Pub Date : 2024-01-01DOI: 10.2174/0113895575247690230926113455
Susan Panahi, Zohreh Yazdi, Mahboubeh Sanchouli, Fatemehsadat Sajadi, Fateme Motavasselian, Hedyeh Maghareh Abed, Zahra Beygi, Seyed Mohammad Gheibihayat
Efferocytosis is the physiological process of phagocytic clearance of apoptotic cells by both professional phagocytic cells, such as macrophages, and non-professional phagocytic cells, such as epithelial cells. This process is crucial for maintaining tissue homeostasis in normal physiology. Any defects in efferocytosis can lead to pathological consequences and result in inflammatory diseases. Extracellular vesicles (EVs), including exosomes, microvesicles (MVs), and apoptotic vesicles (ApoVs), play a crucial role in proper efferocytosis. These EVs can significantly impact efferocytosis by affecting the polarization of macrophages and impacting calreticulin (CRT), TAM receptors, and MFG-E8. With further knowledge of these effects, new treatment strategies can be proposed for many inflammatory diseases caused by efferocytosis disorders. This review article aims to investigate the role of EVs during efferocytosis and its potential clinical applications in inflammatory diseases.
{"title":"The Role of Extracellular Vesicles in Efferocytosis.","authors":"Susan Panahi, Zohreh Yazdi, Mahboubeh Sanchouli, Fatemehsadat Sajadi, Fateme Motavasselian, Hedyeh Maghareh Abed, Zahra Beygi, Seyed Mohammad Gheibihayat","doi":"10.2174/0113895575247690230926113455","DOIUrl":"10.2174/0113895575247690230926113455","url":null,"abstract":"<p><p>Efferocytosis is the physiological process of phagocytic clearance of apoptotic cells by both professional phagocytic cells, such as macrophages, and non-professional phagocytic cells, such as epithelial cells. This process is crucial for maintaining tissue homeostasis in normal physiology. Any defects in efferocytosis can lead to pathological consequences and result in inflammatory diseases. Extracellular vesicles (EVs), including exosomes, microvesicles (MVs), and apoptotic vesicles (ApoVs), play a crucial role in proper efferocytosis. These EVs can significantly impact efferocytosis by affecting the polarization of macrophages and impacting calreticulin (CRT), TAM receptors, and MFG-E8. With further knowledge of these effects, new treatment strategies can be proposed for many inflammatory diseases caused by efferocytosis disorders. This review article aims to investigate the role of EVs during efferocytosis and its potential clinical applications in inflammatory diseases.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"634-641"},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49679410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HDAC9 is a histone deacetylase enzyme belonging to the class IIa of HDACs which catalyses histone deacetylation. HDAC9 inhibit cell proliferation by repairing DNA, arresting the cell cycle, inducing apoptosis, and altering genetic expression. HDAC9 plays a significant part in human physiological system and are involved in various type of diseases like cancer, diabetes, atherosclerosis and CVD, autoimmune response, inflammatory disease, osteoporosis and liver fibrosis. This review discusses the role of HDAC9 in different diseases and structure-activity relationships (SARs) of various hydroxamate and non-hydroxamate-based inhibitors. SAR of compounds containing several scaffolds have been discussed in detail. Moreover, structural requirements regarding the various components of HDAC9 inhibitor (cap group, linker and zinc-binding group) has been highlighted in this review. Though, HDAC9 is a promising target for the treatment of a number of diseases including cancer, a very few research are available. Thus, this review may provide useful information for designing novel HDAC9 inhibitors to fight against different diseases in the future.
