首页 > 最新文献

Methods and Applications in Fluorescence最新文献

英文 中文
Construction of fluorescent logic gates for the detection of mercury(II) and ciprofloxacin based on phycocyanin 基于藻蓝蛋白的汞和环丙沙星荧光逻辑门的构建
IF 3.2 3区 化学 Q3 CHEMISTRY, ANALYTICAL Pub Date : 2022-05-18 DOI: 10.1088/2050-6120/ac7123
Han Dong, Mogos Girmatsion, Ruoyu Wang, Gang Lu, Yunfei Xie, Yahui Guo, H. Qian, Weirong Yao
Chemical pollutants such as heavy metals and antibiotics in the environment pose a huge threat to humans and animals. Our studies have demonstrated that the fluorescence of phycocyanin showed quenching responses towards both mercury (Hg2+) and ciprofloxacin (CIP), which acted in accordance with the ‘OR’ molecular logic gate. In order to discriminate Hg2+ and CIP in application scenarios, cysteine (Cys) was utilized to design another ‘INHIBIT’ logic gate, in which Hg2+ and Cys were the two inputs. Thus, an intelligent biosensor with dual-target identification capacity was successfully developed by using a fluorescent natural protein in an ingenious logic gate system.
环境中的重金属和抗生素等化学污染物对人类和动物构成了巨大威胁。我们的研究表明,藻蓝蛋白的荧光对汞(Hg2+)和环丙沙星(CIP)都表现出猝灭反应,这符合“OR”分子逻辑门。为了在应用场景中区分Hg2+和CIP,利用半胱氨酸(Cys)设计了另一个“INHIBIT”逻辑门,其中Hg2+与Cys是两个输入。因此,在一个巧妙的逻辑门系统中,利用荧光天然蛋白质成功开发了一种具有双靶识别能力的智能生物传感器。
{"title":"Construction of fluorescent logic gates for the detection of mercury(II) and ciprofloxacin based on phycocyanin","authors":"Han Dong, Mogos Girmatsion, Ruoyu Wang, Gang Lu, Yunfei Xie, Yahui Guo, H. Qian, Weirong Yao","doi":"10.1088/2050-6120/ac7123","DOIUrl":"https://doi.org/10.1088/2050-6120/ac7123","url":null,"abstract":"Chemical pollutants such as heavy metals and antibiotics in the environment pose a huge threat to humans and animals. Our studies have demonstrated that the fluorescence of phycocyanin showed quenching responses towards both mercury (Hg2+) and ciprofloxacin (CIP), which acted in accordance with the ‘OR’ molecular logic gate. In order to discriminate Hg2+ and CIP in application scenarios, cysteine (Cys) was utilized to design another ‘INHIBIT’ logic gate, in which Hg2+ and Cys were the two inputs. Thus, an intelligent biosensor with dual-target identification capacity was successfully developed by using a fluorescent natural protein in an ingenious logic gate system.","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43880530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluorescence intensity ratio technique and its reliability 荧光强度比技术及其可靠性
IF 3.2 3区 化学 Q3 CHEMISTRY, ANALYTICAL Pub Date : 2022-05-17 DOI: 10.1088/2050-6120/ac70ab
Vishab Kesarwani, V. K. Rai
The present article reports the optical absorption and upconversion (UC) studies of 1.0 mol% Er3+/2.0 mol% Yb3+ doped/codoped glasses prepared by melt-quenching technique. The elements present and the composition of the prepared glass have been confirmed from XPS and XRF analysis respectively. Judd-Ofelt intensity parameters have been calculated using the absorption spectrum which is further utilized to predict the nature of Er_O bond, the transition probabilities, branching ratios and radiative lifetimes. The CIE study shows non-colour tunable and highly pure green emission (94.2%). The temperature-dependent UC emission spectra of the 2.0 mol% Yb3+ sensitized glass have been recorded at three different pump power densities to establish a reliable FIR based temperature scale. Furthermore, the Arrhenius fitting of the temperature-dependent spectra reveals low thermal quenching of green luminescence in the codoped glass.
