Pub Date : 2024-12-03eCollection Date: 2025-01-01DOI: 10.1093/nsr/nwae419
Lei Yue, Fuyu Tian, Ran Liu, Zonglun Li, Ruixin Li, Chenyi Li, Yanchun Li, Dongliang Yang, Xiaodong Li, Quanjun Li, Lijun Zhang, Bingbing Liu
The intentional manipulation of carrier characteristics serves as a fundamental principle underlying various energy-related and optoelectronic semiconductor technologies. However, achieving switchable and reversible control of the polarity within a single material to design optimized devices remains a significant challenge. Herein, we successfully achieved dramatic reversible p-n switching during the semiconductor‒semiconductor phase transition in BiI3 via pressure, accompanied by a substantial improvement in their photoelectric properties. Carrier polarity flipping was monitored by measuring the photocurrent dominated by the photothermoelectric (PTE) effect in a zero-bias two-terminal device. Accompanying the p-n transition, a switch between positive and negative photocurrents was observed in BiI3, providing a feasible method to determine the conduction type of materials via photoelectric measurements. Furthermore, the combined effects of the photoconductivity and PTE mechanism improved the photoresponse and extended the detection bandwidth to encompass the optical communication waveband (1650 nm) under an external bias. The remarkable photoelectric properties were attributed to the enhanced energy band dispersion and increased charge density of BiI3 under pressure. These findings highlight the effective and flexible modulation of carrier properties through pressure engineering and provide a foundation for designing and implementing multifunctional logic circuits and optoelectronic devices.
{"title":"Dramatic switchable polarities in conduction type and self-driven photocurrent of BiI<sub>3</sub> via pressure engineering.","authors":"Lei Yue, Fuyu Tian, Ran Liu, Zonglun Li, Ruixin Li, Chenyi Li, Yanchun Li, Dongliang Yang, Xiaodong Li, Quanjun Li, Lijun Zhang, Bingbing Liu","doi":"10.1093/nsr/nwae419","DOIUrl":"https://doi.org/10.1093/nsr/nwae419","url":null,"abstract":"<p><p>The intentional manipulation of carrier characteristics serves as a fundamental principle underlying various energy-related and optoelectronic semiconductor technologies. However, achieving switchable and reversible control of the polarity within a single material to design optimized devices remains a significant challenge. Herein, we successfully achieved dramatic reversible p-n switching during the semiconductor‒semiconductor phase transition in BiI<sub>3</sub> via pressure, accompanied by a substantial improvement in their photoelectric properties. Carrier polarity flipping was monitored by measuring the photocurrent dominated by the photothermoelectric (PTE) effect in a zero-bias two-terminal device. Accompanying the p-n transition, a switch between positive and negative photocurrents was observed in BiI<sub>3</sub>, providing a feasible method to determine the conduction type of materials via photoelectric measurements. Furthermore, the combined effects of the photoconductivity and PTE mechanism improved the photoresponse and extended the detection bandwidth to encompass the optical communication waveband (1650 nm) under an external bias. The remarkable photoelectric properties were attributed to the enhanced energy band dispersion and increased charge density of BiI<sub>3</sub> under pressure. These findings highlight the effective and flexible modulation of carrier properties through pressure engineering and provide a foundation for designing and implementing multifunctional logic circuits and optoelectronic devices.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 1","pages":"nwae419"},"PeriodicalIF":16.3,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702651/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-30eCollection Date: 2024-12-01DOI: 10.1093/nsr/nwae431
Na Zhang, Decai Ouyang, Yuan Li, Tianyou Zhai
This Prospective highlights the advances and challenges of 2D materials regarding the materials preparation, device integration, multifunctional applications, and comments on their potential as transformative candidates for future image sensors.