{"title":"HDAC9 as a Privileged Target: Reviewing its Role in Different Diseases and Structure-activity Relationships (SARs) of its Inhibitors.","authors":"Totan Das, Samima Khatun, Tarun Jha, Shovanlal Gayen","doi":"10.2174/0113895575267301230919165827","DOIUrl":"10.2174/0113895575267301230919165827","url":null,"abstract":"<p><p>HDAC9 is a histone deacetylase enzyme belonging to the class IIa of HDACs which catalyses histone deacetylation. HDAC9 inhibit cell proliferation by repairing DNA, arresting the cell cycle, inducing apoptosis, and altering genetic expression. HDAC9 plays a significant part in human physiological system and are involved in various type of diseases like cancer, diabetes, atherosclerosis and CVD, autoimmune response, inflammatory disease, osteoporosis and liver fibrosis. This review discusses the role of HDAC9 in different diseases and structure-activity relationships (SARs) of various hydroxamate and non-hydroxamate-based inhibitors. SAR of compounds containing several scaffolds have been discussed in detail. Moreover, structural requirements regarding the various components of HDAC9 inhibitor (cap group, linker and zinc-binding group) has been highlighted in this review. Though, HDAC9 is a promising target for the treatment of a number of diseases including cancer, a very few research are available. Thus, this review may provide useful information for designing novel HDAC9 inhibitors to fight against different diseases in the future.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"767-784"},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41204888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/0113895575277122231108095511
Thoraya A Farghaly, Ghada S Masaret, Sayed M Riyadh, Marwa F Harras
Out of a variety of heterocycles, triazole scaffolds have been shown to play a significant part in a wide array of biological functions. Many drug compounds containing a triazole moiety with important antimicrobial, anticancer and antidepressant properties have been commercialized. In addition, the triazole scaffold exhibits remarkable antiviral activity either incorporated into nucleoside analogs or non-nucleosides. Many synthetic techniques have been produced by scientists around the world as a result of their wide-ranging biological function. In this review, we have tried to summarize new synthetic methods produced by diverse research groups as well as provide a comprehensive description of the function of [1,2,4] and [1,2,3]-triazole derivatives as antiviral agents. Antiviral triazole compounds have been shown to target a wide variety of molecular proteins. In addition, several strains of viruses, including the human immunodeficiency virus, SARS virus, hepatitis B and C viruses, influenza virus, Hantavirus, and herpes virus, were discovered to be susceptible to triazole derivatives. This review article covered the reports for antiviral activity of both 1,2,3- and 1,2,4-triazole moieties up to 2022.
{"title":"A Literature Review Focusing on the Antiviral Activity of [1,2,4] and [1,2,3]-triazoles.","authors":"Thoraya A Farghaly, Ghada S Masaret, Sayed M Riyadh, Marwa F Harras","doi":"10.2174/0113895575277122231108095511","DOIUrl":"10.2174/0113895575277122231108095511","url":null,"abstract":"<p><p>Out of a variety of heterocycles, triazole scaffolds have been shown to play a significant part in a wide array of biological functions. Many drug compounds containing a triazole moiety with important antimicrobial, anticancer and antidepressant properties have been commercialized. In addition, the triazole scaffold exhibits remarkable antiviral activity either incorporated into nucleoside analogs or non-nucleosides. Many synthetic techniques have been produced by scientists around the world as a result of their wide-ranging biological function. In this review, we have tried to summarize new synthetic methods produced by diverse research groups as well as provide a comprehensive description of the function of [1,2,4] and [1,2,3]-triazole derivatives as antiviral agents. Antiviral triazole compounds have been shown to target a wide variety of molecular proteins. In addition, several strains of viruses, including the human immunodeficiency virus, SARS virus, hepatitis B and C viruses, influenza virus, Hantavirus, and herpes virus, were discovered to be susceptible to triazole derivatives. This review article covered the reports for antiviral activity of both 1,2,3- and 1,2,4-triazole moieties up to 2022.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"1602-1629"},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138441001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/0113895575275799240306105615
Diego Quiroga, Carlos Coy-Barrera
Chitosan (CS) is a polymer made up of mainly deacetylated β-1,4 D-glucosamine units, which is part of a large group of D-glucosamine oligomers known as chitooligosaccharides, which can be obtained from chitin, most abundant natural polymer after cellulose and central component of the shrimp exoskeleton. It is known that it can be used for the development of materials, among which its use stands out in wastewater treatment (removal of metal ions, dyes, and as a membrane in purification processes), food industry (anti-cholesterol and fat, packaging material, preservative, and food additive), agriculture (seed and fertilizer coating, controlled release agrochemicals), pulp and paper industry (surface treatment, adhesive paper), cosmetics (body creams, lotions, etc.), in the engineering of tissues, wound healing, as excipients for drug administration, gels, membranes, nanofibers, beads, microparticles, nanoparticles, scaffolds, sponges, and diverse biological ones, specifically antibacterial and antifungal activities. This article reviews the main contributions published in the last ten years regarding the use and application of CS in medical chemistry. The applications exposed here involve regenerative medicine in the design of bioprocesses and tissue engineering, Pharmaceutical sciences to obtain biomaterials, polymers, biomedicine, and the use of nanomaterials and nanotechnology, toxicology, and Clinical Pharmaceuticals, emphasizing the perspectives and the direction that can take research in this area.
