首页 > 最新文献

Mineralogical Magazine最新文献

英文 中文
Libbyite, (NH4)2(Na2□)[(UO2)2(SO4)3(H2O)]2⋅7H2O, a new mineral with uranyl-sulfate sheets from the Blue Lizard mine, San Juan County, Utah, USA. (NH4)2(Na2□)[(UO2)2(SO4)3(H2O)]2⋅7H2O:来自美国犹他州圣胡安县Blue Lizard矿的硫酸盐铀酰板新矿物。
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-04-19 DOI: 10.1180/mgm.2023.26
A. R. Kampf, T. Olds, J. Plášil, B. Nash, J. Marty
Abstract The new mineral libbyite (IMA2022-091), (NH4)2(Na2□)[(UO2)2(SO4)3(H2O)]2⋅7H2O, was found in the Blue Lizard mine, San Juan County, Utah, USA, where it occurs as tightly intergrown aggregates of light green–yellow equant crystals in a secondary assemblage with bobcookite, coquimbite, halotrichite, metavoltine, rhomboclase, römerite, tamarugite, voltaite and zincorietveldite. The streak is very pale green yellow and the fluorescence is strong green under 405 nm ultraviolet light. Crystals are transparent with vitreous lustre. The tenacity is brittle, the Mohs hardness is ~2½, the fracture is curved. The mineral is soluble in H2O and has a calculated density of 3.465 g⋅cm–3. The mineral is optically uniaxial (–) with ω = 1.581(2) and ɛ = 1.540(2). Electron microprobe analyses provided (NH4)1.92K0.08Na2.00U4.00S6.00O41H18.00. Libbyite is tetragonal, P41212, a = 10.7037(11), c = 31.824(2) Å, V = 3646.0(8) Å3 and Z = 4. The structural unit is a uranyl–sulfate sheet that has the same topology as the sheets in several synthetic uranyl selenates.
{"title":"Libbyite, (NH4)2(Na2□)[(UO2)2(SO4)3(H2O)]2⋅7H2O, a new mineral with uranyl-sulfate sheets from the Blue Lizard mine, San Juan County, Utah, USA.","authors":"A. R. Kampf, T. Olds, J. Plášil, B. Nash, J. Marty","doi":"10.1180/mgm.2023.26","DOIUrl":"https://doi.org/10.1180/mgm.2023.26","url":null,"abstract":"Abstract The new mineral libbyite (IMA2022-091), (NH4)2(Na2□)[(UO2)2(SO4)3(H2O)]2⋅7H2O, was found in the Blue Lizard mine, San Juan County, Utah, USA, where it occurs as tightly intergrown aggregates of light green–yellow equant crystals in a secondary assemblage with bobcookite, coquimbite, halotrichite, metavoltine, rhomboclase, römerite, tamarugite, voltaite and zincorietveldite. The streak is very pale green yellow and the fluorescence is strong green under 405 nm ultraviolet light. Crystals are transparent with vitreous lustre. The tenacity is brittle, the Mohs hardness is ~2½, the fracture is curved. The mineral is soluble in H2O and has a calculated density of 3.465 g⋅cm–3. The mineral is optically uniaxial (–) with ω = 1.581(2) and ɛ = 1.540(2). Electron microprobe analyses provided (NH4)1.92K0.08Na2.00U4.00S6.00O41H18.00. Libbyite is tetragonal, P41212, a = 10.7037(11), c = 31.824(2) Å, V = 3646.0(8) Å3 and Z = 4. The structural unit is a uranyl–sulfate sheet that has the same topology as the sheets in several synthetic uranyl selenates.","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42376673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Calcioancylite-(La), (La,Ca)2(CO3)2(OH,H2O)2, a new member of the ancylite group from Gejiu nepheline syenite, Yunnan Province, China 钙安云母-(La), (La,Ca)2(CO3)2(OH,H2O)2,云南个旧霞石正长岩中安云母群的新成员
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-04-19 DOI: 10.1180/mgm.2023.28
Yanjuan Wang, X. Gu, G. Dong, Z. Hou, F. Nestola, Zhusen Yang, Guang Fan, Yufei Wang, Kai Qu
Abstract Calcioancylite-(La), ideally (La,Ca)2(CO3)2(OH,H2O)2, has been discovered from nepheline syenite of the Gejiu alkaline complex in the Honghe Hani and Yi Autonomous Prefecture, Yunnan Province, China. The mineral occurs as aggregates of subhedral grains, and the size of single crystals varies between 5–20 μm. Calcioancylite-(La) is colourless to pale pinkish grey and has transparent to translucent lustre. It is brittle with a Mohs hardness of 4. The calculated density is 4.324 g/cm3. The mineral is biaxial (−), with α =1.662, β = 1.730, γ = 1.771, 2Vmeas. = 70°(1) and 2Vcalc. = 73°. Electron microprobe analysis for holotype material yielded an empirical formula of (La0.58Ce0.55Pr0.14Nd0.10Ca0.39Sr0.20K0.04)Σ2.00(CO3)2[(OH)1.25F0.06⋅0.69H2O]Σ2.00. Calcioancylite-(La) is orthorhombic, with space group Pmcn, a = 5.0253(3) Å, b = 8.5152(6) Å, c = 7.2717(6) Å, V = 311.17(4) Å3 and Z = 2. By using single-crystal X-ray diffraction, the crystal structure has been determined and refined to a final R1 = 0.0652 on the basis of 347 independent reflections (I > 2σ). The seven strongest powder X-ray diffraction lines [d in Å (I) (hkl)] are: 2.334 (100) (013), 2.970 (80) (121), 4.334 (75) (110), 3.678 (68) (111), 2.517 (55) (200), 2.647 (47) (031) and 2.077 (44) (221). Calcioancylite-(La) is the La-analogue of calcioancylite-(Ce) and is a new member of ancylite-group minerals. The mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA2021-090).
