment on water absorption and mechanical properties of sisal fiber reinforced polyester composites","authors":"R. Sahai, D. Biswas, Manishkumar D. Yadav, A. Samui, S. Kamble","doi":"10.56801/mme864","DOIUrl":"https://doi.org/10.56801/mme864","url":null,"abstract":"The present work deals with the effect of water absorption on the mechanical properties of untreated, 10% alkali-treated, and 10% alkali plus 1% silane treated sisal fibers (5%, 10%, and 15%) reinforced polyester composites. Hand lay-up was used to create the composite. The samples were prepared in accordance with ASTM standards, and tests for tensile strength, flexural strength, impact strength, and water absorption were performed. An increase in the tensile, flexural and impact strength was observed with an increase in fibre loading for untreated, alkali-treated and alkali plus silane treated sisal fibre reinforced polyester composites without water absorption, the increase being maximum for 10% alkali plus 1% silane treated fibre composite. Water absorption reduces tensile strength while increasing flexural and impact strength in untreated sisal fiber reinforced composites. There is an increase in tensile, flexural, and impact strength with higher fiber loading for 10% alkali-treated and 10% alkali-treated plus 1% silane treated sisal fiber reinforced polyester composites with and without water absorption. The tensile, flexural, and impact strength of alkali plus silane treated fiber is maximum at any given fiber loading, indicating that the alkali plus silane treatment is effective in improving the fiber matrix interface. Water absorption increases with fiber loading in untreated, 10% alkali-treated, and 10% alkali plus 1% silane treated sisal fiber reinforced polyester composites, with the rate being lowest in alkali plus silane treated fiber reinforced composites.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77438529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maja B. Đolić, M. Ćujić, Tijana Stanišić, Dragana Čičkarić, M. Ristić, Aleksandra Perić Grujić
The Republic of Serbia generates the majority of its electricity at the thermal power plants (TE) Nikola Tesla, Kolubara, and Kostolac. Coal is extracted from the Kolubara basin, which produces approximately 70% of lignite (an average of 30 million tons per year), and the Kostolac basin, which produces 30% of lignite. Ash, fly ash, and slag are examples of coal combustion residues. Because of the high content of potentially hazardous elements such as As, Pb, Cd, and Cr, environmental pollution with ash and fly ash has been extensively researched. Stable isotopes of lead can be used to trace lead sources. It is possible to monitor the presence, transformation pathways, and environmental impact of Pb by determining its isotopic composition in coal and fly ash. For the first time, the isotopic composition of selected coal samples from the Kolubara and Kostolac mines, as well as fly ash from the Kolubara (A and B), Kostolac (A and B), and Nikola Tesla (TENT A3, A2, B2) thermal power plants, was investigated in this study. The obtained data for 206Pb/207Pb in coal serve as the foundation for ranking domestic coals, whereas the isotopic ratios 206Pb/207Pb and 208Pb/207Pb in fly ash can be used to monitor and control lead pollution from investigated sources.
塞尔维亚共和国的大部分电力来自尼古拉·特斯拉、科卢巴拉和科斯托拉茨的热电厂。煤炭是从Kolubara盆地和Kostolac盆地提取的,前者生产约70%的褐煤(平均每年3000万吨),后者生产30%的褐煤。煤灰、飞灰和炉渣是煤燃烧残留物的例子。由于粉煤灰中as、Pb、Cd、Cr等潜在有害元素的含量较高,粉煤灰和粉煤灰对环境的污染问题得到了广泛的研究。铅的稳定同位素可以用来追踪铅的来源。通过测定煤和粉煤灰中铅的同位素组成,可以监测铅的存在、转化途径和环境影响。本研究首次对Kolubara和Kostolac煤矿的煤样以及Kolubara (A和B)、Kostolac (A和B)和Nikola Tesla (TENT A3、A2、B2)火电厂的粉煤灰进行了同位素组成研究。获得的煤中206Pb/207Pb数据可作为国内煤的分级依据,而粉煤灰中206Pb/207Pb和208Pb/207Pb同位素比值可用于监测和控制所调查来源的铅污染。
{"title":"Contribution to the Serbian coal ranking and fly ash characterization using Pb isotopic ratio","authors":"Maja B. Đolić, M. Ćujić, Tijana Stanišić, Dragana Čičkarić, M. Ristić, Aleksandra Perić Grujić","doi":"10.56801/mme931","DOIUrl":"https://doi.org/10.56801/mme931","url":null,"abstract":"The Republic of Serbia generates the majority of its electricity at the thermal power plants (TE) Nikola Tesla, Kolubara, and Kostolac. Coal is extracted from the Kolubara basin, which produces approximately 70% of lignite (an average of 30 million tons per year), and the Kostolac basin, which produces 30% of lignite. Ash, fly ash, and slag are examples of coal combustion residues. Because of the high content of potentially hazardous elements such as As, Pb, Cd, and Cr, environmental pollution with ash and fly ash has been extensively researched. Stable isotopes of lead can be used to trace lead sources. It is possible to monitor the presence, transformation pathways, and environmental impact of Pb by determining its isotopic composition in coal and fly ash. For the first time, the isotopic composition of selected coal samples from the Kolubara and Kostolac mines, as well as fly ash from the Kolubara (A and B), Kostolac (A and B), and Nikola Tesla (TENT A3, A2, B2) thermal power plants, was investigated in this study. The obtained data for 206Pb/207Pb in coal serve as the foundation for ranking domestic coals, whereas the isotopic ratios 206Pb/207Pb and 208Pb/207Pb in fly ash can be used to monitor and control lead pollution from investigated sources.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87528279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}