{"title":"Use of Chitosan as a Precursor for Multiple Applications in Medicinal Chemistry: Recent Significant Contributions.","authors":"Diego Quiroga, Carlos Coy-Barrera","doi":"10.2174/0113895575275799240306105615","DOIUrl":"10.2174/0113895575275799240306105615","url":null,"abstract":"<p><p>Chitosan (CS) is a polymer made up of mainly deacetylated β-1,4 D-glucosamine units, which is part of a large group of D-glucosamine oligomers known as chitooligosaccharides, which can be obtained from chitin, most abundant natural polymer after cellulose and central component of the shrimp exoskeleton. It is known that it can be used for the development of materials, among which its use stands out in wastewater treatment (removal of metal ions, dyes, and as a membrane in purification processes), food industry (anti-cholesterol and fat, packaging material, preservative, and food additive), agriculture (seed and fertilizer coating, controlled release agrochemicals), pulp and paper industry (surface treatment, adhesive paper), cosmetics (body creams, lotions, etc.), in the engineering of tissues, wound healing, as excipients for drug administration, gels, membranes, nanofibers, beads, microparticles, nanoparticles, scaffolds, sponges, and diverse biological ones, specifically antibacterial and antifungal activities. This article reviews the main contributions published in the last ten years regarding the use and application of CS in medical chemistry. The applications exposed here involve regenerative medicine in the design of bioprocesses and tissue engineering, Pharmaceutical sciences to obtain biomaterials, polymers, biomedicine, and the use of nanomaterials and nanotechnology, toxicology, and Clinical Pharmaceuticals, emphasizing the perspectives and the direction that can take research in this area.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"1651-1684"},"PeriodicalIF":3.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140158443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/1389557523666230324081713
Myia Aiges, Kota V Ramana
Coronavirus disease-19 (COVID-19), a serious pandemic due to the SARS-CoV-2 virus infection, caused significant lockdowns, healthcare shortages, and deaths worldwide. The infection leads to an uncontrolled systemic inflammatory response causing severe respiratory distress and multiple-organ failure. Quick development of several vaccines efficiently controlled the spread of COVID-19. However, the rise of various new subvariants of COVID-19 demonstrated some concerns over the efficacy of existing vaccines. Currently, better vaccines to control these variants are still under development as several new subvariants of COVID-19, such as omicron BA-4, BA-5, and BF-7 are still impacting the world. Few antiviral treatments have been shown to control COVID-19 symptoms. Further, control of COVID-19 symptoms has been explored with many natural and synthetic adjuvant compounds in hopes of treating the deadly and contagious disease. Vitamins have been shown to modulate the immune system, function as antioxidants, and reduce the inflammatory response. Recent studies have investigated the potential role of vitamins, specifically vitamins A, B, C, D, and E, in reducing the immune and inflammatory responses and severity of the complication. In this brief article, we discussed our current understanding of the role of vitamins in controlling COVID-19 symptoms and their potential use as adjuvant therapy.
{"title":"Significance of Vitamin Supplementation in Reducing the Severity of COVID-19.","authors":"Myia Aiges, Kota V Ramana","doi":"10.2174/1389557523666230324081713","DOIUrl":"10.2174/1389557523666230324081713","url":null,"abstract":"<p><p>Coronavirus disease-19 (COVID-19), a serious pandemic due to the SARS-CoV-2 virus infection, caused significant lockdowns, healthcare shortages, and deaths worldwide. The infection leads to an uncontrolled systemic inflammatory response causing severe respiratory distress and multiple-organ failure. Quick development of several vaccines efficiently controlled the spread of COVID-19. However, the rise of various new subvariants of COVID-19 demonstrated some concerns over the efficacy of existing vaccines. Currently, better vaccines to control these variants are still under development as several new subvariants of COVID-19, such as omicron BA-4, BA-5, and BF-7 are still impacting the world. Few antiviral treatments have been shown to control COVID-19 symptoms. Further, control of COVID-19 symptoms has been explored with many natural and synthetic adjuvant compounds in hopes of treating the deadly and contagious disease. Vitamins have been shown to modulate the immune system, function as antioxidants, and reduce the inflammatory response. Recent studies have investigated the potential role of vitamins, specifically vitamins A, B, C, D, and E, in reducing the immune and inflammatory responses and severity of the complication. In this brief article, we discussed our current understanding of the role of vitamins in controlling COVID-19 symptoms and their potential use as adjuvant therapy.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"254-264"},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9183992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/1389557523666230519162803
Kihang Choi
Background: The structure-property relationship illustrates how modifying the chemical structure of a pharmaceutical compound influences its absorption, distribution, metabolism, excretion, and other related properties. Understanding structure-property relationships of clinically approved drugs could provide useful information for drug design and optimization strategies.