摘要在云南省红河哈尼族彝族自治州个旧碱性杂岩体的霞石正长岩中发现了钙铝榴石-(La),最好是(La,Ca)2(CO3)2(OH,H2O)2。该矿物以半自形颗粒的聚集体形式出现,单晶的大小在5–20μm之间。钙水杨石-(La)无色至浅粉灰色,具有透明至半透明的光泽。它很脆,莫氏硬度为4。计算出的密度为4.324 g/cm3。矿物为双轴(−),α=1.662,β=1.730,γ=1.771,2Vmeas=70°(1)和2Calc.=73°。正模材料的电子探针分析得出经验公式为(La0.58Ce0.55Pr0.14Nd0.10Ca0.39Sr0.20K0.04)∑2.00(CO3)2[(OH)1.25F0.06·0.69H2O]∑2.00。钙铝酸钙石-(La)是斜方晶系,空间群为Pmcn,a=5.0253(3)Å,b=8.5152(6)Å、c=7.2717(6)å、V=311.117(4)Å3和Z=2。通过单晶X射线衍射,在347次独立反射(I>2σ)的基础上,确定并细化了晶体结构,最终R1=0.0652。七条最强的粉末X射线衍射线[dinÅ(I)(hkl)]分别为:2.334(100)(013)、2.970(80)(121)、4.334(75)(110)、3.678(68)(111)、2.517(55)(200)、2.647(47)(031)和2.077(44)(221)。钙酸钙岩-(La)是钙酸钙石-(Ce)的La类似物,是一种新的方沸石类矿物。该矿物及其名称已获得国际矿物学协会新矿物、命名和分类委员会(IMA2021-090)的批准。
{"title":"Calcioancylite-(La), (La,Ca)2(CO3)2(OH,H2O)2, a new member of the ancylite group from Gejiu nepheline syenite, Yunnan Province, China","authors":"Yanjuan Wang, X. Gu, G. Dong, Z. Hou, F. Nestola, Zhusen Yang, Guang Fan, Yufei Wang, Kai Qu","doi":"10.1180/mgm.2023.28","DOIUrl":"https://doi.org/10.1180/mgm.2023.28","url":null,"abstract":"Abstract Calcioancylite-(La), ideally (La,Ca)2(CO3)2(OH,H2O)2, has been discovered from nepheline syenite of the Gejiu alkaline complex in the Honghe Hani and Yi Autonomous Prefecture, Yunnan Province, China. The mineral occurs as aggregates of subhedral grains, and the size of single crystals varies between 5–20 μm. Calcioancylite-(La) is colourless to pale pinkish grey and has transparent to translucent lustre. It is brittle with a Mohs hardness of 4. The calculated density is 4.324 g/cm3. The mineral is biaxial (−), with α =1.662, β = 1.730, γ = 1.771, 2Vmeas. = 70°(1) and 2Vcalc. = 73°. Electron microprobe analysis for holotype material yielded an empirical formula of (La0.58Ce0.55Pr0.14Nd0.10Ca0.39Sr0.20K0.04)Σ2.00(CO3)2[(OH)1.25F0.06⋅0.69H2O]Σ2.00. Calcioancylite-(La) is orthorhombic, with space group Pmcn, a = 5.0253(3) Å, b = 8.5152(6) Å, c = 7.2717(6) Å, V = 311.17(4) Å3 and Z = 2. By using single-crystal X-ray diffraction, the crystal structure has been determined and refined to a final R1 = 0.0652 on the basis of 347 independent reflections (I > 2σ). The seven strongest powder X-ray diffraction lines [d in Å (I) (hkl)] are: 2.334 (100) (013), 2.970 (80) (121), 4.334 (75) (110), 3.678 (68) (111), 2.517 (55) (200), 2.647 (47) (031) and 2.077 (44) (221). Calcioancylite-(La) is the La-analogue of calcioancylite-(Ce) and is a new member of ancylite-group minerals. The mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA2021-090).","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":"87 1","pages":"554 - 560"},"PeriodicalIF":2.7,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47464019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bystrite, Na7Ca(Al6Si6O24)S52–Cl–: formula redefinition and relationships with other four-layer cancrinite-group minerals 方镁矿、Na7Ca(Al6Si6O24)S52–Cl–:公式的重新定义及其与其他四层方镁矿族矿物的关系
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-04-19 DOI: 10.1180/mgm.2023.29
N. Chukanov, A. Sapozhnikov, E. Kaneva, D. Varlamov, M. Vigasina
Abstract Bystrite is redefined as a four-layer cancrinite-group mineral with the four-layer Losod-type framework and the end-member formula Na7Ca(Al6Si6O24)S52–Cl–. The mineral is known only at the Malo–Bystrinskoe gem lazurite deposit, Baikal Lake area, Siberia, Russia. The associated minerals are calcite, lazurite, sodalite, fluorapatite, phlogopite, diopside, dolomite and plagioclase. Bystrite is brittle, with the Mohs hardness of 5 and distinct cleavage on {10$bar{1}$0}. The yellow colour of bystrite is due to the presence of S52– anions occurring in Losod (LOS) cages of the aluminosilicate framework with the ABAC stacking sequence. Measured and calculated density is, respectively, 2.43(1) and 2.412 g cm–3 for the holotype and 2.42(1) and 2.428 g cm–3 for the cotype sample. Bystrite is uniaxial (+), ɛ = 1.660(2) and ω = 1.584(2). The mineral was characterised by infrared and Raman spectra. The empirical formulae of the holotype and cotype samples are Na6.97K0.04Ca0.98(Si6.03Al5.97O24)(S52–)0.93[(SO42–)0.15Cl0.83] and Na6.75K0.04Ca1.11(Si6.09Al5.91O24)(S52–)1.04[(HS–)0.17Cl0.85], respectively. Bystrite is trigonal, space group P31c. The unit-cell parameters are: a = 12.8527(6) Å, c = 10.6907(5) Å, V = 1529.4(1) Å3 and Z = 2. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 4.821 (32) (102), 3.915 (38) (211), 3.712 (100) (300), 3.307 (50) (212), 2.782 (18) (400), 2.692 (22) (401), 2.673 (30) (004) and 2.468 (23) (402). Isomorphism and genesis of bystrite-type minerals is discussed. Bystrite and its K,HS-analogue sulfhydrylbystrite, Na5K2Ca(Al6Si6O24)S52–(HS)–, are indicators of highly reducing conditions.