{"title":"The roadmap of two-dimensional materials toward next-generation image sensor.","authors":"Na Zhang, Decai Ouyang, Yuan Li, Tianyou Zhai","doi":"10.1093/nsr/nwae431","DOIUrl":"10.1093/nsr/nwae431","url":null,"abstract":"<p><p>This Prospective highlights the advances and challenges of 2D materials regarding the materials preparation, device integration, multifunctional applications, and comments on their potential as transformative candidates for future image sensors.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"11 12","pages":"nwae431"},"PeriodicalIF":16.3,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664214/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Defining metabolic health is critical for the earlier reversing of metabolic dysfunction and disease, and fasting-based diagnosis may not adequately assess an individual's metabolic adaptivity under stress. We constructed a novel Health State Map (HSM) comprising a Health Phenotype Score (HPS) with fasting features alone and a Homeostatic Resilience Score (HRS) with five time-point features only (t = 30, 60, 90, 180, 240 min) following a standardized mixed macronutrient tolerance test (MMTT). Among 111 Chinese adults, when the same set of fasting and post-MMTT data as for the HSM was used, the mixed-score was highly correlated with the HPS. The HRS was significantly associated with metabolic syndrome prevalence, independently of the HPS (OR [95% CI]: 0.41 [0.18, 0.92]) and the mixed-score (0.34 [0.15, 0.69]). Moreover, the HRS could discriminate metabolic characteristics unseparated by the HPS and the mixed-score. Participants with higher HRSs had better metabolic traits than those with lower HRSs. Large interpersonal variations were also evidenced by evaluating postprandial homeostatic resiliencies for glucose, lipids and amino acids when participants had similar overall HRSs. Additionally, the HRS was positively associated with physical activity level and specific gut microbiome structure. Collectively, our HSM model might offer a novel approach to precisely define an individual's metabolic health and nutritional capacity.
{"title":"Two-dimensional Health State Map to define metabolic health using separated static and dynamic homeostasis features: a proof-of-concept study.","authors":"Yanpu Wu, Xinyan Zhang, Liang Sun, Qingqing Wu, Xiaoping Liu, Yueyi Deng, Zhenzhen Lu, Zhongxia Li, Chaoming Deng, Ruikun He, Luyun Zhang, Rong Zeng, Xuguang Zhang, Luonan Chen, Xu Lin","doi":"10.1093/nsr/nwae425","DOIUrl":"https://doi.org/10.1093/nsr/nwae425","url":null,"abstract":"<p><p>Defining metabolic health is critical for the earlier reversing of metabolic dysfunction and disease, and fasting-based diagnosis may not adequately assess an individual's metabolic adaptivity under stress. We constructed a novel Health State Map (HSM) comprising a Health Phenotype Score (HPS) with fasting features alone and a Homeostatic Resilience Score (HRS) with five time-point features only (<i>t</i> = 30, 60, 90, 180, 240 min) following a standardized mixed macronutrient tolerance test (MMTT). Among 111 Chinese adults, when the same set of fasting and post-MMTT data as for the HSM was used, the mixed-score was highly correlated with the HPS. The HRS was significantly associated with metabolic syndrome prevalence, independently of the HPS (OR [95% CI]: 0.41 [0.18, 0.92]) and the mixed-score (0.34 [0.15, 0.69]). Moreover, the HRS could discriminate metabolic characteristics unseparated by the HPS and the mixed-score. Participants with higher HRSs had better metabolic traits than those with lower HRSs. Large interpersonal variations were also evidenced by evaluating postprandial homeostatic resiliencies for glucose, lipids and amino acids when participants had similar overall HRSs. Additionally, the HRS was positively associated with physical activity level and specific gut microbiome structure. Collectively, our HSM model might offer a novel approach to precisely define an individual's metabolic health and nutritional capacity.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 1","pages":"nwae425"},"PeriodicalIF":16.3,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734281/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-25eCollection Date: 2025-01-01DOI: 10.1093/nsr/nwae424
Licheng Wang, Yawen Liu, Lei Zhao, Xi Lu, Liangdian Huang, Yana Jin, Steven J Davis, Amir Aghakouchak, Xin Huang, Tong Zhu, Yue Qin
China's pursuit of carbon neutrality targets hinges on a profound shift towards low-carbon energy, primarily reliant on intermittent and variable, yet crucial, solar and wind power sources. In particular, low-solar-low-wind (LSLW) compound extremes present a critical yet largely ignored threat to the reliability of renewable electricity generation. While existing studies have largely evaluated the impacts of average climate-induced changes in renewable energy resources, comprehensive analyses of the compound extremes and, particularly, the underpinning dynamic mechanisms remain scarce. Here we show the dynamic evolution of compound LSLW extremes and their underlying mechanisms across China via coupling multi-model simulations with diagnostic analysis. Our results unveil a strong topographic dependence in the