Method: Among new drugs approved around the world in 2022, including 37 in the US, structure- property relationships of seven drugs were compiled from medicinal chemistry literature, in which detailed pharmacokinetic and/or physicochemical properties were disclosed not only for the final drug but also for its key analogues generated during drug development.
Results: The discovery campaigns for these seven drugs demonstrate extensive design and optimization efforts to identify suitable candidates for clinical development. Several strategies have been successfully employed, such as attaching a solubilizing group, bioisosteric replacement, and deuterium incorporation, resulting in new compounds with enhanced physicochemical and pharmacokinetic properties.
Conclusion: The structure-property relationships hereby summarized illustrate how proper structural modifications could successfully improve the overall drug-like properties. The structure-property relationships of clinically approved drugs are expected to continue to provide valuable references and guides for the development of future drugs.
{"title":"Structure-property Relationships Reported for the New Drugs Approved in 2022.","authors":"Kihang Choi","doi":"10.2174/1389557523666230519162803","DOIUrl":"10.2174/1389557523666230519162803","url":null,"abstract":"<p><strong>Background: </strong>The structure-property relationship illustrates how modifying the chemical structure of a pharmaceutical compound influences its absorption, distribution, metabolism, excretion, and other related properties. Understanding structure-property relationships of clinically approved drugs could provide useful information for drug design and optimization strategies.</p><p><strong>Method: </strong>Among new drugs approved around the world in 2022, including 37 in the US, structure- property relationships of seven drugs were compiled from medicinal chemistry literature, in which detailed pharmacokinetic and/or physicochemical properties were disclosed not only for the final drug but also for its key analogues generated during drug development.</p><p><strong>Results: </strong>The discovery campaigns for these seven drugs demonstrate extensive design and optimization efforts to identify suitable candidates for clinical development. Several strategies have been successfully employed, such as attaching a solubilizing group, bioisosteric replacement, and deuterium incorporation, resulting in new compounds with enhanced physicochemical and pharmacokinetic properties.</p><p><strong>Conclusion: </strong>The structure-property relationships hereby summarized illustrate how proper structural modifications could successfully improve the overall drug-like properties. The structure-property relationships of clinically approved drugs are expected to continue to provide valuable references and guides for the development of future drugs.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"330-340"},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9552038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/1389557523666230509123036
Dharti H Modh, Vithal M Kulkarni
Despite the tremendous progress that has occurred in recent years in cell biology and oncology, in chemical, physical and computer sciences, the disease cancer has continued as the major cause of death globally. Research organizations, academic institutions and pharmaceutical companies invest huge amounts of money in the discovery and development of new anticancer drugs. Though much effort is continuing and whatever available approaches are being attempted, the success of bringing one effective drug into the market has been uncertain. To overcome problems associated with drug discovery, several approaches are being attempted. One such approach has been the use of known, approved and marketed drugs to screen these for new indications, which have gained considerable interest. This approach is known in different terms as "drug repositioning or drug repurposing." Drug repositioning refers to the structure modification of the active molecule by synthesis, in vitro/ in vivo screening and in silico computational applications where macromolecular structure-based drug design (SBDD) is employed. In this perspective, we aimed to focus on the application of repositioning or repurposing of essential drug moieties present in drugs that are already used for the treatment of some diseases such as diabetes, human immunodeficiency virus (HIV) infection and inflammation as anticancer agents. This review thus covers the available literature where molecular modeling of drugs/enzyme inhibitors through SBDD is reported for antidiabetics, anti-HIV and inflammatory diseases, which are structurally modified and screened for anticancer activity using respective cell lines.