本文报道了熔融淬火法制备1.0 mol% Er3+/2.0 mol% Yb3+掺杂/共掺杂玻璃的光吸收和上转换(UC)研究。用XPS和XRF分析分别确定了所制玻璃的元素和组成。利用吸收光谱计算了Judd-Ofelt强度参数,并利用该参数预测了Er_O键的性质、跃迁概率、分支比和辐射寿命。CIE的研究显示出非颜色可调和高纯度的绿色发光(94.2%)。在三种不同的泵浦功率密度下,记录了2.0 mol% Yb3+敏化玻璃的温度依赖性UC发射光谱,以建立可靠的基于FIR的温标。此外,温度相关光谱的Arrhenius拟合表明,共掺杂玻璃中绿色发光的热猝灭程度较低。
{"title":"Fluorescence intensity ratio technique and its reliability","authors":"Vishab Kesarwani, V. K. Rai","doi":"10.1088/2050-6120/ac70ab","DOIUrl":"https://doi.org/10.1088/2050-6120/ac70ab","url":null,"abstract":"The present article reports the optical absorption and upconversion (UC) studies of 1.0 mol% Er3+/2.0 mol% Yb3+ doped/codoped glasses prepared by melt-quenching technique. The elements present and the composition of the prepared glass have been confirmed from XPS and XRF analysis respectively. Judd-Ofelt intensity parameters have been calculated using the absorption spectrum which is further utilized to predict the nature of Er_O bond, the transition probabilities, branching ratios and radiative lifetimes. The CIE study shows non-colour tunable and highly pure green emission (94.2%). The temperature-dependent UC emission spectra of the 2.0 mol% Yb3+ sensitized glass have been recorded at three different pump power densities to establish a reliable FIR based temperature scale. Furthermore, the Arrhenius fitting of the temperature-dependent spectra reveals low thermal quenching of green luminescence in the codoped glass.","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":"10 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"60499051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Vacuum ultraviolet photoluminescence of NaMgF3:Sm and NaMgF3:Sm,Ce: energy levels of the lanthanides in NaMgF3:Ln compounds NaMgF3:Ln化合物中镧系元素的真空紫外光致发光研究
IF 3.2 3区 化学 Q3 CHEMISTRY, ANALYTICAL Pub Date : 2022-05-17 DOI: 10.1088/2050-6120/ac70aa
J. Schuyt, G. Williams, K. Shinohara, T. Shimizu, K. Yamanoi, M. Cadatal-Raduban
The luminescence properties of NaMgF3:Sm and NaMgF3:Ce,Sm were studied in the vacuum ultraviolet spectral region. Excitation bands corresponding to the charge transfer processes F− → Sm3+, O2− → Sm3+, and O2− → Ce3+, and the energy transfer processes Ce3+ → Sm3+ and O2− → Sm3+, were observed. The energies of the Sm3+ charge transfer transitions and the crystal field split Ce3+ 4f 05d 1 transitions were used to construct a complete host referred binding energy diagram for the series of lanthanide-doped NaMgF3:Ln compounds. We demonstrate that the optical and luminescence properties predicted by the binding energy diagram are in good agreement with those predicted by the binding energy diagram constructed via the alternative impurity-informed method, and all available experimental data regarding the NaMgF3:Ln compounds. We demonstrate that NaMgF3:Ln compounds are model systems for the study of charge trapping phenomena and divalent lanthanide luminescence. Ultimately, we validate that the impurity-informed method can be used to establish the energy levels of lanthanides in fluoride systems.
研究了NaMgF3:Sm和NaMgF3:Ce,Sm在真空紫外光谱区的发光特性。与电荷转移过程F−相对应的激发带→ Sm3+、O2−→ Sm3+和O2−→ Ce3+和能量转移过程Ce3+→ Sm3+和O2−→ Sm3+。利用Sm3+电荷转移跃迁和晶体场分裂Ce3+4f05d1跃迁的能量,构建了一系列镧系掺杂NaMgF3:Ln化合物的完整的主体结合能图。我们证明了结合能图预测的光学和发光性质与通过替代杂质知情方法构建的结合能图以及关于NaMgF3:Ln化合物的所有可用实验数据预测的光学性质和发光性质非常一致。我们证明了NaMgF3:Ln化合物是研究电荷捕获现象和二价镧系元素发光的模型体系。最终,我们验证了杂质知情方法可以用于确定氟化物系统中镧系元素的能级。
{"title":"Vacuum ultraviolet photoluminescence of NaMgF3:Sm and NaMgF3:Sm,Ce: energy levels of the lanthanides in NaMgF3:Ln compounds","authors":"J. Schuyt, G. Williams, K. Shinohara, T. Shimizu, K. Yamanoi, M. Cadatal-Raduban","doi":"10.1088/2050-6120/ac70aa","DOIUrl":"https://doi.org/10.1088/2050-6120/ac70aa","url":null,"abstract":"The luminescence properties of NaMgF3:Sm and NaMgF3:Ce,Sm were studied in the vacuum ultraviolet spectral region. Excitation bands corresponding to the charge transfer processes F− → Sm3+, O2− → Sm3+, and O2− → Ce3+, and the energy transfer processes Ce3+ → Sm3+ and O2− → Sm3+, were observed. The energies of the Sm3+ charge transfer transitions and the crystal field split Ce3+ 4f 05d 1 transitions were used to construct a complete host referred binding energy diagram for the series of lanthanide-doped NaMgF3:Ln compounds. We demonstrate that the optical and luminescence properties predicted by the binding energy diagram are in good agreement with those predicted by the binding energy diagram constructed via the alternative impurity-informed method, and all available experimental data regarding the NaMgF3:Ln compounds. We demonstrate that NaMgF3:Ln compounds are model systems for the study of charge trapping phenomena and divalent lanthanide luminescence. Ultimately, we validate that the impurity-informed method can be used to establish the energy levels of lanthanides in fluoride systems.","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48439118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
A cuvette-compatible Zn2+ sensing tool for conventional spectrofluorometers prepared by copolymerization of macrocyclic fluoroionophores on quartz glass surface 石英玻璃表面大环氟离子载体共聚制备的用于常规荧光光谱仪的比色杯兼容Zn2+传感工具
IF 3.2 3区 化学 Q3 CHEMISTRY, ANALYTICAL Pub Date : 2022-05-11 DOI: 10.1088/2050-6120/ac6ecb
Ádám Golcs, Korinna Kovács, Panna Vezse, L. Bezúr, P. Huszthy, T. Tóth
We report here the development of a surface-modified quartz glass sheet, which affords an opportunity for converting conventional spectrofluorometers to ion-selective optochemical sensors by placing it diagonally into a photometric cuvette. Moreover, we describe a generalizable technique, which allows the usage of any polymerizable ionophores for developing multiple-use fluorescent chemosensors of various selectivity. A fluorescent bis(acridino)-crown ether containing allyl groups was photocatalytically copolymerized with a methacrylate-acrylamide-based monomer mixture to obtain an ion-selective sensor membrane layer on the surface of the cuvette-compatible glass sheet. This glass membrane-based direct optode enabled the analysis of Zn2+ above a lower limit of detection of 2.2 × 10–7 mol·l−1 with an excellent reusability. Limiting factors, like pH and competing ionic or organic agents were thoroughly investigated. Moreover, spiked river-water samples were measured to demonstrate applicability. The proposed sensor placed in any conventional spectrofluorometer provides an innovative method for perturbation-free analysis of Zn2+ for all the chemists in need of a fast, easy-to-use, portable and regenerable analyzer without the requirement of an analyte-specific instrumentation.