摘要Bystrite被重新定义为具有四层Losod型骨架的四层钙矾石族矿物,其端基分子式为Na7Ca(Al6Si6O24)S52–Cl–。该矿物仅在俄罗斯西伯利亚贝加尔湖地区的Malo–Bystrinskoe宝石-青金石矿床中已知。伴生矿物有方解石、天青石、方钠石、氟磷灰石、金云母、透辉石、白云石和斜长石。Bystrite是脆性的,莫氏硬度为5,在{10$bar{1}$0}上有明显的解理。bystrite的黄色是由于在具有ABAC堆叠序列的铝硅酸盐框架的Losod(LOS)笼中存在S52-阴离子。正模样品的测量密度和计算密度分别为2.43(1)和2.412 g cm–3,同型样品的测量和计算密度为2.42(1)或2.428 g cm–3。Bystrite为单轴(+),?=1.660(2),ω=1.584(2)。用红外光谱和拉曼光谱对其进行了表征。正模和共模样品的经验公式分别为Na6.97K0.04Ca0.98(Si6.03Al5.97O24)(S52-)0.93[(SO42-)0.15Cl0.83]和Na6.75K0.04Ca1.11(Si6.09Al5.91O24))(S52–)1.04[(HS–)0.17Cl0.85]。Bystrite是三角的,空间群P31c。晶胞参数为:a=12.8527(6)Å,c=10.6907(5)Å、V=1529.4(1)Å3和Z=2。粉末X射线衍射图的最强谱线[d,Å(I,%)(hkl)]为:4.821(32)(102)、3.915(38)(211)、3.712(100)(300)、3.307(50)(212)、2.782(18)(400)、2.692(22)(401)、2.673(30)(004)和2.468(23)(402)。讨论了榴石型矿物的同构性和成因。亚镁石及其K,HS类似物巯基亚镁石Na5K2Ca(Al6Si6O24)S52–(HS)–是高度还原条件的指标。
{"title":"Bystrite, Na7Ca(Al6Si6O24)S52–Cl–: formula redefinition and relationships with other four-layer cancrinite-group minerals","authors":"N. Chukanov, A. Sapozhnikov, E. Kaneva, D. Varlamov, M. Vigasina","doi":"10.1180/mgm.2023.29","DOIUrl":"https://doi.org/10.1180/mgm.2023.29","url":null,"abstract":"Abstract Bystrite is redefined as a four-layer cancrinite-group mineral with the four-layer Losod-type framework and the end-member formula Na7Ca(Al6Si6O24)S52–Cl–. The mineral is known only at the Malo–Bystrinskoe gem lazurite deposit, Baikal Lake area, Siberia, Russia. The associated minerals are calcite, lazurite, sodalite, fluorapatite, phlogopite, diopside, dolomite and plagioclase. Bystrite is brittle, with the Mohs hardness of 5 and distinct cleavage on {10$bar{1}$0}. The yellow colour of bystrite is due to the presence of S52– anions occurring in Losod (LOS) cages of the aluminosilicate framework with the ABAC stacking sequence. Measured and calculated density is, respectively, 2.43(1) and 2.412 g cm–3 for the holotype and 2.42(1) and 2.428 g cm–3 for the cotype sample. Bystrite is uniaxial (+), ɛ = 1.660(2) and ω = 1.584(2). The mineral was characterised by infrared and Raman spectra. The empirical formulae of the holotype and cotype samples are Na6.97K0.04Ca0.98(Si6.03Al5.97O24)(S52–)0.93[(SO42–)0.15Cl0.83] and Na6.75K0.04Ca1.11(Si6.09Al5.91O24)(S52–)1.04[(HS–)0.17Cl0.85], respectively. Bystrite is trigonal, space group P31c. The unit-cell parameters are: a = 12.8527(6) Å, c = 10.6907(5) Å, V = 1529.4(1) Å3 and Z = 2. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 4.821 (32) (102), 3.915 (38) (211), 3.712 (100) (300), 3.307 (50) (212), 2.782 (18) (400), 2.692 (22) (401), 2.673 (30) (004) and 2.468 (23) (402). Isomorphism and genesis of bystrite-type minerals is discussed. Bystrite and its K,HS-analogue sulfhydrylbystrite, Na5K2Ca(Al6Si6O24)S52–(HS)–, are indicators of highly reducing conditions.","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":"87 1","pages":"455 - 464"},"PeriodicalIF":2.7,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43057054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Newsletter 72 时事通讯72
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-04-11 DOI: 10.1180/mgm.2023.21
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, Stuart J. Mills
{"title":"Newsletter 72","authors":"Ferdinando Bosi, Frédéric Hatert, Marco Pasero, Stuart J. Mills","doi":"10.1180/mgm.2023.21","DOIUrl":"https://doi.org/10.1180/mgm.2023.21","url":null,"abstract":"<jats:p>\u0000 </jats:p>","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":"87 1","pages":"512 - 518"},"PeriodicalIF":2.7,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46442813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MGM volume 87 issue 2 Cover and Front matter 米高梅第87卷第2期封面和封面
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-04-01 DOI: 10.1180/mgm.2023.20
{"title":"MGM volume 87 issue 2 Cover and Front matter","authors":"","doi":"10.1180/mgm.2023.20","DOIUrl":"https://doi.org/10.1180/mgm.2023.20","url":null,"abstract":"","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":" ","pages":"f1 - f1"},"PeriodicalIF":2.7,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45662792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CNMNC guidelines for the nomenclature of polymorphs and polysomes CNMNC多晶型和多聚体命名指南
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-04-01 DOI: 10.1180/mgm.2023.13
F. Hatert, S. Mills, M. Pasero, R. Miyawaki, F. Bosi
