首页 > 最新文献

Mrs Bulletin最新文献

英文 中文
Complexity, disorder, and functionality of nanoscale materials 纳米级材料的复杂性、无序性和功能性
IF 5 3区 材料科学 Q1 Physics and Astronomy Pub Date : 2024-04-12 DOI: 10.1557/s43577-024-00698-6
Xiaoming Mao, Nicholas Kotov

The world of biology created a wealth of complex materials intertwining order, disorder, and hierarchy. They are produced with minimal energy expenditures and display combinations of properties that surpass materials aimed to be perfectly ordered crystals or perfectly disordered glasses. De novo engineering of biomimetic materials with “impossible” combination of properties necessary for multiple technologies becomes possible considering complexity as a design parameter but this methodology lacks foundational principles. This article delineates the concept of complexity in the context of materials science. It examines the pathway to quantitative complexity–functionality relations and explores pragmatic approaches to scalable complex materials guided by discrete mathematics of nanoassemblies from imperfect components.

Graphical abstract

生物界创造了大量交织着有序、无序和层次的复杂材料。这些材料的生产能耗极低,所显示的特性组合超越了旨在成为完美有序晶体或完美无序玻璃的材料。考虑到复杂性是一个设计参数,重新设计具有多种技术所需的 "不可能 "特性组合的仿生材料成为可能,但这种方法缺乏基本原则。本文阐述了材料科学背景下的复杂性概念。文章研究了定量复杂性-功能性关系的途径,并探讨了以不完美组件的纳米组合的离散数学为指导的可扩展复杂材料的实用方法。
{"title":"Complexity, disorder, and functionality of nanoscale materials","authors":"Xiaoming Mao, Nicholas Kotov","doi":"10.1557/s43577-024-00698-6","DOIUrl":"https://doi.org/10.1557/s43577-024-00698-6","url":null,"abstract":"<p>The world of biology created a wealth of complex materials intertwining order, disorder, and hierarchy. They are produced with minimal energy expenditures and display combinations of properties that surpass materials aimed to be perfectly ordered crystals or perfectly disordered glasses. De novo engineering of biomimetic materials with “impossible” combination of properties necessary for multiple technologies becomes possible considering complexity as a design parameter but this methodology lacks foundational principles. This article delineates the concept of complexity in the context of materials science. It examines the pathway to quantitative complexity–functionality relations and explores pragmatic approaches to scalable complex materials guided by discrete mathematics of nanoassemblies from imperfect components.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoparticle self-assemblies with modern complexity 具有现代复杂性的纳米粒子自组装
IF 5 3区 材料科学 Q1 Physics and Astronomy Pub Date : 2024-04-10 DOI: 10.1557/s43577-024-00700-1
Qian Chen, Xin Zhang

Thanks to decades of tireless efforts, nanoparticle assemblies have reached an extremely high level of controllability, sophistication, and complexity, with new insights provided by integration with graph theory, cutting-edge characterization, and machine learning (ML)-based computation and modeling, as well as with ever-diversifying applications in energy, catalysis, biomedicine, optics, electronics, magnetics, organic biosynthesis, and quantum technology. Nanoparticle assemblies can be crystalline, known as superlattices or supracrystals. Their assembly entails a transition from disorder—dispersed nanoparticles—to order, which can be achieved through classical nucleation pathways or nonclassical pathways via prenucleation precursors or particle aggregation. The periodic lattices allow facile manipulations of electrons, phonons, photons, and even spins, leading to advanced device components and metamaterials. Meanwhile, aperiodic assemblies out of nanoparticles, such as gels, networks, and amorphous solids, also start to attract attention. Despite the loss of periodicity, symmetry-lowering or symmetry-breaking three-dimensional (3D) structures emerge with unique properties, such as chiroptical activity, topological mechanical strength, and quantum entanglement. Real-space imaging such as electron microscopy and x-ray-based tomography methods are utilized to characterize these complex structures, whereas mathematical tools such as graph theories are in need to describe such complex structures. This issue aims to provide a timely review of the efforts in this greatly broadened materials design space, including experiment, simulation, theory, and applications. Nine top experts (and their teams) from four countries deliver six articles summarizing fundamental mechanistic understandings of nanoparticle assemblies, highlighted with the developments of state-of-the-art in situ characterization tools and ML-assisted reverse engineering, and newly emergent applications of nanoarchitectures.