我们在这里报告了一种表面改性石英玻璃片的发展,它提供了一个机会,将传统的荧光光谱仪转换为离子选择性光化学传感器,通过对角线放置在光度比色皿中。此外,我们描述了一种可推广的技术,该技术允许使用任何可聚合的离子载体来开发各种选择性的多用途荧光化学传感器。将一种含烯丙基的荧光双(吖啶酮)冠醚与甲基丙烯酸酯-丙烯酰胺基单体混合物进行光催化共聚,得到了一层离子选择性传感膜层。这种基于玻璃膜的直接光电器件使Zn2+的检测下限超过2.2 × 10-7 mol·l−1,具有良好的可重复使用性。限制因素,如pH和竞争离子或有机剂进行了深入的研究。此外,还测量了加标的河水样本以证明其适用性。所提出的传感器放置在任何传统的荧光光谱仪中,为所有需要快速,易于使用,便携式和可再生分析仪的化学家提供了一种创新的无扰动分析Zn2+的方法,而不需要分析物专用仪器。
{"title":"A cuvette-compatible Zn2+ sensing tool for conventional spectrofluorometers prepared by copolymerization of macrocyclic fluoroionophores on quartz glass surface","authors":"Ádám Golcs, Korinna Kovács, Panna Vezse, L. Bezúr, P. Huszthy, T. Tóth","doi":"10.1088/2050-6120/ac6ecb","DOIUrl":"https://doi.org/10.1088/2050-6120/ac6ecb","url":null,"abstract":"We report here the development of a surface-modified quartz glass sheet, which affords an opportunity for converting conventional spectrofluorometers to ion-selective optochemical sensors by placing it diagonally into a photometric cuvette. Moreover, we describe a generalizable technique, which allows the usage of any polymerizable ionophores for developing multiple-use fluorescent chemosensors of various selectivity. A fluorescent bis(acridino)-crown ether containing allyl groups was photocatalytically copolymerized with a methacrylate-acrylamide-based monomer mixture to obtain an ion-selective sensor membrane layer on the surface of the cuvette-compatible glass sheet. This glass membrane-based direct optode enabled the analysis of Zn2+ above a lower limit of detection of 2.2 × 10–7 mol·l−1 with an excellent reusability. Limiting factors, like pH and competing ionic or organic agents were thoroughly investigated. Moreover, spiked river-water samples were measured to demonstrate applicability. The proposed sensor placed in any conventional spectrofluorometer provides an innovative method for perturbation-free analysis of Zn2+ for all the chemists in need of a fast, easy-to-use, portable and regenerable analyzer without the requirement of an analyte-specific instrumentation.","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48692897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A highly selective and sensitive ratiometric fluorescent probe for quantitative detection of Al(III) in different natural matrices 一种高选择性、高灵敏度的比率荧光探针用于不同天然基质中Al(III)的定量检测
IF 3.2 3区 化学 Q3 CHEMISTRY, ANALYTICAL Pub Date : 2022-05-11 DOI: 10.1088/2050-6120/ac6eca
R. Shanmugapriya, P. S. Kumar, C. Nandhini, K. Satheeshkumar, K. Vennila, K. Elango
A highly selective and sensitive assay of Al(III) using ratiometric fluorescence enhancement is reported in an aqueous solution. The probe (named RS5) exhibits a red-shift of 54 nm upon binding with Al(III) ion. The significant enhancement response of RS5 at 481 nm is attributed to the formation of a 1:1 complex between the probe and Al(III), wherein RS5 acts as a tridentate NNN-donor ligand. The complexation process is ascertained by 1H, 13C, and 27Al NMR and HR-MS spectral techniques. The binding constant of the complex is determined to be 1.3 × 105 M−1. The ratiometric change in fluorescence upon complexation with Al(III) is ascribed to an increase in intramolecular charge transfer (ICT) transition along with chelation enhanced fluorescence (CHEF) processes. The probe can be applied for monitoring Al(III) in a pH range of 6–8. The limit of detection (LOD) of RS5 for the examination of Al(III) is found to be 0.3 μM. With an aim to understand the sensing behavior of RS5, the optical properties of the probe and its Al(III) complex are investigated using density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods. The probe is successfully employed for the determination of Al(III), with very high recovery percentages, in natural matrices like deep well water, tap water, drinking water, pond water, river water, bovine serum albumin (BSA) solution and blood serum.