Abstract New guidelines for the nomenclature of polymorphs and polysomes have been approved by the the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA–CNMNC). Several cases can be distinguished. (i) Polymorphs with different crystal systems are distinguished by the prefixes cubo- (cubic), hexa- (hexagonal), tetra- (tetragonal), trigo- (trigonal), ortho- (orthorhombic), clino- (monoclinic) and anortho- (triclinic). (ii) Polymorphs with different crystal systems but showing a pseudosymmetry should show the prefix ‘pseudo-’. (iii) Polymorphs with the same crystal system but different space groups are distinguished by the prefix ‘para-’. If three or more polymorphs show the same crystal system but different space groups, the space group notation may be added as a suffix, though such a nomenclature should be avoided if possible. (iv) Polymorphs with the same space group are distinguished by the prefix ‘para-’. (v) Minerals with polymorph suffixes but with different chemical compositions cannot be considered as true polymorphs, so we recommend using the prefix ‘meta-’, which indicates a close but significantly different chemical composition. (vi) Polysomatic symbols should be placed as a suffix, which indicates the number and types of modules that alternate in the structure, such as in the högbomite supergroup, or as prefixes as in the sartorite homologous series. These recommendations have to be applied for future new mineral proposals, when the authors decide to use structural prefixes or suffixes, however modifications of historical and well-established names have to pass through the CNMNC for approval. In order to be consistent with the new guidelines, 25 mineral names are now modified: domeykite-β becomes trigodomeykite; fergusonite-(Y)-β becomes clinofergusonite-(Y); fergusonite-(Ce)-β becomes clinofergusonite-(Ce); fergusonite-(Nd)-β becomes clinofergusonite-(Nd); ice-VII becomes cubo-ice; roselite-β becomes anorthoroselite; sulphur-β becomes clinosulphur; mertieite-II becomes mertieite; mertieite-I becomes pseudomertieite; uranophane-α becomes uranophane; uranophane-β becomes parauranophane; gersdorffite-P213 becomes gersdorffite; gersdorffite-Pa3 becomes paragersdorffite; gersdorffite-Pca21 becomes orthogersdorffite; betalomonosovite becomes paralomonosovite; lammerite-β becomes paralammerite; nováčekite-I becomes hydronováčekite; nováčekite-II becomes nováčekite; halloysite-7Å becomes halloysite; halloysite-10Å becomes hydrohalloysite; metauranocircite-I becomes metauranocircite; taimyrite-I becomes taimyrite; uranocircite-II becomes uranocircite; andorite IV becomes quatrandorite; and andorite VI becomes senandorite.
摘要国际矿物学协会新矿物、命名和分类委员会(IMA–CNMNC)批准了多晶型和多聚体命名的新指南。可以区分几种情况。(i) 具有不同晶体系统的多晶型通过前缀cubo-(立方)、hexa-(六边形)、tetra-(四方)、trigo-(三角)、ortho-(斜方)、斜向(单斜)和anortho-(三斜)来区分。(ii)具有不同晶体系统但显示假对称性的多晶型应显示前缀“pseudo-”。(iii)具有相同晶体系统但不同空间群的多晶型通过前缀“para-”来区分。如果三个或三个以上的多晶型显示出相同的晶体系统但不同的空间群,则可以添加空间群符号作为后缀,尽管如果可能的话应该避免使用这种命名法。(iv)具有相同空间群的多面体通过前缀“para-”来区分。(v) 具有多晶型后缀但具有不同化学成分的矿物不能被视为真正的多晶型,因此我们建议使用前缀“meta-”,这表示一种接近但明显不同的化学成分。(vi)多体符号应作为后缀,表示结构中交替出现的模的数量和类型,如在högbomite超群中,或作为前缀,如在sartorite同源序列中。当作者决定使用结构前缀或后缀时,这些建议必须适用于未来的新矿产提案,但对历史和公认名称的修改必须通过CNMNC批准。为了与新的指导方针保持一致,现在修改了25个矿物名称:domeykite-β变为trigodomeyite;铁角石-(Y)-β变为斜铁角石(Y);铁角石-(Ce)-;铁角石-(Nd)-;冰VII变成立方冰;红柱石-β变为正长辉石;硫-β变为斜硫;mertieite II变为mertieite;mertieite-I变为假mertieite;铀烷-α变为铀烷;铀烷-β变为副铀烷;gersdorffite-P213变为gersdorfite;gersdorfite-Pa3变为paragersdorfite;gersdorffite-Pca21变为正交ersdorffite;倍他洛莫诺索夫岩变为副莫诺索夫岩;lammerite-β变为副氨铁矿;nováčekite-I变为Hydranováče ekite;nováčekite II变为novčikite;halloysite-7Å变为halloysite;halloysite-10Å变为氢halloysite;偏氧化铀-Ⅰ变为偏氧化铀;太肉豆蔻酸酯-I变为太肉豆蔻酯;二氧化铀变为二氧化铀;闪长岩IV变为四闪长岩;并且蓝帘石VI变为钠帘石。
{"title":"CNMNC guidelines for the nomenclature of polymorphs and polysomes","authors":"F. Hatert, S. Mills, M. Pasero, R. Miyawaki, F. Bosi","doi":"10.1180/mgm.2023.13","DOIUrl":"https://doi.org/10.1180/mgm.2023.13","url":null,"abstract":"Abstract New guidelines for the nomenclature of polymorphs and polysomes have been approved by the the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA–CNMNC). Several cases can be distinguished. (i) Polymorphs with different crystal systems are distinguished by the prefixes cubo- (cubic), hexa- (hexagonal), tetra- (tetragonal), trigo- (trigonal), ortho- (orthorhombic), clino- (monoclinic) and anortho- (triclinic). (ii) Polymorphs with different crystal systems but showing a pseudosymmetry should show the prefix ‘pseudo-’. (iii) Polymorphs with the same crystal system but different space groups are distinguished by the prefix ‘para-’. If three or more