Graphical abstract

经过数十年的不懈努力,纳米粒子组装体的可控性、精密性和复杂性已经达到了极高的水平,与图论、尖端表征和基于机器学习(ML)的计算和建模的结合提供了新的见解,在能源、催化、生物医学、光学、电子学、磁学、有机生物合成和量子技术方面的应用也日益多样化。纳米粒子集合体可以是晶体,被称为超晶格或超晶体。它们的组装需要从无序--分散的纳米粒子到有序的过渡,这可以通过经典的成核途径或通过预成核前体或粒子聚集的非经典途径实现。周期性晶格可以方便地操纵电子、声子、光子甚至自旋,从而产生先进的设备元件和超材料。与此同时,由纳米粒子组成的非周期性组合体,如凝胶、网络和非晶态固体,也开始引起人们的关注。尽管失去了周期性,但对称性降低或对称性打破的三维(3D)结构却具有独特的性质,如气光活动、拓扑机械强度和量子纠缠。电子显微镜和基于 X 射线的断层扫描等真实空间成像方法可用于描述这些复杂结构,而图论等数学工具则需要用于描述这些复杂结构。本期杂志旨在及时回顾在这一大大拓宽的材料设计领域所做的努力,包括实验、模拟、理论和应用。来自四个国家的九位顶级专家(及其团队)发表了六篇文章,总结了对纳米粒子组装的基本机理认识,重点介绍了最先进的原位表征工具和 ML 辅助逆向工程的发展,以及纳米结构的新近应用。
{"title":"Nanoparticle self-assemblies with modern complexity","authors":"Qian Chen, Xin Zhang","doi":"10.1557/s43577-024-00700-1","DOIUrl":"https://doi.org/10.1557/s43577-024-00700-1","url":null,"abstract":"<p>Thanks to decades of tireless efforts, nanoparticle assemblies have reached an extremely high level of controllability, sophistication, and complexity, with new insights provided by integration with graph theory, cutting-edge characterization, and machine learning (ML)-based computation and modeling, as well as with ever-diversifying applications in energy, catalysis, biomedicine, optics, electronics, magnetics, organic biosynthesis, and quantum technology. Nanoparticle assemblies can be crystalline, known as superlattices or supracrystals. Their assembly entails a transition from disorder—dispersed nanoparticles—to order, which can be achieved through classical nucleation pathways or nonclassical pathways via prenucleation precursors or particle aggregation. The periodic lattices allow facile manipulations of electrons, phonons, photons, and even spins, leading to advanced device components and metamaterials. Meanwhile, aperiodic assemblies out of nanoparticles, such as gels, networks, and amorphous solids, also start to attract attention. Despite the loss of periodicity, symmetry-lowering or symmetry-breaking three-dimensional (3D) structures emerge with unique properties, such as chiroptical activity, topological mechanical strength, and quantum entanglement. Real-space imaging such as electron microscopy and x-ray-based tomography methods are utilized to characterize these complex structures, whereas mathematical tools such as graph theories are in need to describe such complex structures. This issue aims to provide a timely review of the efforts in this greatly broadened materials design space, including experiment, simulation, theory, and applications. Nine top experts (and their teams) from four countries deliver six articles summarizing fundamental mechanistic understandings of nanoparticle assemblies, highlighted with the developments of state-of-the-art <i>in situ</i> characterization tools and ML-assisted reverse engineering, and newly emergent applications of nanoarchitectures.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in liquid phase transmission electron microscopy of nanoparticle growth and self-assembly 液相透射电子显微镜观察纳米粒子生长和自组装的最新进展
IF 5 3区 材料科学 Q1 Physics and Astronomy Pub Date : 2024-04-10 DOI: 10.1557/s43577-024-00702-z
Joodeok Kim, Sungsu Kang, Fanrui Cheng, Yi Wang, Xingchen Ye, Jungwon Park