报道了在水溶液中使用比率荧光增强对Al(III)进行高选择性和灵敏的测定。探针(命名为RS5)在与Al(III)离子结合时表现出54nm的红移。RS5在481nm处的显著增强反应归因于探针和Al(III)之间形成1:1的络合物,其中RS5充当三齿NNN供体配体。通过1H、13C和27Al NMR和HR-MS光谱技术确定了络合过程。该配合物的结合常数为1.3×105M−1。与Al(III)络合后荧光的比率变化归因于分子内电荷转移(ICT)跃迁以及螯合增强荧光(CHEF)过程的增加。该探针可用于监测pH范围为6-8的Al(III)。RS5检测Al(III)的检出限为0.3μM。为了了解RS5的传感行为,使用密度泛函理论(DFT)和时间相关密度泛函理论方法(TD-DFT)研究了探针及其Al(III)配合物的光学性质。该探针成功地用于测定天然基质如深井水、自来水、饮用水、池塘水、河水、牛血清白蛋白(BSA)溶液和血清中的Al(III),具有很高的回收率。
{"title":"A highly selective and sensitive ratiometric fluorescent probe for quantitative detection of Al(III) in different natural matrices","authors":"R. Shanmugapriya, P. S. Kumar, C. Nandhini, K. Satheeshkumar, K. Vennila, K. Elango","doi":"10.1088/2050-6120/ac6eca","DOIUrl":"https://doi.org/10.1088/2050-6120/ac6eca","url":null,"abstract":"A highly selective and sensitive assay of Al(III) using ratiometric fluorescence enhancement is reported in an aqueous solution. The probe (named RS5) exhibits a red-shift of 54 nm upon binding with Al(III) ion. The significant enhancement response of RS5 at 481 nm is attributed to the formation of a 1:1 complex between the probe and Al(III), wherein RS5 acts as a tridentate NNN-donor ligand. The complexation process is ascertained by 1H, 13C, and 27Al NMR and HR-MS spectral techniques. The binding constant of the complex is determined to be 1.3 × 105 M−1. The ratiometric change in fluorescence upon complexation with Al(III) is ascribed to an increase in intramolecular charge transfer (ICT) transition along with chelation enhanced fluorescence (CHEF) processes. The probe can be applied for monitoring Al(III) in a pH range of 6–8. The limit of detection (LOD) of RS5 for the examination of Al(III) is found to be 0.3 μM. With an aim to understand the sensing behavior of RS5, the optical properties of the probe and its Al(III) complex are investigated using density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods. The probe is successfully employed for the determination of Al(III), with very high recovery percentages, in natural matrices like deep well water, tap water, drinking water, pond water, river water, bovine serum albumin (BSA) solution and blood serum.","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43641658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
A novel AIEE active anti-B18H22 derivative-based Cu2+ and Fe3+ fluorescence off-on-off sensor 一种新型AIEE活性抗B18H22衍生物Cu2+和Fe3+荧光开关传感器
IF 3.2 3区 化学 Q3 CHEMISTRY, ANALYTICAL Pub Date : 2022-04-28 DOI: 10.1088/2050-6120/ac6b88
Linli Xiong, Yong Zheng, Haibo Wang, Jiangyang Yan, Xuguang Huang, Hongyun Meng, Chunhua Tan
A novel fluorescence sensor for successive detection of Cu2+ and Fe3+ based on anti-B18H22 derivative which possesses 5-hydroxyisoquinoline as an ionophore was synthesized via a one-pot and its structure and photophysical properties were characterized by NMR, HRMS, FTIR, UV–vis, PL and theoretical calculation. The fluorophore displays two emission peaks at 460 nm and 670 nm in THF solution coming from the emission of the locally excited state and intramolecular charge transfer fluorescence, respectively. The complex exhibited obvious aggregation-induced emission enhancement (AIEE) characteristics in THF/H2O solution by increasing the aqueous concentration from 70% to 95%. The AIEE molecules showed a high selectivity towards Cu2+ over other metal ions by forming a 2:1 metal-to-ligand complex in THF/H2O (fw = 20%) solution, the fluorescence intensity increased as a linear function of the Cu2+ concentration at 460 nm due to the inhibition of PET effect. The fluorescent emission was quenched linearly by the addition of Fe3+, which provides a method for successive determination of Cu2+ and Fe3+ based on ‘off-on-off’ fluorescence of the fluorescent. The detection limit of Cu2+ and Fe3+ was 5.7 × 10−6 M and 7.2 × 10−5 M respectively. Morever, a rapid identification of Cu2+ in the aqueous solution by naked eyes can be realized. In addition, the molecules were pH-sensitive, the fluorescence quenching can be observed in strongly alkaline environment. The method has been applied to the determination of copper ions in water samples with satisfactory results.