polymorphs show the same crystal system but different space groups, the space group notation may be added as a suffix, though such a nomenclature should be avoided if possible. (iv) Polymorphs with the same space group are distinguished by the prefix ‘para-’. (v) Minerals with polymorph suffixes but with different chemical compositions cannot be considered as true polymorphs, so we recommend using the prefix ‘meta-’, which indicates a close but significantly different chemical composition. (vi) Polysomatic symbols should be placed as a suffix, which indicates the number and types of modules that alternate in the structure, such as in the högbomite supergroup, or as prefixes as in the sartorite homologous series. These recommendations have to be applied for future new mineral proposals, when the authors decide to use structural prefixes or suffixes, however modifications of historical and well-established names have to pass through the CNMNC for approval. In order to be consistent with the new guidelines, 25 mineral names are now modified: domeykite-β becomes trigodomeykite; fergusonite-(Y)-β becomes clinofergusonite-(Y); fergusonite-(Ce)-β becomes clinofergusonite-(Ce); fergusonite-(Nd)-β becomes clinofergusonite-(Nd); ice-VII becomes cubo-ice; roselite-β becomes anorthoroselite; sulphur-β becomes clinosulphur; mertieite-II becomes mertieite; mertieite-I becomes pseudomertieite; uranophane-α becomes uranophane; uranophane-β becomes parauranophane; gersdorffite-P213 becomes gersdorffite; gersdorffite-Pa3 becomes paragersdorffite; gersdorffite-Pca21 becomes orthogersdorffite; betalomonosovite becomes paralomonosovite; lammerite-β becomes paralammerite; nováčekite-I becomes hydronováčekite; nováčekite-II becomes nováčekite; halloysite-7Å becomes halloysite; halloysite-10Å becomes hydrohalloysite; metauranocircite-I becomes metauranocircite; taimyrite-I becomes taimyrite; uranocircite-II becomes uranocircite; andorite IV becomes quatrandorite; and andorite VI becomes senandorite.","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":"87 1","pages":"225 - 232"},"PeriodicalIF":2.7,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41819884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Chrysoberyl and associated beryllium minerals resulting from metamorphic overprinting of the Maršíkov–Schinderhübel III pegmatite, Czech Republic 捷克共和国Maršíkov-Schinderhübel III伟晶岩变质叠印所产生的金绿柱石和伴生铍矿物
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-03-30 DOI: 10.1180/mgm.2023.22
O. Rybnikova, P. Uher, M. Novak, Š. Chládek, P. Bačík, S. Kurylo, T. Vaculovič
Abstract The Maršíkov–Schinderhübel III pegmatite in the Hrubý Jeseník Mountains, Silesian Domain, Czech Republic, is a classic example of chrysoberyl-bearing LCT granitic pegmatite of beryl–columbite subtype. This thin pegmatite dyke, (up to 1 m in thickness in biotite–amphibole gneiss is characterised by symmetrical internal zoning. Tabular and prismatic chrysoberyl crystals (≤3 cm) occur typically in the intermediate albite-rich unit and rarely in the quartz core. Chrysoberyl microtextures are quite complex; their crystals are irregularly patchy, concentric or fine oscillatory zoned with large variations in Fe content (1.1–5.3 wt.% Fe2O3; ≤0.09 apfu). Chrysoberyl compositions reveal dominant Fe3+ = Al3+ and minor Fe2+ + Ti4+ = 2(Al, Fe)3+ substitution mechanisms in the octahedral sites. Tin, Ga, and V (determined by LA-ICP-MS) are characteristic trace elements incorporated in the chrysoberyl structure, whereas anomalously high Ta and Nb concentrations (thousands ppm) in chrysoberyl are probably caused by nano- to micro-inclusions of Nb–Ta oxide minerals; especially columbite–tantalite. Textural relationships between associated minerals, distinct schistosity of the pegmatite parallel to the host gneiss foliation and fragmentation of the pegmatite body into blocks as a result of superimposed stress are clear evidence for deformation and metamorphic overprinting of the pegmatite. Primary magmatic beryl, albite and muscovite were transformed to chrysoberyl, fibrolitic sillimanite, secondary quartz and muscovite during a high-temperature (~600°C) and medium-pressure (~250–500 MPa) prograde metamorphic stage under amphibolite-facies conditions. A subsequent retrograde, low-temperature (~200–500°C) and pressure (≤250 MPa) metamorphic stage resulted in the local alteration of chrysoberyl to secondary Fe,Na-rich beryl, euclase, bertrandite and late muscovite.