Over the last several decades, colloidal nanoparticles have evolved into a prominent class of building blocks for materials design. Important advances include the synthesis of uniform nanoparticles with tailored compositions and properties, and the precision construction of intricate, higher-level structures from nanoparticles via self-assembly. Grasping the modern complexity of nanoparticles and their superstructures requires fundamental understandings of the processes of nanoparticle growth and self-assembly. In situ liquid phase transmission electron microscopy (TEM) has significantly advanced our understanding of these dynamic processes by allowing direct observation of how individual atoms and nanoparticles interact in real time, in their native phases. In this article, we highlight diverse nucleation and growth pathways of nanoparticles in solution that could be elucidated by the in situ liquid phase TEM. Furthermore, we showcase in situ liquid phase TEM studies of nanoparticle self-assembly pathways, highlighting the complex interplay among nanoparticles, ligands, and solvents. The mechanistic insights gained from in situ liquid phase TEM investigation could inform the design and synthesis of novel nanomaterials for various applications such as catalysis, energy conversion, and optoelectronic devices.

Graphical abstract

在过去的几十年里,胶体纳米粒子已发展成为材料设计中的一类重要构件。重要的进展包括合成具有定制成分和特性的均匀纳米粒子,以及通过自组装从纳米粒子精确构建复杂的高级结构。要掌握纳米粒子及其超结构的现代复杂性,就必须从根本上了解纳米粒子的生长和自组装过程。原位液相透射电子显微镜(TEM)通过直接观察单个原子和纳米粒子在其原生相中如何实时相互作用,极大地推动了我们对这些动态过程的理解。在本文中,我们重点介绍了原位液相 TEM 可以阐明的溶液中纳米粒子的各种成核和生长途径。此外,我们还展示了纳米粒子自组装途径的原位液相 TEM 研究,突出了纳米粒子、配体和溶剂之间复杂的相互作用。从原位液相 TEM 研究中获得的机理见解可为设计和合成新型纳米材料提供参考,这些材料可用于催化、能量转换和光电器件等多种应用领域。
{"title":"Recent advances in liquid phase transmission electron microscopy of nanoparticle growth and self-assembly","authors":"Joodeok Kim, Sungsu Kang, Fanrui Cheng, Yi Wang, Xingchen Ye, Jungwon Park","doi":"10.1557/s43577-024-00702-z","DOIUrl":"https://doi.org/10.1557/s43577-024-00702-z","url":null,"abstract":"<p>Over the last several decades, colloidal nanoparticles have evolved into a prominent class of building blocks for materials design. Important advances include the synthesis of uniform nanoparticles with tailored compositions and properties, and the precision construction of intricate, higher-level structures from nanoparticles via self-assembly. Grasping the modern complexity of nanoparticles and their superstructures requires fundamental understandings of the processes of nanoparticle growth and self-assembly. <i>In situ</i> liquid phase transmission electron microscopy (TEM) has significantly advanced our understanding of these dynamic processes by allowing direct observation of how individual atoms and nanoparticles interact in real time, in their native phases. In this article, we highlight diverse nucleation and growth pathways of nanoparticles in solution that could be elucidated by the <i>in situ</i> liquid phase TEM. Furthermore, we showcase <i>in situ</i> liquid phase TEM studies of nanoparticle self-assembly pathways, highlighting the complex interplay among nanoparticles, ligands, and solvents. The mechanistic insights gained from <i>in situ</i> liquid phase TEM investigation could inform the design and synthesis of novel nanomaterials for various applications such as catalysis, energy conversion, and optoelectronic devices.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Science as Art 科学即艺术
IF 5 3区 材料科学 Q1 Physics and Astronomy Pub Date : 2024-04-05 DOI: 10.1557/s43577-024-00708-7
{"title":"Science as Art","authors":"","doi":"10.1557/s43577-024-00708-7","DOIUrl":"https://doi.org/10.1557/s43577-024-00708-7","url":null,"abstract":"","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking topological phase transitions in HfTe5 through strain 通过应变揭示 HfTe5 的拓扑相变