以5-羟基异喹啉为离子载体的抗B18H22衍生物为基础,通过一锅法合成了一种新的连续检测Cu2+和Fe3+的荧光传感器,并用NMR、HRMS、FTIR、UV–vis、PL和理论计算对其结构和光物理性质进行了表征。荧光团在THF溶液中分别在460nm和670nm处显示出两个发射峰,分别来自局部激发态和分子内电荷转移荧光的发射。当水溶液浓度从70%提高到95%时,复合物在THF/H2O溶液中表现出明显的聚集诱导发射增强(AIEE)特性。通过在THF/H2O(fw=20%)溶液中形成2:1的金属-配体络合物,AIEE分子对Cu2+表现出比其他金属离子高的选择性,由于PET效应的抑制,荧光强度在460nm处作为Cu2+浓度的线性函数而增加。通过添加Fe3+线性猝灭荧光发射,这提供了一种基于荧光的“断断续续”荧光连续测定Cu2+和Fe3+的方法。Cu2+和Fe3+的检出限分别为5.7×10−6M和7.2×10−5M。此外,还可以实现用肉眼快速鉴定水溶液中的Cu2+。此外,分子对pH敏感,在强碱性环境中可以观察到荧光猝灭。该方法已用于水样中铜离子的测定,结果令人满意。
{"title":"A novel AIEE active anti-B18H22 derivative-based Cu2+ and Fe3+ fluorescence off-on-off sensor","authors":"Linli Xiong, Yong Zheng, Haibo Wang, Jiangyang Yan, Xuguang Huang, Hongyun Meng, Chunhua Tan","doi":"10.1088/2050-6120/ac6b88","DOIUrl":"https://doi.org/10.1088/2050-6120/ac6b88","url":null,"abstract":"A novel fluorescence sensor for successive detection of Cu2+ and Fe3+ based on anti-B18H22 derivative which possesses 5-hydroxyisoquinoline as an ionophore was synthesized via a one-pot and its structure and photophysical properties were characterized by NMR, HRMS, FTIR, UV–vis, PL and theoretical calculation. The fluorophore displays two emission peaks at 460 nm and 670 nm in THF solution coming from the emission of the locally excited state and intramolecular charge transfer fluorescence, respectively. The complex exhibited obvious aggregation-induced emission enhancement (AIEE) characteristics in THF/H2O solution by increasing the aqueous concentration from 70% to 95%. The AIEE molecules showed a high selectivity towards Cu2+ over other metal ions by forming a 2:1 metal-to-ligand complex in THF/H2O (fw = 20%) solution, the fluorescence intensity increased as a linear function of the Cu2+ concentration at 460 nm due to the inhibition of PET effect. The fluorescent emission was quenched linearly by the addition of Fe3+, which provides a method for successive determination of Cu2+ and Fe3+ based on ‘off-on-off’ fluorescence of the fluorescent. The detection limit of Cu2+ and Fe3+ was 5.7 × 10−6 M and 7.2 × 10−5 M respectively. Morever, a rapid identification of Cu2+ in the aqueous solution by naked eyes can be realized. In addition, the molecules were pH-sensitive, the fluorescence quenching can be observed in strongly alkaline environment. The method has been applied to the determination of copper ions in water samples with satisfactory results.","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43138010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Review on long afterglow nanophosphors, their mechanism and its application in round-the-clock working photocatalysis 综述了长余辉纳米荧光粉及其机理及其在全天候工作光催化中的应用
IF 3.2 3区 化学 Q3 CHEMISTRY, ANALYTICAL Pub Date : 2022-04-28 DOI: 10.1088/2050-6120/ac6b87
Dipti Bidwai, Niroj Kumar Sahu, S. J. Dhoble, Ashutosh Mahajan, D. Haranath, G. Swati
Semiconductor assisted photocatalysis is one of the most efficient methods for the degradation of complex organic dyes. A major limiting factor of semiconductor assisted photocatalysis is the requirement of a continuous source of light to perform a redox reaction. One of the upcoming solutions is photon energy-storing long afterglow/persistent phosphors. They are an unusual kind of rechargeable, photon energy capturing/trapping phosphors that can trap charge carriers (electrons/holes) in their meta-stable energy levels, thereby resulting in persistent luminescence. Persistence luminescence from such materials can range from minutes to hours. The coupling of long afterglow phosphors (LAP) with the conventional semiconductor is a promising way to support the photocatalytic process even in dark. In addition, dissimilar band structures of LAPs and semiconductor results in formation of heterojunction which further suppresses the recombination of charge. Such an encouraging idea of LAP for round-the-clock working photocatalytic system is in its premature stage; which is required to be investigated fully. Thus, we present a state-of-art review on the potential materials for assisting round-the-clock photocatalysis, trapping-detrapping mechanism in LAP materials, fabrication strategies and their associated characterization tools. Review also covers LAP materials and their photocatalytic mechanism briefly.