摘要捷克共和国西里西亚地区HrubýJeseník山脉的Maršíkov–Schinderhübel III伟晶岩是绿柱石-铌铁矿亚型含金绿宝石LCT花岗伟晶岩的经典例子。这种薄伟晶岩脉(黑云母-角闪岩片麻岩中厚度高达1 m)具有对称的内部分带特征。片状和棱柱状金绿宝石晶体(≤3 cm)通常出现在富含钠长石的中间单元中,很少出现在石英芯中。金绿柱石微结构相当复杂;它们的晶体是不规则的片状、同心或精细的振荡带,Fe含量变化很大(1.1–5.3wt.%Fe2O3;≤0.09apfu)。金绿柱石组分揭示了八面体位置中主要的Fe3+=Al3+和次要的Fe2++Ti4+=2(Al,Fe)3+取代机制。锡、Ga和V(通过LA-ICP-MS测定)是掺入金绿宝石结构中的特征微量元素,而金绿宝石中异常高的Ta和Nb浓度(数千ppm)可能是由Nb–Ta氧化物矿物的纳米到微米包裹体引起的;尤其是铌钽铁矿。伴生矿物之间的纹理关系、伟晶岩平行于主片麻岩叶理的明显片理以及伟晶岩体因叠加应力而碎裂成块,是伟晶岩变形和变质叠加的明确证据。在角闪岩相条件下,在高温(~600°C)和中压(~250–500 MPa)的进变质阶段,原生岩浆绿柱石、钠长石和白云母转变为金绿玉、纤晶硅线石、次生石英和白云母。随后的逆行、低温(~200–500°C)和压力(≤250 MPa)变质阶段导致金绿柱石局部蚀变为次生Fe、富钠绿柱石、亮氨酸、白榴石和晚期白云母。
{"title":"Chrysoberyl and associated beryllium minerals resulting from metamorphic overprinting of the Maršíkov–Schinderhübel III pegmatite, Czech Republic","authors":"O. Rybnikova, P. Uher, M. Novak, Š. Chládek, P. Bačík, S. Kurylo, T. Vaculovič","doi":"10.1180/mgm.2023.22","DOIUrl":"https://doi.org/10.1180/mgm.2023.22","url":null,"abstract":"Abstract The Maršíkov–Schinderhübel III pegmatite in the Hrubý Jeseník Mountains, Silesian Domain, Czech Republic, is a classic example of chrysoberyl-bearing LCT granitic pegmatite of beryl–columbite subtype. This thin pegmatite dyke, (up to 1 m in thickness in biotite–amphibole gneiss is characterised by symmetrical internal zoning. Tabular and prismatic chrysoberyl crystals (≤3 cm) occur typically in the intermediate albite-rich unit and rarely in the quartz core. Chrysoberyl microtextures are quite complex; their crystals are irregularly patchy, concentric or fine oscillatory zoned with large variations in Fe content (1.1–5.3 wt.% Fe2O3; ≤0.09 apfu). Chrysoberyl compositions reveal dominant Fe3+ = Al3+ and minor Fe2+ + Ti4+ = 2(Al, Fe)3+ substitution mechanisms in the octahedral sites. Tin, Ga, and V (determined by LA-ICP-MS) are characteristic trace elements incorporated in the chrysoberyl structure, whereas anomalously high Ta and Nb concentrations (thousands ppm) in chrysoberyl are probably caused by nano- to micro-inclusions of Nb–Ta oxide minerals; especially columbite–tantalite. Textural relationships between associated minerals, distinct schistosity of the pegmatite parallel to the host gneiss foliation and fragmentation of the pegmatite body into blocks as a result of superimposed stress are clear evidence for deformation and metamorphic overprinting of the pegmatite. Primary magmatic beryl, albite and muscovite were transformed to chrysoberyl, fibrolitic sillimanite, secondary quartz and muscovite during a high-temperature (~600°C) and medium-pressure (~250–500 MPa) prograde metamorphic stage under amphibolite-facies conditions. A subsequent retrograde, low-temperature (~200–500°C) and pressure (≤250 MPa) metamorphic stage resulted in the local alteration of chrysoberyl to secondary Fe,Na-rich beryl, euclase, bertrandite and late muscovite.","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":"87 1","pages":"369 - 381"},"PeriodicalIF":2.7,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43737770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GRAHAM CHINNER 格雷厄姆CHINNER
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-03-24 DOI: 10.1180/mgm.2023.9
Tim Holland
{"title":"GRAHAM CHINNER","authors":"Tim Holland","doi":"10.1180/mgm.2023.9","DOIUrl":"https://doi.org/10.1180/mgm.2023.9","url":null,"abstract":"","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":"87 1","pages":"511 - 511"},"PeriodicalIF":2.7,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41699962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Re-investigation of ‘minasgeraisite-(Y)’ from the Jaguaraçu pegmatite, Brazil and high-temperature crystal chemistry of gadolinite-supergroup minerals 巴西jaguarau伟晶岩中“minasgeraisite-(Y)”的再研究及超群矿物的高温晶体化学研究
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-03-17 DOI: 10.1180/mgm.2023.19
O. Vereshchagin, L. Gorelova, Anastasia K. Shagova, A. Kasatkin, R. Škoda, V. Bocharov, N. S. Vlasenko, M. Vašinová Galiová
Abstract The chemical composition (including B, Be and Li), the Raman spectrum and the crystal-structure evolution (at the temperature range 27–1000°C) of a Mn-bearing, Bi-rich gadolinite-subgroup mineral from the Jaguaraçu Pegmatite, Brazil (type-locality of minasgeraisite-(Y)) was studied. Elemental mapping revealed that the crystal investigated has complex chemical zonation with various Bi (~8–24 wt.% Bi2O3), Ca (~8–10 wt.% CaO) and Y (~11–17 wt.% Y2O3) content. The sample investigated has all the specific features of the chemical composition of minasgeraisite-(Y), except Ca excess and, thus, should be considered as hingganite-(Y). The Raman spectrum of the sample under study has bands at 140, 179, 243, 350, 446, 519, 559, 625, 902, 973, 3224, 3353, 3532 and 3763 cm–1, and is similar to that of hingganite-(Y) / -(Nd). Crystal-structure refinement confirmed that the crystal in question should be considered as hingganite-(Y) and is in line with the previously obtained data on gadolinite-subgroup minerals from the Jaguaraçu Pegmatite. High-temperature single-crystal X-ray diffraction studies revealed that the mineral starts to decompose above 800°C. We can conclude that beryllosilicates are most stable at high-temperature conditions within the gadolinite supergroup and that species with a higher M-site occupancy have higher stability upon heating.