IF 5 3区 材料科学 Q1 Physics and Astronomy Pub Date : 2024-04-05 DOI: 10.1557/s43577-024-00712-x
Molly McDonough
{"title":"Unlocking topological phase transitions in HfTe5 through strain","authors":"Molly McDonough","doi":"10.1557/s43577-024-00712-x","DOIUrl":"https://doi.org/10.1557/s43577-024-00712-x","url":null,"abstract":"","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blue-green Hf–Zr halide perovskites illuminate path beyond lead 蓝绿 Hf-Zr 卤化物包荧光体照亮铅之外的道路
IF 5 3区 材料科学 Q1 Physics and Astronomy Pub Date : 2024-04-05 DOI: 10.1557/s43577-024-00707-8
Nabojit Kar
{"title":"Blue-green Hf–Zr halide perovskites illuminate path beyond lead","authors":"Nabojit Kar","doi":"10.1557/s43577-024-00707-8","DOIUrl":"https://doi.org/10.1557/s43577-024-00707-8","url":null,"abstract":"","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140740863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lead-free, low-permittivity electrostrictor could be an alternative to lead-based materials 无铅、低渗透率电致伸缩材料可替代铅基材料
IF 5 3区 材料科学 Q1 Physics and Astronomy Pub Date : 2024-04-04 DOI: 10.1557/s43577-024-00705-w
Rahul Rao
{"title":"Lead-free, low-permittivity electrostrictor could be an alternative to lead-based materials","authors":"Rahul Rao","doi":"10.1557/s43577-024-00705-w","DOIUrl":"https://doi.org/10.1557/s43577-024-00705-w","url":null,"abstract":"","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA modification enables colloidal crystals with novel space-filled architectures DNA 修饰使胶体晶体具有新颖的空间填充结构
IF 5 3区 材料科学 Q1 Physics and Astronomy Pub Date : 2024-04-04 DOI: 10.1557/s43577-024-00706-9
Zainab Patel
{"title":"DNA modification enables colloidal crystals with novel space-filled architectures","authors":"Zainab Patel","doi":"10.1557/s43577-024-00706-9","DOIUrl":"https://doi.org/10.1557/s43577-024-00706-9","url":null,"abstract":"","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Embrittlement, degradation, and loss prevention of hydrogen pipelines 氢气管道的脆化、降解和损失预防
IF 5 3区 材料科学 Q1 Physics and Astronomy Pub Date : 2024-04-04 DOI: 10.1557/s43577-024-00695-9
Leonardo Giannini, Nima Razavi, Antonio Alvaro, Nicola Paltrinieri

The detrimental effects induced by hydrogen on different materials—including steels—are a well-known and studied phenomenon. In the last century, several research papers focusing on hydrogen damages were published, including investigations concerning the hydrogen impact on the crack growth rate in steels subjected to cyclic loading. However, the past studies focused on material behavior and the role of external factors (e.g., pressure, temperature, stress field, microstructure, inhibitors, etc.), while the consequences of these findings on safety procedures and guidelines remain unspoken. The present work aims at investigating how the manifestation of the hydrogen degradation effect on equipment subjected to fatigue loadings may reflect on conventional safety practices. More accurately, a review of the parameters governing pipeline fatigue life is undertaken to analyze how such variables may lead to undesirable events and ultimately promoting a loss of containment scenario. In this sense, this work appeals for an evolution of the existing inspection methodologies for components that may experience fatigue failures (i.e., piping and pipeline systems), since the time-dependency of the detrimental effects induced by hydrogen should be considered in the operations of accident prevention and risk mitigation. Hence, the development of a preventive inspection and maintenance strategy specifically conceived for hydrogen technologies is essential to avoid the loss prevention of hydrogen systems. This will not only contribute to a quicker and larger scale spread of a hydrogen infrastructure, but it will also foster the energy-transition challenge that our society is facing today.