半导体辅助光催化是降解复杂有机染料最有效的方法之一。半导体辅助光催化的一个主要限制因素是需要连续光源来进行氧化还原反应。即将到来的解决方案之一是储存光子能量的长余辉/持久荧光粉。它们是一种不寻常的可充电光子能量捕获/捕获磷光体,可以将电荷载流子(电子/空穴)捕获在其亚稳定能级,从而产生持久发光。这种材料的持久发光可以在几分钟到几小时的范围内。长余辉磷光体(LAP)与传统半导体的耦合是一种很有前途的方法,即使在黑暗中也能支持光催化过程。此外,LAP和半导体的不同能带结构导致异质结的形成,这进一步抑制了电荷的复合。LAP用于全天候工作的光催化系统的这种令人鼓舞的想法还处于早期阶段;这需要进行充分的研究。因此,我们对有助于全天候光催化的潜在材料、LAP材料中的捕获-去捕获机制、制造策略及其相关表征工具进行了综述。综述还简要介绍了LAP材料及其光催化机理。
{"title":"Review on long afterglow nanophosphors, their mechanism and its application in round-the-clock working photocatalysis","authors":"Dipti Bidwai, Niroj Kumar Sahu, S. J. Dhoble, Ashutosh Mahajan, D. Haranath, G. Swati","doi":"10.1088/2050-6120/ac6b87","DOIUrl":"https://doi.org/10.1088/2050-6120/ac6b87","url":null,"abstract":"Semiconductor assisted photocatalysis is one of the most efficient methods for the degradation of complex organic dyes. A major limiting factor of semiconductor assisted photocatalysis is the requirement of a continuous source of light to perform a redox reaction. One of the upcoming solutions is photon energy-storing long afterglow/persistent phosphors. They are an unusual kind of rechargeable, photon energy capturing/trapping phosphors that can trap charge carriers (electrons/holes) in their meta-stable energy levels, thereby resulting in persistent luminescence. Persistence luminescence from such materials can range from minutes to hours. The coupling of long afterglow phosphors (LAP) with the conventional semiconductor is a promising way to support the photocatalytic process even in dark. In addition, dissimilar band structures of LAPs and semiconductor results in formation of heterojunction which further suppresses the recombination of charge. Such an encouraging idea of LAP for round-the-clock working photocatalytic system is in its premature stage; which is required to be investigated fully. Thus, we present a state-of-art review on the potential materials for assisting round-the-clock photocatalysis, trapping-detrapping mechanism in LAP materials, fabrication strategies and their associated characterization tools. Review also covers LAP materials and their photocatalytic mechanism briefly.","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47808257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Simultaneous effects of synthesis temperature and dopants on MgWO4 UC phosphors 合成温度和掺杂剂对MgWO4-UC荧光粉的同时影响
IF 3.2 3区 化学 Q3 CHEMISTRY, ANALYTICAL Pub Date : 2022-04-26 DOI: 10.1088/2050-6120/ac6ab7
M. Prasad, V. K. Rai
A sequence of coactivated divalent-metal tungstate Er3+/Yb3+/Mn4+: MgWO4 phosphors have been successfully developed to study the effect of synthesis temperature on the crystal structure, surface morphology, fluorescence, temperature sensing and the dynamics involved in the processes. Upconversion (UC) intensity of the Er3+/Yb3+: MgWO4 phosphors increased by ∼109 and ∼778 times on increasing the synthesis temperature from 800 °C to 1000 °C and 1200 °C. UC intensity of the Er3+/Yb3+/Mn4+: MgWO4 phosphors has been significantly improved up to ∼90 times via charge compensation. The incorporation of Mn4+ in the Er3+/Yb3+ codoped crystal system shifted the UC spectra from sharp green peaks to broadband emission along with amended sensing abilities. The ratiometric techniques of thermally coupled stark sublevels of the Er3+ have been used to achieve a wide temperature range (300–623 K). The prepared nanophosphors show maximum absolute & relative sensitivities ∼25.86 × 10−3 K−1 @453 K and ∼10.39 × 10−3 K−1 @303 K respectively with an accuracy of ±0.42 K@303 K.
成功地开发了一系列共活化的二价金属钨酸盐Er3+/Yb3+/Mn4+:MgWO4荧光粉,研究了合成温度对晶体结构、表面形貌、荧光、温度传感和过程动力学的影响。当合成温度从800°C增加到1000°C和1200°C时,Er3+/Yb3+:MgWO4磷光体的上转换(UC)强度增加了~109和~778倍。通过电荷补偿,Er3+/Yb3+/Mn4+:MgWO4磷光体的UC强度显著提高了~90倍。Mn4+在Er3+/Yb3+共掺杂晶体系统中的掺入使UC光谱从尖锐的绿色峰值转变为宽带发射,同时提高了传感能力。Er3+的热耦合斯塔克亚能级的比率测量技术已被用于实现宽温度范围(300–623 K)。制备的纳米磷光体在453 K下显示出最大绝对和相对灵敏度~25.86×10−3 K−1和~10.39×10−3K−1,在303 K下的精度为±0.42 K。
{"title":"Simultaneous effects of synthesis temperature and dopants on MgWO4 UC phosphors","authors":"M. Prasad, V. K. Rai","doi":"10.1088/2050-6120/ac6ab7","DOIUrl":"https://doi.org/10.1088/2050-6120/ac6ab7","url":null,"abstract":"A sequence of coactivated divalent-metal tungstate Er3+/Yb3+/Mn4+: MgWO4 phosphors have been successfully developed to study the effect of synthesis temperature on the crystal structure, surface morphology, fluorescence, temperature sensing and the dynamics involved in the processes. Upconversion (UC) intensity of the Er3+/Yb3+: MgWO4 phosphors increased by ∼109 and ∼778 times on increasing the synthesis temperature from 800 °C to 1000 °C and 1200 °C. UC intensity of the Er3+/Yb3+/Mn4+: MgWO4 phosphors has been significantly improved up to ∼90 times via charge compensation. The incorporation of Mn4+ in the Er3+/Yb3+ codoped crystal system shifted the UC spectra from sharp green peaks to broadband emission along with amended sensing abilities. The ratiometric techniques of thermally coupled stark sublevels of the Er3+ have been used to achieve a wide temperature range (300–623 K). The prepared nanophosphors show maximum absolute & relative sensitivities ∼25.86 × 10−3 K−1 @453 K and ∼10.39 × 10−3 K−1 @303 K respectively with an accuracy of ±0.42 K@303 K.","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":"10 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41367522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Thienoguanosine brightness in DNA duplexes is governed by the localization of its ππ* excitation in the lowest energy absorption band DNA双链体中Thienoguanosine的亮度由其ππ*激发在最低能量吸收带的定位决定