摘要研究了巴西Jaguaraçu伟晶岩中一种含锰、富铋钆石亚类矿物(明石-(Y)型位置)的化学成分(包括B、Be和Li)、拉曼光谱和晶体结构演化(在27–1000°C的温度范围内)。元素图谱显示,所研究的晶体具有复杂的化学分带,具有不同的Bi(~8–24 wt.%Bi2O3)、Ca(~8-10 wt.%CaO)和Y(~11–17 wt.%Y2O3)含量。除Ca过量外,所研究的样品具有明石-(Y)化学成分的所有特定特征,因此应被视为有机锌矿-(Y)。所研究样品的拉曼光谱在140、179、243、350、446、519、559、625、902、973、3224、3353、3532和3763 cm–1处有谱带,与有机磷-(Y)/-(Nd)的拉曼光谱相似。晶体结构细化证实,所讨论的晶体应被视为hingganite-(Y),并且与之前从Jaguaraçu伟晶岩中获得的钆矿亚组矿物数据一致。高温单晶X射线衍射研究表明,该矿物在800°C以上开始分解。我们可以得出结论,绿柱石在高温条件下在钆超群中最稳定,并且具有较高M位占有率的物种在加热时具有较高的稳定性。
{"title":"Re-investigation of ‘minasgeraisite-(Y)’ from the Jaguaraçu pegmatite, Brazil and high-temperature crystal chemistry of gadolinite-supergroup minerals","authors":"O. Vereshchagin, L. Gorelova, Anastasia K. Shagova, A. Kasatkin, R. Škoda, V. Bocharov, N. S. Vlasenko, M. Vašinová Galiová","doi":"10.1180/mgm.2023.19","DOIUrl":"https://doi.org/10.1180/mgm.2023.19","url":null,"abstract":"Abstract The chemical composition (including B, Be and Li), the Raman spectrum and the crystal-structure evolution (at the temperature range 27–1000°C) of a Mn-bearing, Bi-rich gadolinite-subgroup mineral from the Jaguaraçu Pegmatite, Brazil (type-locality of minasgeraisite-(Y)) was studied. Elemental mapping revealed that the crystal investigated has complex chemical zonation with various Bi (~8–24 wt.% Bi2O3), Ca (~8–10 wt.% CaO) and Y (~11–17 wt.% Y2O3) content. The sample investigated has all the specific features of the chemical composition of minasgeraisite-(Y), except Ca excess and, thus, should be considered as hingganite-(Y). The Raman spectrum of the sample under study has bands at 140, 179, 243, 350, 446, 519, 559, 625, 902, 973, 3224, 3353, 3532 and 3763 cm–1, and is similar to that of hingganite-(Y) / -(Nd). Crystal-structure refinement confirmed that the crystal in question should be considered as hingganite-(Y) and is in line with the previously obtained data on gadolinite-subgroup minerals from the Jaguaraçu Pegmatite. High-temperature single-crystal X-ray diffraction studies revealed that the mineral starts to decompose above 800°C. We can conclude that beryllosilicates are most stable at high-temperature conditions within the gadolinite supergroup and that species with a higher M-site occupancy have higher stability upon heating.","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":"87 1","pages":"470 - 479"},"PeriodicalIF":2.7,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44867922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mineral assemblages and compositional variations in bavenite–bohseite from granitic pegmatites of the Bohemian Massif, Czech Republic 捷克波西米亚地块花岗伟晶岩中巴文石-波士石的矿物组合及成分变化
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-03-17 DOI: 10.1180/mgm.2023.17
M. Novak, Z. Dolníček, A. Zachař, P. Gadas, Miroslav Nepejchal, Kamil Sobek, R. Škoda, L. Vrtiška
Abstract The paragenesis and composition of bavenite–bohseite were investigated in fifteen granitic pegmatites from the Bohemian Massif, Czech Republic. Three types distinct in their relation to primary Be precursors, mineral assemblages, morphology and origin were recognised: (1) primary hydrothermal bavenite–bohseite crystallised in miarolitic pockets from residual pegmatite fluids; and secondary bavenite–bohseite in two distinct types: (2) a proximal type restricted spatially to pseudomorphs after a primary Be mineral (beryl > phenakite, helvine–danalite); and (3) a distal type on brittle fractures and fissures of host pegmatite. The mineral assemblages are highly variable: (1) axinite-(Mn), smectite, calcite and pyrite; (2) bertrandite, milarite, secondary beryl, bazzite, K-feldspar, muscovite–illite, scolecite, gismondine-Ca, analcime, chlorite; and (3) muscovite, albite, quartz, epidote, pumpellyite-(Mg), pumpellyite-(Fe3+), titanite and chlorite. Electron microprobe analyses showed, in addition to major constituents (Si, Ca and Al), minor concentrations (in apfu) of Na (≤0.24), Fe (≤0.10), Mn (≤0.10) and F (≤0.36). The type 1 hydrothermal miarolitic bavenite–bohseite is mostly Al-rich (2.00–0.67 apfu) relative to type 2 proximal bavenite–bohseite and bohseite after beryl, phenakite and helvine–danalite (1.56–0.46, 0.70–0.05, 1.02–0.35 apfu, respectively); and type 3 distal bavenite–bohseite typically after beryl (1.63–0.09 apfu). Raman spectroscopy revealed that the distance between the OH– vibrational modes decreases with increasing bohseite component. The Al content of secondary type 2 proximal bavenite–bohseite is controlled by the composition of the Be precursor whereas type 3 distal bavenite–bohseite with beryl as the Be precursor is more variable and the composition is governed mainly by the composition of fluids. Calcium, a crucial component for bavenite–bohseite origins, was derived from residual pegmatite fluids (Vlastějovice, Vepice IV or Třebíč Plutons) or external sources (e.g. Drahonín IV, Věžná I or Maršíkov). Primary type 1 hydrothermal bavenite–bohseite from miarolitic pockets might have crystallised at T ≈ 300–400°C and P ≈ 200 MPa, whereas the secondary type 2 and 3 bavenite–bohseite formed at T ≈ 300–100°C and P ≈ 200–20 MPa.