尽管近年来细胞生物学和肿瘤学以及化学、物理和计算机科学取得了巨大进步,但癌症仍然是全球死亡的主要原因。研究组织、学术机构和制药公司为发现和开发新的抗癌药物投入了巨额资金。尽管人们仍在不断努力,尝试各种可用的方法,但能否成功地将一种有效的药物推向市场一直是个未知数。为了克服与药物发现有关的问题,人们正在尝试几种方法。其中一种方法是利用已知的、已获批准和上市的药物来筛选新的适应症,这已引起了人们的极大兴趣。这种方法被称为 "药物再定位或药物再利用"。药物重新定位是指通过合成、体外/体内筛选以及采用基于大分子结构的药物设计(SBDD)的硅计算应用,对活性分子进行结构改造。在这一视角下,我们的目标是关注对已用于治疗某些疾病(如糖尿病、人类免疫缺陷病毒(HIV)感染和炎症)的药物中的基本药物分子进行重新定位或重新使用的抗癌剂应用。因此,本综述涵盖了通过 SBDD 对药物/酶抑制剂进行分子建模的现有文献,这些药物/酶抑制剂用于抗糖尿病、抗 HIV 和炎症性疾病,这些药物/酶抑制剂经过结构修饰后,利用相应的细胞系进行抗癌活性筛选。
{"title":"Anticancer Drug Discovery By Structure-Based Repositioning Approach.","authors":"Dharti H Modh, Vithal M Kulkarni","doi":"10.2174/1389557523666230509123036","DOIUrl":"10.2174/1389557523666230509123036","url":null,"abstract":"<p><p>Despite the tremendous progress that has occurred in recent years in cell biology and oncology, in chemical, physical and computer sciences, the disease cancer has continued as the major cause of death globally. Research organizations, academic institutions and pharmaceutical companies invest huge amounts of money in the discovery and development of new anticancer drugs. Though much effort is continuing and whatever available approaches are being attempted, the success of bringing one effective drug into the market has been uncertain. To overcome problems associated with drug discovery, several approaches are being attempted. One such approach has been the use of known, approved and marketed drugs to screen these for new indications, which have gained considerable interest. This approach is known in different terms as \"drug repositioning or drug repurposing.\" Drug repositioning refers to the structure modification of the active molecule by synthesis, in vitro/ in vivo screening and in silico computational applications where macromolecular structure-based drug design (SBDD) is employed. In this perspective, we aimed to focus on the application of repositioning or repurposing of essential drug moieties present in drugs that are already used for the treatment of some diseases such as diabetes, human immunodeficiency virus (HIV) infection and inflammation as anticancer agents. This review thus covers the available literature where molecular modeling of drugs/enzyme inhibitors through SBDD is reported for antidiabetics, anti-HIV and inflammatory diseases, which are structurally modified and screened for anticancer activity using respective cell lines.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"60-91"},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9813816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Metabolic syndrome (METS) is a set of unhealthy medical conditions considered essential health problems today. Cinnamaldehyde (CA) is the major phytochemical present in the essential oil of cinnamon and possesses antioxidant, anti-inflammatory, hypoglycemic, and antihyperlipidemic activities.
Aim: We aim to systematically review the effects of CA in preventing and attenuating METS components. Moreover, the cellular and molecular mechanisms of actions of CA, its pharmacokinetics features, and potential structure-activity relationship (SAR) were also surveyed.
Methods: PubMed, Science Direct, Scopus, and Google Scholar were searched to retrieve the relevant papers.
Results: CA possesses various anti-METS activities, including anti-inflammatory, antioxidant, antidiabetic, antidyslipidemia, antiobesity, and antihypertensive properties. Various molecular mechanisms such as stimulating pancreatic insulin release, exerting an insulinotropic effect, lowering lipid peroxidation as well as pancreatic islet oxidant and inflammatory toxicity, increasing the activities of pancreatic antioxidant enzymes, suppressing pro-inflammatory cytokines production, regulating the molecular signaling pathways of the PPAR-γ and AMPK in preadipocytes and preventing adipocyte differentiation and adipogenesis are involved in these activities.
Conclusions: CA would effectively hinder METS; however, no robust clinical data supporting these effects in humans is currently available. Accordingly, conducting clinical trials to evaluate the efficacy, safe dosage, pharmacokinetics characteristics, and possible unwanted effects of CA in humans would be of great importance.