IF 3.2 3区 化学 Q3 CHEMISTRY, ANALYTICAL Pub Date : 2022-04-26 DOI: 10.1088/2050-6120/ac6ab6
Stefano Ciaco, Krishna Gavvala, V. Greiner, Viola Mazzoleni, P. Didier, M. Ruff, L. Martínez-Fernández, R. Improta, Y. Mély
Thienoguanosine (thG) is an isomorphic fluorescent guanosine (G) surrogate, which almost perfectly mimics the natural G in DNA duplexes and may therefore be used to sensitively investigate for example protein-induced local conformational changes. To fully exploit the information given by the probe, we carefully re-investigated the thG spectroscopic properties in 12-bp duplexes, when the Set and Ring Associated (SRA) domain of UHRF1 flips its 5′ flanking methylcytosine (mC). The SRA-induced flipping of mC was found to strongly increase the fluorescence intensity of thG, but this increase was much larger when thG was flanked in 3′ by a C residue as compared to an A residue. Surprisingly, the quantum yield and fluorescence lifetime values of thG were nearly constant, regardless of the presence of SRA and the nature of the 3′ flanking residue, suggesting that the differences in fluorescence intensities might be related to changes in absorption properties. We evidenced that thG lowest energy absorption band in the duplexes can be deconvoluted into two bands peaking at ∼350 nm and ∼310 nm, respectively red-shifted and blue-shifted, compared to the spectrum of thG monomer. Using quantum mechanical calculations, we attributed the former to a nearly pure ππ* excitation localized on thG and the latter to excited states with charge transfer character. The amplitude of thG red-shifted band strongly increased when its 3′ flanking C residue was replaced by an A residue in the free duplex, or when its 5′ flanking mC residue was flipped by SRA. As only the species associated with the red-shifted band were found to be emissive, the highly unusual finding of this work is that the brightness of thG in free duplexes as well as its changes on SRA-induced mC flipping almost entirely depend on the relative population and/or absorption coefficient of the red-shifted absorbing species.
Thienoguanosine(thG)是一种同构的荧光鸟苷(G)替代物,它几乎完全模拟DNA双链体中的天然G,因此可以用于敏感地研究例如蛋白质诱导的局部构象变化。为了充分利用探针提供的信息,我们仔细地重新研究了当UHRF1的集环相关(SRA)结构域翻转其5′侧翼甲基胞嘧啶(mC)时,12bp双链体中的thG光谱性质。发现SRA诱导的mC翻转强烈增加了thG的荧光强度,但与a残基相比,当thG在3′侧有C残基时,这种增加要大得多。令人惊讶的是,无论SRA的存在和3′侧翼残基的性质如何,thG的量子产率和荧光寿命值几乎恒定,这表明荧光强度的差异可能与吸收性质的变化有关。我们证明,与thG单体的光谱相比,双链体中的thG最低能量吸收带可以去卷积为峰值在~350nm和~310nm的两个带,分别为红移和蓝移。利用量子力学计算,我们将前者归因于位于thG上的几乎纯ππ*激发,而后者归因于具有电荷转移特性的激发态。当其3′侧的C残基在自由双链中被A残基取代时,或当其5′侧的mC残基被SRA翻转时,thG红移带的幅度强烈增加。由于只有与红移带相关的物种被发现是发射的,这项工作的极不寻常的发现是,自由双链体中thG的亮度及其在SRA诱导的mC翻转上的变化几乎完全取决于红移吸收物种的相对种群和/或吸收系数。
{"title":"Thienoguanosine brightness in DNA duplexes is governed by the localization of its ππ* excitation in the lowest energy absorption band","authors":"Stefano Ciaco, Krishna Gavvala, V. Greiner, Viola Mazzoleni, P. Didier, M. Ruff, L. Martínez-Fernández, R. Improta, Y. Mély","doi":"10.1088/2050-6120/ac6ab6","DOIUrl":"https://doi.org/10.1088/2050-6120/ac6ab6","url":null,"abstract":"Thienoguanosine (thG) is an isomorphic fluorescent guanosine (G) surrogate, which almost perfectly mimics the natural G in DNA duplexes and may therefore be used to sensitively investigate for example protein-induced local conformational changes. To fully exploit the information given by the probe, we carefully re-investigated the thG spectroscopic properties in 12-bp duplexes, when the Set and Ring Associated (SRA) domain of UHRF1 flips its 5′ flanking methylcytosine (mC). The SRA-induced flipping of mC was found to strongly increase the fluorescence intensity of thG, but this increase was much larger when thG was flanked in 3′ by a C residue as compared to an A residue. Surprisingly, the quantum yield and fluorescence lifetime values of thG were nearly constant, regardless of the presence of SRA and the nature of the 3′ flanking residue, suggesting that the differences in fluorescence intensities might be related to changes in absorption properties. We evidenced that thG lowest energy absorption band in the duplexes can be deconvoluted into two bands peaking at ∼350 nm and ∼310 nm, respectively red-shifted and blue-shifted, compared to the spectrum of thG monomer. Using quantum mechanical calculations, we attributed the former to a nearly pure ππ* excitation localized on thG and the latter to excited states with charge transfer character. The amplitude of thG red-shifted band strongly increased when its 3′ flanking C residue was replaced by an A residue in the free duplex, or when its 5′ flanking mC residue was flipped by SRA. As only the species associated with the red-shifted band were found to be emissive, the highly unusual finding of this work is that the brightness of thG in free duplexes as well as its changes on SRA-induced mC flipping almost entirely depend on the relative population and/or absorption coefficient of the red-shifted absorbing species.","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45986542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Recent advances in near infrared upconverting nanomaterials for targeted photodynamic therapy of cancer 用于癌症靶向光动力学治疗的近红外上转换纳米材料的最新进展
