Pub Date : 2024-08-08DOI: 10.1038/s41570-024-00639-6
Anna M. Kasper, Victoria A. Popov, Sara K. Blick-Nitko, Kameron B. Kinast, Kat Womack, Nikki D. Cherry
Deaf professionals experience inequitable access at conferences, but conference hosts can learn to recognize and understand the contributing barriers. Establishing clear accessibility protocols can enhance organizational success and ensure a successful conference.
{"title":"Illuminating the deaf experience at STEM conferences","authors":"Anna M. Kasper, Victoria A. Popov, Sara K. Blick-Nitko, Kameron B. Kinast, Kat Womack, Nikki D. Cherry","doi":"10.1038/s41570-024-00639-6","DOIUrl":"10.1038/s41570-024-00639-6","url":null,"abstract":"Deaf professionals experience inequitable access at conferences, but conference hosts can learn to recognize and understand the contributing barriers. Establishing clear accessibility protocols can enhance organizational success and ensure a successful conference.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 9","pages":"645-646"},"PeriodicalIF":38.1,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-07DOI: 10.1038/s41570-024-00633-y
Youxin Fu, Nadja A. Simeth, Wiktor Szymanski, Ben L. Feringa
Photoclick reactions combine the advantages offered by light-driven processes, that is, non-invasive and high spatiotemporal control, with classical click chemistry and have found applications ranging from surface functionalization, polymer conjugation, photocrosslinking, protein labelling and bioimaging. Despite these advances, most photoclick reactions typically require near-ultraviolet (UV) and mid-UV light to proceed. UV light can trigger undesirable responses, including cellular apoptosis, and therefore, visible and near-infrared light-induced photoclick reaction systems are highly desirable. Shifting to a longer wavelength can also reduce degradation of the photoclick reagents and products. Several strategies have been used to induce a bathochromic shift in the wavelength of irradiation-initiating photoclick reactions. For instance, the extension of the conjugated π-system, triplet–triplet energy transfer, multi-photon excitation, upconversion technology, photocatalytic and photoinitiation approaches, and designs involving photocages have all been used to achieve this goal. Current design strategies, recent advances and the outlook for long wavelength-driven photoclick reactions are presented. Photoclick reactions have found applications ranging from surface functionalization and polymer crosslinking to protein labelling and bioimaging, but they typically require near-UV and mid-UV light to proceed. This Review presents and discusses strategies and recent advances for long wavelength-driven photoclick reactions.
{"title":"Visible and near-infrared light-induced photoclick reactions","authors":"Youxin Fu, Nadja A. Simeth, Wiktor Szymanski, Ben L. Feringa","doi":"10.1038/s41570-024-00633-y","DOIUrl":"10.1038/s41570-024-00633-y","url":null,"abstract":"Photoclick reactions combine the advantages offered by light-driven processes, that is, non-invasive and high spatiotemporal control, with classical click chemistry and have found applications ranging from surface functionalization, polymer conjugation, photocrosslinking, protein labelling and bioimaging. Despite these advances, most photoclick reactions typically require near-ultraviolet (UV) and mid-UV light to proceed. UV light can trigger undesirable responses, including cellular apoptosis, and therefore, visible and near-infrared light-induced photoclick reaction systems are highly desirable. Shifting to a longer wavelength can also reduce degradation of the photoclick reagents and products. Several strategies have been used to induce a bathochromic shift in the wavelength of irradiation-initiating photoclick reactions. For instance, the extension of the conjugated π-system, triplet–triplet energy transfer, multi-photon excitation, upconversion technology, photocatalytic and photoinitiation approaches, and designs involving photocages have all been used to achieve this goal. Current design strategies, recent advances and the outlook for long wavelength-driven photoclick reactions are presented. Photoclick reactions have found applications ranging from surface functionalization and polymer crosslinking to protein labelling and bioimaging, but they typically require near-UV and mid-UV light to proceed. This Review presents and discusses strategies and recent advances for long wavelength-driven photoclick reactions.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 9","pages":"665-685"},"PeriodicalIF":38.1,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.1038/s41570-024-00636-9
Sapana Jadoun
Sapana Jadoun explains how metals can be extracted from, for example, mining and electronic waste with her purpose-built solar raceway pond reactor for use in sunny locations such as the Atacama Desert.
{"title":"Off to the copper races","authors":"Sapana Jadoun","doi":"10.1038/s41570-024-00636-9","DOIUrl":"10.1038/s41570-024-00636-9","url":null,"abstract":"Sapana Jadoun explains how metals can be extracted from, for example, mining and electronic waste with her purpose-built solar raceway pond reactor for use in sunny locations such as the Atacama Desert.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 9","pages":"649-649"},"PeriodicalIF":38.1,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141759835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.1038/s41570-024-00637-8
Ruijie Yang, Zheng Li, Yingying Fan
Li-ion intercalation often induces phase changes in transition metal dichalcogenides, but only the transition of 2H-to-1T/1T'' in MoS2 is well-known. Here, researchers report emerging phase transitions in 1T''-MoTe2, leading to the discovery of two new electronic phases.
{"title":"Ions go in and new phases appear","authors":"Ruijie Yang, Zheng Li, Yingying Fan","doi":"10.1038/s41570-024-00637-8","DOIUrl":"10.1038/s41570-024-00637-8","url":null,"abstract":"Li-ion intercalation often induces phase changes in transition metal dichalcogenides, but only the transition of 2H-to-1T/1T'' in MoS2 is well-known. Here, researchers report emerging phase transitions in 1T''-MoTe2, leading to the discovery of two new electronic phases.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 9","pages":"650-650"},"PeriodicalIF":38.1,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141759834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1038/s41570-024-00632-z
Mohammad Z. Rahman
In the quest for green ethylene production, perovskite oxides show promise as photocatalysts able to strip hydrogen from ethane and generate ethylene with solar energy.