frequency of compound LSLW extremes, with a national average frequency of 16.4 (10th-90th percentile interval ranges from 5.3 to 32.6) days/yr, when renewable energy resources in eastern China are particularly compromised (∼80% lower than that under an average climate). We reveal a striking increase in the frequency of LSLW extremes, ranging from 12.4% under SSP126 to 60.2% under SSP370, primarily driven by both renewable energy resource declines and increasingly heavily-tailed distributions, resulting from weakened meridional temperature (pressure) gradient, increased frequency of extremely dense cloud cover and additional distinctive influence of increased aerosols under SSP370. Our study underscores the urgency of preparing for significantly heightened occurrences of LSLW events in a warmer future, emphasizing that such climate-induced compound LSLW extreme changes are not simply by chance, but rather projectable, thereby underscoring the need for proactive adaptation strategies. Such insights are crucial for countries navigating a similar transition towards renewable energy.
{"title":"Unraveling climate change-induced compound low-solar-low-wind extremes in China.","authors":"Licheng Wang, Yawen Liu, Lei Zhao, Xi Lu, Liangdian Huang, Yana Jin, Steven J Davis, Amir Aghakouchak, Xin Huang, Tong Zhu, Yue Qin","doi":"10.1093/nsr/nwae424","DOIUrl":"10.1093/nsr/nwae424","url":null,"abstract":"<p><p>China's pursuit of carbon neutrality targets hinges on a profound shift towards low-carbon energy, primarily reliant on intermittent and variable, yet crucial, solar and wind power sources. In particular, low-solar-low-wind (LSLW) compound extremes present a critical yet largely ignored threat to the reliability of renewable electricity generation. While existing studies have largely evaluated the impacts of average climate-induced changes in renewable energy resources, comprehensive analyses of the compound extremes and, particularly, the underpinning dynamic mechanisms remain scarce. Here we show the dynamic evolution of compound LSLW extremes and their underlying mechanisms across China via coupling multi-model simulations with diagnostic analysis. Our results unveil a strong topographic dependence in the frequency of compound LSLW extremes, with a national average frequency of 16.4 (10th-90th percentile interval ranges from 5.3 to 32.6) days/yr, when renewable energy resources in eastern China are particularly compromised (∼80% lower than that under an average climate). We reveal a striking increase in the frequency of LSLW extremes, ranging from 12.4% under SSP126 to 60.2% under SSP370, primarily driven by both renewable energy resource declines and increasingly heavily-tailed distributions, resulting from weakened meridional temperature (pressure) gradient, increased frequency of extremely dense cloud cover and additional distinctive influence of increased aerosols under SSP370. Our study underscores the urgency of preparing for significantly heightened occurrences of LSLW events in a warmer future, emphasizing that such climate-induced compound LSLW extreme changes are not simply by chance, but rather projectable, thereby underscoring the need for proactive adaptation strategies. Such insights are crucial for countries navigating a similar transition towards renewable energy.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 1","pages":"nwae424"},"PeriodicalIF":16.3,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11715666/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142951473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-25eCollection Date: 2024-12-01DOI: 10.1093/nsr/nwae405
Xinghui Liu, Young Hee Lee
{"title":"Controlled van der Waals epitaxy of 2D single-crystal molecular film.","authors":"Xinghui Liu, Young Hee Lee","doi":"10.1093/nsr/nwae405","DOIUrl":"10.1093/nsr/nwae405","url":null,"abstract":"","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"11 12","pages":"nwae405"},"PeriodicalIF":16.3,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631133/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142807176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The high thermopower of ionic thermoelectric (i-TE) materials holds promise for miniaturized waste-heat recovery devices and thermal sensors. However, progress is hampered by laborious trial-and-error experimentations, which lack theoretical underpinning. Herein, by introducing the simplified molecular-input line-entry system, we have addressed the challenge posed by the inconsistency of i-TE material types, and present a machine learning model that evaluates the Seebeck coefficient with an R2 of 0.98 on the test dataset. Using this tool, we experimentally identify a waterborne polyurethane/potassium iodide ionogel with a Seebeck coefficient of 41.39 mV/K. Furthermore, interpretable analysis reveals that the number of rotatable bonds and the octanol-water partition coefficient of ions negatively affect Seebeck coefficients, which is corroborated by molecular dynamics simulations. This machine learning-assisted framework represents a pioneering effort in the i-TE field, offering significant promise for accelerating the discovery and development of high-performance i-TE materials.