Graphical abstract

氢气对不同材料(包括钢材)的有害影响是众所周知的现象,也是研究的重点。上个世纪,发表了多篇关于氢损伤的研究论文,其中包括氢对循环加载下钢材裂纹增长速度的影响。然而,过去的研究主要集中在材料行为和外部因素(如压力、温度、应力场、微观结构、抑制剂等)的作用上,而这些研究结果对安全程序和准则的影响仍未被提及。本研究旨在探讨氢气降解效应在承受疲劳载荷的设备上的表现如何反映在传统的安全实践中。更准确地说,是对影响管道疲劳寿命的参数进行审查,以分析这些变量如何可能导致不良事件,并最终导致安全壳失效。从这个意义上说,这项工作呼吁对可能出现疲劳故障的部件(即管道和输油管系统)的现有检测方法进行改进,因为在事故预防和风险缓解操作中,应考虑氢气诱发的有害影响的时间依赖性。因此,制定专门针对氢技术的预防性检查和维护战略对于避免氢系统的损失至关重要。这不仅有助于更快、更大规模地推广氢能基础设施,还将促进应对当今社会面临的能源转型挑战。
{"title":"Embrittlement, degradation, and loss prevention of hydrogen pipelines","authors":"Leonardo Giannini, Nima Razavi, Antonio Alvaro, Nicola Paltrinieri","doi":"10.1557/s43577-024-00695-9","DOIUrl":"https://doi.org/10.1557/s43577-024-00695-9","url":null,"abstract":"<p>The detrimental effects induced by hydrogen on different materials—including steels—are a well-known and studied phenomenon. In the last century, several research papers focusing on hydrogen damages were published, including investigations concerning the hydrogen impact on the crack growth rate in steels subjected to cyclic loading. However, the past studies focused on material behavior and the role of external factors (e.g., pressure, temperature, stress field, microstructure, inhibitors, etc.), while the consequences of these findings on safety procedures and guidelines remain unspoken. The present work aims at investigating how the manifestation of the hydrogen degradation effect on equipment subjected to fatigue loadings may reflect on conventional safety practices. More accurately, a review of the parameters governing pipeline fatigue life is undertaken to analyze how such variables may lead to undesirable events and ultimately promoting a loss of containment scenario. In this sense, this work appeals for an evolution of the existing inspection methodologies for components that may experience fatigue failures (i.e., piping and pipeline systems), since the time-dependency of the detrimental effects induced by hydrogen should be considered in the operations of accident prevention and risk mitigation. Hence, the development of a preventive inspection and maintenance strategy specifically conceived for hydrogen technologies is essential to avoid the loss prevention of hydrogen systems. This will not only contribute to a quicker and larger scale spread of a hydrogen infrastructure, but it will also foster the energy-transition challenge that our society is facing today.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing a sense of belonging in our communities 增强社区归属感
IF 5 3区 材料科学 Q1 Physics and Astronomy Pub Date : 2024-04-02 DOI: 10.1557/s43577-024-00713-w
Henry Q. Afful
{"title":"Enhancing a sense of belonging in our communities","authors":"Henry Q. Afful","doi":"10.1557/s43577-024-00713-w","DOIUrl":"https://doi.org/10.1557/s43577-024-00713-w","url":null,"abstract":"","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140754732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mrs Bulletin
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1