IF 3.2 3区 化学 Q3 CHEMISTRY, ANALYTICAL Pub Date : 2022-04-21 DOI: 10.1088/2050-6120/ac6937
Carla Arnau del Valle, T. Hirsch, María J. Marín
Photodynamic therapy (PDT) is a well-established treatment of cancer that uses the toxic reactive oxygen species, including singlet oxygen (1O2), generated by photosensitiser (PS) drugs following irradiation of a specific wavelength to destroy the cancerous cells and tumours. Visible light is commonly used as the excitation source in PDT, which is not ideal for cancer treatment due to its reduced tissue penetration, and thus inefficiency to treat deep-lying tumours. Additionally, these wavelengths exhibit elevated autofluorescence background from the biological tissues which hinders optical biomedical imaging. An alternative to UV–Vis irradiation is the use of near infrared (NIR) excitation for PDT. This can be achieved using upconverting nanoparticles (UCNPs) functionalised with photosensitiser drugs where UCNPs can be used as an indirect excitation source for the activation of PS drugs yielding to the production of singlet 1O2 following NIR excitation. The use of nanoparticles for PDT is also beneficial due to their tumour targeting capability, either passively via the enhanced permeability and retention (EPR) effect or actively via stimuli-responsive targeting and ligand-mediated targeting (i.e. using recognition units that can bind specific receptors only present or overexpressed on tumour cells). Here, we review recent advances in NIR upconverting nanomaterials for PDT of cancer with a clear distinction between those reported nanoparticles that could potentially target the tumour due to accumulation via the EPR effect (passive targeting) and nanoparticle-based systems that contain targeting agents with the aim of actively target the tumour via a molecular recognition process.
光动力疗法(PDT)是一种成熟的癌症治疗方法,它使用有毒的活性氧,包括单线态氧(1O2),由光敏剂(PS)药物在特定波长照射后产生,以破坏癌细胞和肿瘤。可见光通常用作PDT的激发源,由于其组织穿透性降低,因此对深部肿瘤的治疗效率低下,因此不适合用于癌症治疗。此外,这些波长表现出来自生物组织的升高的自身荧光背景,这阻碍了光学生物医学成像。紫外-可见照射的另一种选择是使用近红外(NIR)激发进行PDT。这可以通过使用光敏剂药物功能化的上转换纳米颗粒(UCNPs)来实现,其中UCNPs可以用作近红外激发后产生单线态1O2的PS药物激活的间接激发源。纳米颗粒用于PDT也是有益的,因为它们的肿瘤靶向能力,无论是被动地通过增强的渗透性和保留(EPR)效应,还是主动地通过刺激反应靶向和配体介导的靶向(即使用识别单元,可以结合特异性受体仅存在或过度表达在肿瘤细胞上)。在这里,我们回顾了用于癌症PDT的近红外上转换纳米材料的最新进展,并明确区分了那些由于EPR效应(被动靶向)的积累而可能潜在靶向肿瘤的纳米颗粒和基于纳米颗粒的靶向剂,其目的是通过分子识别过程主动靶向肿瘤。
{"title":"Recent advances in near infrared upconverting nanomaterials for targeted photodynamic therapy of cancer","authors":"Carla Arnau del Valle, T. Hirsch, María J. Marín","doi":"10.1088/2050-6120/ac6937","DOIUrl":"https://doi.org/10.1088/2050-6120/ac6937","url":null,"abstract":"Photodynamic therapy (PDT) is a well-established treatment of cancer that uses the toxic reactive oxygen species, including singlet oxygen (1O2), generated by photosensitiser (PS) drugs following irradiation of a specific wavelength to destroy the cancerous cells and tumours. Visible light is commonly used as the excitation source in PDT, which is not ideal for cancer treatment due to its reduced tissue penetration, and thus inefficiency to treat deep-lying tumours. Additionally, these wavelengths exhibit elevated autofluorescence background from the biological tissues which hinders optical biomedical imaging. An alternative to UV–Vis irradiation is the use of near infrared (NIR) excitation for PDT. This can be achieved using upconverting nanoparticles (UCNPs) functionalised with photosensitiser drugs where UCNPs can be used as an indirect excitation source for the activation of PS drugs yielding to the production of singlet 1O2 following NIR excitation. The use of nanoparticles for PDT is also beneficial due to their tumour targeting capability, either passively via the enhanced permeability and retention (EPR) effect or actively via stimuli-responsive targeting and ligand-mediated targeting (i.e. using recognition units that can bind specific receptors only present or overexpressed on tumour cells). Here, we review recent advances in NIR upconverting nanomaterials for PDT of cancer with a clear distinction between those reported nanoparticles that could potentially target the tumour due to accumulation via the EPR effect (passive targeting) and nanoparticle-based systems that contain targeting agents with the aim of actively target the tumour via a molecular recognition process.","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45270553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
期刊
Methods and Applications in Fluorescence
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1