背景:代谢综合征(METS代谢综合征(METS)是一系列不健康的病症,被认为是当今必不可少的健康问题。肉桂醛(Cinnamaldehyde,CA)是肉桂精油中的主要植物化学物质,具有抗氧化、抗炎、降血糖和降血脂活性。此外,我们还调查了 CA 的细胞和分子作用机制、药代动力学特征以及潜在的结构-活性关系(SAR):方法:检索PubMed、Science Direct、Scopus和Google Scholar上的相关论文:结果:CA具有多种抗METS活性,包括抗炎、抗氧化、抗糖尿病、抗血脂异常、抗肥胖和抗高血压特性。这些活性涉及多种分子机制,如刺激胰岛素释放,发挥促胰岛素作用;降低脂质过氧化以及胰岛氧化和炎症毒性;提高胰岛抗氧化酶的活性;抑制促炎细胞因子的产生;调节前脂肪细胞中 PPAR-γ 和 AMPK 的分子信号通路;防止脂肪细胞分化和脂肪生成等:结论:CA 可有效阻止 METS,但目前还没有可靠的临床数据支持其在人体中的作用。因此,开展临床试验以评估 CA 在人体中的疗效、安全剂量、药代动力学特征以及可能出现的不良反应具有重要意义。
{"title":"Cinnamaldehyde as a Promising Dietary Phytochemical Against Metabolic Syndrome: A Systematic Review.","authors":"Mohaddeseh Khaafi, Zahra Tayarani-Najaran, Behjat Javadi","doi":"10.2174/1389557523666230725113446","DOIUrl":"10.2174/1389557523666230725113446","url":null,"abstract":"<p><strong>Background: </strong>Metabolic syndrome (METS) is a set of unhealthy medical conditions considered essential health problems today. Cinnamaldehyde (CA) is the major phytochemical present in the essential oil of cinnamon and possesses antioxidant, anti-inflammatory, hypoglycemic, and antihyperlipidemic activities.</p><p><strong>Aim: </strong>We aim to systematically review the effects of CA in preventing and attenuating METS components. Moreover, the cellular and molecular mechanisms of actions of CA, its pharmacokinetics features, and potential structure-activity relationship (SAR) were also surveyed.</p><p><strong>Methods: </strong>PubMed, Science Direct, Scopus, and Google Scholar were searched to retrieve the relevant papers.</p><p><strong>Results: </strong>CA possesses various anti-METS activities, including anti-inflammatory, antioxidant, antidiabetic, antidyslipidemia, antiobesity, and antihypertensive properties. Various molecular mechanisms such as stimulating pancreatic insulin release, exerting an insulinotropic effect, lowering lipid peroxidation as well as pancreatic islet oxidant and inflammatory toxicity, increasing the activities of pancreatic antioxidant enzymes, suppressing pro-inflammatory cytokines production, regulating the molecular signaling pathways of the PPAR-γ and AMPK in preadipocytes and preventing adipocyte differentiation and adipogenesis are involved in these activities.</p><p><strong>Conclusions: </strong>CA would effectively hinder METS; however, no robust clinical data supporting these effects in humans is currently available. Accordingly, conducting clinical trials to evaluate the efficacy, safe dosage, pharmacokinetics characteristics, and possible unwanted effects of CA in humans would be of great importance.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"355-369"},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9866241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/1389557523666230707151553
Sachin Puri, Tanuja T Yadav, Mangilal Chouhan, Kapil Kumar
Viruses cause a variety of diseases in the human body. Antiviral agents are used to prevent the production of disease-causing viruses. These agents obstruct and kill the virus's translation and replication. Because viruses share the metabolic processes of the majority of host cells, finding targeted medicines for the virus is difficult. In the ongoing search for better antiviral agents, the USFDA approved EVOTAZ, a new drug discovered for the treatment of Human Immunodeficiency Virus (HIV). It is a once-daily (OD) fixed-dose combination of Cobicistat, a cytochrome P450 (CYP) enzyme inhibitor, and Atazanavir, a protease inhibitor. The combination drug was created in such a way that it can inhibit both CYP enzymes and proteases at the same time, resulting in the virus's death. The drug is not effective in children under the age of 18; however, it is still being studied for various parameters. This review article focuses on EVOTAZ's preclinical and clinical aspects, as well as its efficacy and safety profiles.