摘要研究了捷克共和国波希米亚地块15个花岗伟晶岩中的辉橄榄岩-辉橄榄岩的共生作用和成分。在与原生Be前体、矿物组合、形态和起源的关系上,识别出三种不同的类型:(1)在残余伟晶岩流体的泥质岩洞穴中结晶的原生热液辉橄榄岩-波西米亚岩;和二次方辉橄榄岩-波西米亚岩,分为两种不同的类型:(2)近端类型,在空间上局限于原生Be矿物之后的假形态(绿柱石>苯钠石,海尔文-丹纳利特);和(3)寄主伟晶岩脆性断裂和裂隙上的远端型。矿物组合变化很大:(1)轴石-(Mn)、蒙脱石、方解石和黄铁矿;(2) 白榴石、milarite、次生绿柱石、巴兹矿、钾长石、白云母-伊利石、方镁石、钙石、方沸石、绿泥石;以及(3)白云母、钠长石、石英、绿帘石、钙矾石-(Mg)、钙矾土-(Fe3+)、钛矿和绿泥石。电子探针分析显示,除了主要成分(Si、Ca和Al)外,Na(≤0.24)、Fe(≤0.10)、Mn(≤0.10,苯钠铝石和海尔文-达纳石(分别为1.56–0.46、0.70–0.05、1.02–0.35 apfu);以及3型远辉石-波西米亚石,通常在绿柱石之后(1.63–0.09 apfu)。拉曼光谱显示,OH–振动模式之间的距离随着波西铁矿成分的增加而减小。第二类2近端辉橄榄岩-辉橄榄岩的Al含量由Be前体的组成控制,而以绿柱石为Be前质的第三类远端辉橄榄岩–辉橄榄岩则变化更大,其组成主要由流体的组成控制。钙是巴韦尼特-波西铁矿起源的关键成分,来源于残余伟晶岩流体(VlastŞjovice、Vepice IV或TřebíčPlutons)或外部来源(如Drahonín IV、VŞžnáI或Maršíkov)。来自泥质岩穴的初级1型水热bavenite–bohseite可能在T≈300–400°C和P≈200 MPa时结晶,而次级2型和3型bavenite-Bohseitte则在T≈300–100°C和P≈200–20 MPa时形成。
{"title":"Mineral assemblages and compositional variations in bavenite–bohseite from granitic pegmatites of the Bohemian Massif, Czech Republic","authors":"M. Novak, Z. Dolníček, A. Zachař, P. Gadas, Miroslav Nepejchal, Kamil Sobek, R. Škoda, L. Vrtiška","doi":"10.1180/mgm.2023.17","DOIUrl":"https://doi.org/10.1180/mgm.2023.17","url":null,"abstract":"Abstract The paragenesis and composition of bavenite–bohseite were investigated in fifteen granitic pegmatites from the Bohemian Massif, Czech Republic. Three types distinct in their relation to primary Be precursors, mineral assemblages, morphology and origin were recognised: (1) primary hydrothermal bavenite–bohseite crystallised in miarolitic pockets from residual pegmatite fluids; and secondary bavenite–bohseite in two distinct types: (2) a proximal type restricted spatially to pseudomorphs after a primary Be mineral (beryl > phenakite, helvine–danalite); and (3) a distal type on brittle fractures and fissures of host pegmatite. The mineral assemblages are highly variable: (1) axinite-(Mn), smectite, calcite and pyrite; (2) bertrandite, milarite, secondary beryl, bazzite, K-feldspar, muscovite–illite, scolecite, gismondine-Ca, analcime, chlorite; and (3) muscovite, albite, quartz, epidote, pumpellyite-(Mg), pumpellyite-(Fe3+), titanite and chlorite. Electron microprobe analyses showed, in addition to major constituents (Si, Ca and Al), minor concentrations (in apfu) of Na (≤0.24), Fe (≤0.10), Mn (≤0.10) and F (≤0.36). The type 1 hydrothermal miarolitic bavenite–bohseite is mostly Al-rich (2.00–0.67 apfu) relative to type 2 proximal bavenite–bohseite and bohseite after beryl, phenakite and helvine–danalite (1.56–0.46, 0.70–0.05, 1.02–0.35 apfu, respectively); and type 3 distal bavenite–bohseite typically after beryl (1.63–0.09 apfu). Raman spectroscopy revealed that the distance between the OH– vibrational modes decreases with increasing bohseite component. The Al content of secondary type 2 proximal bavenite–bohseite is controlled by the composition of the Be precursor whereas type 3 distal bavenite–bohseite with beryl as the Be precursor is more variable and the composition is governed mainly by the composition of fluids. Calcium, a crucial component for bavenite–bohseite origins, was derived from residual pegmatite fluids (Vlastějovice, Vepice IV or Třebíč Plutons) or external sources (e.g. Drahonín IV, Věžná I or Maršíkov). Primary type 1 hydrothermal bavenite–bohseite from miarolitic pockets might have crystallised at T ≈ 300–400°C and P ≈ 200 MPa, whereas the secondary type 2 and 3 bavenite–bohseite formed at T ≈ 300–100°C and P ≈ 200–20 MPa.","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":"87 1","pages":"415 - 432"},"PeriodicalIF":2.7,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41883637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Mineralogical Magazine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1