{"title":"Unlocking new possibilities in ionic thermoelectric materials: a machine learning perspective.","authors":"Yidan Wu, Dongxing Song, Meng An, Cheng Chi, Chunyu Zhao, Bing Yao, Weigang Ma, Xing Zhang","doi":"10.1093/nsr/nwae411","DOIUrl":"https://doi.org/10.1093/nsr/nwae411","url":null,"abstract":"<p><p>The high thermopower of ionic thermoelectric (<i>i</i>-TE) materials holds promise for miniaturized waste-heat recovery devices and thermal sensors. However, progress is hampered by laborious trial-and-error experimentations, which lack theoretical underpinning. Herein, by introducing the simplified molecular-input line-entry system, we have addressed the challenge posed by the inconsistency of <i>i</i>-TE material types, and present a machine learning model that evaluates the Seebeck coefficient with an <i>R</i> <sup>2</sup> of 0.98 on the test dataset. Using this tool, we experimentally identify a waterborne polyurethane/potassium iodide ionogel with a Seebeck coefficient of 41.39 mV/K. Furthermore, interpretable analysis reveals that the number of rotatable bonds and the octanol-water partition coefficient of ions negatively affect Seebeck coefficients, which is corroborated by molecular dynamics simulations. This machine learning-assisted framework represents a pioneering effort in the <i>i</i>-TE field, offering significant promise for accelerating the discovery and development of high-performance <i>i</i>-TE materials.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 1","pages":"nwae411"},"PeriodicalIF":16.3,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702661/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19eCollection Date: 2024-12-01DOI: 10.1093/nsr/nwae361
Hengpan Yang, Huizhu Cai, Deliang Li, Yan Kong, Shangzhao Feng, Xingxing Jiang, Qi Hu, Chuanxin He
Cu-based materials can produce hydrocarbons in CO2 electroreduction (CO2RR), but their stability still needs to be enhanced particularly in acidic media. Metallic Pt is highly stable in both acidic and alkaline media, yet rarely utilized in CO2RR, due to the competitive activity in hydrogen evolution reaction (HER). In this research, abundant thionine (Th) molecules are stably confined within Pt nanocrystals via a molecular doping strategy. The Pt surface is successfully modulated by these Th molecules, and thereby the dominant HER activity is converted to CO2RR activity. CO2 could be electroreduced to CH4 using organic molecule-modified Pt-based catalysts for the first time. Specifically, this composite catalyst maintains more than 100-hour stability in strong acid conditions (pH 1), even comparable to those state-of-the-art CO2RR catalysts. In-situ spectroscopic analysis and theoretical calculations reveal that the molecular modification can decrease the energy barrier for *COOH formation, and guarantee the sufficient local *H near Pt surface. Additionally, the *H derived from H2O dissociation is favorable for the *CO hydrogenation pathway towards *CHO, eventually leading to the formation of CH4. This strategy might be easily applied to microenvironment and interface regulation in other electrocatalytic reactions.