{"title":"Synthetic and Clinical Perspectives of Evotaz: An Overview.","authors":"Sachin Puri, Tanuja T Yadav, Mangilal Chouhan, Kapil Kumar","doi":"10.2174/1389557523666230707151553","DOIUrl":"10.2174/1389557523666230707151553","url":null,"abstract":"<p><p>Viruses cause a variety of diseases in the human body. Antiviral agents are used to prevent the production of disease-causing viruses. These agents obstruct and kill the virus's translation and replication. Because viruses share the metabolic processes of the majority of host cells, finding targeted medicines for the virus is difficult. In the ongoing search for better antiviral agents, the USFDA approved EVOTAZ, a new drug discovered for the treatment of Human Immunodeficiency Virus (HIV). It is a once-daily (OD) fixed-dose combination of Cobicistat, a cytochrome P450 (CYP) enzyme inhibitor, and Atazanavir, a protease inhibitor. The combination drug was created in such a way that it can inhibit both CYP enzymes and proteases at the same time, resulting in the virus's death. The drug is not effective in children under the age of 18; however, it is still being studied for various parameters. This review article focuses on EVOTAZ's preclinical and clinical aspects, as well as its efficacy and safety profiles.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"372-390"},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10141032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In terms of female reproductive tract cancers, ovarian cancer remains the principal reason for mortality globally and is notably difficult to identify in its early stages. This fact highlights the critical need to establish prevention strategies for patients with ovarian cancer, look for new robust diagnostic and prognostic markers, and identify potential targets of response to treatment. MicroRNAs (miRNAs) are one of the novel treatment targets in cancer treatment. Thus, understanding the part of miRNAs in the pathogenesis and metastasis of ovarian cancer is at the center of researchers' attention. MiRNAs are suggested to play a role in modulating many essential cancer processes, like cell proliferation, apoptosis, differentiation, adhesion, epithelial-mesenchymal transition (EMT), and invasion. In two recent decades, natural polyphenols' anti-cancer features have been a focal point of research. Meanwhile, polyphenols are good research subjects for developing new cancer treatments. Polyphenols can modify miRNA expression and impact the function of transcription factors when used as dietary supplements. Multiple works have indicated the impact of polyphenols, including quercetin, genistein, curcumin, and resveratrol, on miRNA expression in vitro and in vivo. Here, we provide an in-depth description of four polyphenols used as dietary supplements: quercetin, genistein, curcumin, and resveratrol, and we summarize what is currently known about their regulatory abilities on influencing the miRNA functions in ovarian tumors to achieve therapeutic approaches.
{"title":"MiRNAs: Emerging Agents for Therapeutic Effects of Polyphenols on Ovarian Cancer.","authors":"Bita Badehnoosh, Nesa Rajabpoor Nikoo, Reza Asemi, Rana Shafabakhsh, Zatollah Asemi","doi":"10.2174/1389557523666230816090138","DOIUrl":"10.2174/1389557523666230816090138","url":null,"abstract":"<p><p>In terms of female reproductive tract cancers, ovarian cancer remains the principal reason for mortality globally and is notably difficult to identify in its early stages. This fact highlights the critical need to establish prevention strategies for patients with ovarian cancer, look for new robust diagnostic and prognostic markers, and identify potential targets of response to treatment. MicroRNAs (miRNAs) are one of the novel treatment targets in cancer treatment. Thus, understanding the part of miRNAs in the pathogenesis and metastasis of ovarian cancer is at the center of researchers' attention. MiRNAs are suggested to play a role in modulating many essential cancer processes, like cell proliferation, apoptosis, differentiation, adhesion, epithelial-mesenchymal transition (EMT), and invasion. In two recent decades, natural polyphenols' anti-cancer features have been a focal point of research. Meanwhile, polyphenols are good research subjects for developing new cancer treatments. Polyphenols can modify miRNA expression and impact the function of transcription factors when used as dietary supplements. Multiple works have indicated the impact of polyphenols, including quercetin, genistein, curcumin, and resveratrol, on miRNA expression <i>in vitro</i> and <i>in vivo</i>. Here, we provide an in-depth description of four polyphenols used as dietary supplements: quercetin, genistein, curcumin, and resveratrol, and we summarize what is currently known about their regulatory abilities on influencing the miRNA functions in ovarian tumors to achieve therapeutic approaches.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"440-452"},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10014292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}