{"title":"Molecular modification enables CO<sub>2</sub> electroreduction to methane on platinum surface in acidic media.","authors":"Hengpan Yang, Huizhu Cai, Deliang Li, Yan Kong, Shangzhao Feng, Xingxing Jiang, Qi Hu, Chuanxin He","doi":"10.1093/nsr/nwae361","DOIUrl":"10.1093/nsr/nwae361","url":null,"abstract":"<p><p>Cu-based materials can produce hydrocarbons in CO<sub>2</sub> electroreduction (CO<sub>2</sub>RR), but their stability still needs to be enhanced particularly in acidic media. Metallic Pt is highly stable in both acidic and alkaline media, yet rarely utilized in CO<sub>2</sub>RR, due to the competitive activity in hydrogen evolution reaction (HER). In this research, abundant thionine (Th) molecules are stably confined within Pt nanocrystals via a molecular doping strategy. The Pt surface is successfully modulated by these Th molecules, and thereby the dominant HER activity is converted to CO<sub>2</sub>RR activity. CO<sub>2</sub> could be electroreduced to CH<sub>4</sub> using organic molecule-modified Pt-based catalysts for the first time. Specifically, this composite catalyst maintains more than 100-hour stability in strong acid conditions (pH 1), even comparable to those state-of-the-art CO<sub>2</sub>RR catalysts. <i>In-situ</i> spectroscopic analysis and theoretical calculations reveal that the molecular modification can decrease the energy barrier for *COOH formation, and guarantee the sufficient local *H near Pt surface. Additionally, the *H derived from H<sub>2</sub>O dissociation is favorable for the *CO hydrogenation pathway towards *CHO, eventually leading to the formation of CH<sub>4</sub>. This strategy might be easily applied to microenvironment and interface regulation in other electrocatalytic reactions.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"11 12","pages":"nwae361"},"PeriodicalIF":16.3,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631074/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142807298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19eCollection Date: 2024-12-01DOI: 10.1093/nsr/nwae417
Qinqin Chen, Qingru Wu, Yuying Cui, Shuxiao Wang
Global ecosystems face mercury contamination, yet long-term data are scarce, hindering understanding of ecosystem responses to atmospheric Hg input changes. To bridge the data gap and assess ecosystem responses, we compiled and compared a mercury accumulation database from peat, lake, ice and marine deposits worldwide with atmospheric mercury deposition modelled by GEOS-Chem, focusing on trends, magnitudes, spatial-temporal distributions and impact factors. The mercury fluxes in all four deposits showed a 5- to 9-fold increase over 1700-2012, with lake and peat mercury fluxes that generally mirrored atmospheric deposition trends. Significant decreases in lake and peat mercury fluxes post-1950 in Europe evidenced effective environmental policies, whereas rises in East Asia, Africa and Oceania highlighted coal-use impacts, inter alia. Conversely, mercury fluxes in marine and high-altitude ecosystems did not align well with atmospheric deposition, emphasizing natural influences over anthropogenic impacts. Our study underscores the importance of these key regions and ecosystems for future mercury management.
{"title":"Mercury records from natural archives reveal ecosystem responses to changing atmospheric deposition.","authors":"Qinqin Chen, Qingru Wu, Yuying Cui, Shuxiao Wang","doi":"10.1093/nsr/nwae417","DOIUrl":"10.1093/nsr/nwae417","url":null,"abstract":"<p><p>Global ecosystems face mercury contamination, yet long-term data are scarce, hindering understanding of ecosystem responses to atmospheric Hg input changes. To bridge the data gap and assess ecosystem responses, we compiled and compared a mercury accumulation database from peat, lake, ice and marine deposits worldwide with atmospheric mercury deposition modelled by GEOS-Chem, focusing on trends, magnitudes, spatial-temporal distributions and impact factors. The mercury fluxes in all four deposits showed a 5- to 9-fold increase over 1700-2012, with lake and peat mercury fluxes that generally mirrored atmospheric deposition trends. Significant decreases in lake and peat mercury fluxes post-1950 in Europe evidenced effective environmental policies, whereas rises in East Asia, Africa and Oceania highlighted coal-use impacts, <i>inter alia</i>. Conversely, mercury fluxes in marine and high-altitude ecosystems did not align well with atmospheric deposition, emphasizing natural influences over anthropogenic impacts. Our study underscores the importance of these key regions and ecosystems for future mercury management.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"11 12","pages":"nwae417"},"PeriodicalIF":16.3,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660912/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142877422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}