{"title":"The dawn of solar ethylene","authors":"Mohammad Z. Rahman","doi":"10.1038/s41570-024-00632-z","DOIUrl":"10.1038/s41570-024-00632-z","url":null,"abstract":"In the quest for green ethylene production, perovskite oxides show promise as photocatalysts able to strip hydrogen from ethane and generate ethylene with solar energy.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 8","pages":"568-568"},"PeriodicalIF":38.1,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141752161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22DOI: 10.1038/s41570-024-00629-8
Brittany L. Huffman, Alexandria R. C. Bredar, Jillian L. Dempsey
Disorder in redox-active monolayers convolutes electrochemical characterization. This disorder can come from pinhole defects, loose packing, heterogeneous distribution of redox-active headgroups, and lateral interactions between immobilized redox-active molecules. Identifying the source of non-ideal behaviour in cyclic voltammograms can be challenging as different types of disorder often cause similar non-ideal cyclic voltammetry behaviour such as peak broadening, large peak-to-peak separation, peak asymmetry and multiple peaks for single redox processes. This Review provides an overview of ideal voltammetric behaviour for redox-active monolayers, common manifestations of disorder on voltammetric responses, common experimental parameters that can be varied to interrogate sources of disorder, and finally, examples of different types of disorder and how they impact electrochemical responses. Disorder in redox-active monolayers arising from pinhole defects, loose packing, heterogeneous distribution of redox-active headgroups, and lateral interactions between immobilized redox-active molecules can cause non-ideal cyclic voltammetry behaviour.
{"title":"Origins of non-ideal behaviour in voltammetric analysis of redox-active monolayers","authors":"Brittany L. Huffman, Alexandria R. C. Bredar, Jillian L. Dempsey","doi":"10.1038/s41570-024-00629-8","DOIUrl":"10.1038/s41570-024-00629-8","url":null,"abstract":"Disorder in redox-active monolayers convolutes electrochemical characterization. This disorder can come from pinhole defects, loose packing, heterogeneous distribution of redox-active headgroups, and lateral interactions between immobilized redox-active molecules. Identifying the source of non-ideal behaviour in cyclic voltammograms can be challenging as different types of disorder often cause similar non-ideal cyclic voltammetry behaviour such as peak broadening, large peak-to-peak separation, peak asymmetry and multiple peaks for single redox processes. This Review provides an overview of ideal voltammetric behaviour for redox-active monolayers, common manifestations of disorder on voltammetric responses, common experimental parameters that can be varied to interrogate sources of disorder, and finally, examples of different types of disorder and how they impact electrochemical responses. Disorder in redox-active monolayers arising from pinhole defects, loose packing, heterogeneous distribution of redox-active headgroups, and lateral interactions between immobilized redox-active molecules can cause non-ideal cyclic voltammetry behaviour.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 8","pages":"628-643"},"PeriodicalIF":38.1,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.1038/s41570-024-00627-w
Jana Bocková, Nykola C. Jones, Søren V. Hoffmann, Cornelia Meinert
Compartmentalization is crucial for the evolution of life. Present-day phospholipid membranes exhibit a high level of complexity and species-dependent homochirality, the so-called lipid divide. It is possible that less stable, yet more dynamic systems, promoting out-of-equilibrium environments, facilitated the evolution of life at its early stages. The composition of the preceding primitive membranes and the evolutionary route towards complexity and homochirality remain unexplained. Organics-rich carbonaceous chondrites are evidence of the ample diversity of interstellar chemistry, which may have enriched the prebiotic milieu on early Earth. This Review evaluates the detections of simple amphiphiles — likely ancestors of membrane phospholipids — in extraterrestrial samples and analogues, along with potential pathways to form primitive compartments on primeval Earth. The chiroptical properties of the chiral backbones of phospholipids provide a guide for future investigations into the origins of phospholipid membrane homochirality. We highlight a plausible common pathway towards homochirality of lipids, amino acids, and sugars starting from enantioenriched monomers. Finally, given their high recalcitrance and resistance to degradation, lipids are among the best candidate biomarkers in exobiology. Compartmentalization is crucial for life’s evolution. Yet, the origin of modern phospholipid membranes and their species-dependent homochirality remains unknown. Amphiphile detection in extraterrestrial samples suggests diverse interstellar chemistry, enriching Earth’s prebiotic chemistry with vital membrane precursors. Moreover, chiroptical properties guide research into membrane homochirality origins.
{"title":"The astrochemical evolutionary traits of phospholipid membrane homochirality","authors":"Jana Bocková, Nykola C. Jones, Søren V. Hoffmann, Cornelia Meinert","doi":"10.1038/s41570-024-00627-w","DOIUrl":"10.1038/s41570-024-00627-w","url":null,"abstract":"Compartmentalization is crucial for the evolution of life. Present-day phospholipid membranes exhibit a high level of complexity and species-dependent homochirality, the so-called lipid divide. It is possible that less stable, yet more dynamic systems, promoting out-of-equilibrium environments, facilitated the evolution of life at its early stages. The composition of the preceding primitive membranes and the evolutionary route towards complexity and homochirality remain unexplained. Organics-rich carbonaceous chondrites are evidence of the ample diversity of interstellar chemistry, which may have enriched the prebiotic milieu on early Earth. This Review evaluates the detections of simple amphiphiles — likely ancestors of membrane phospholipids — in extraterrestrial samples and analogues, along with potential pathways to form primitive compartments on primeval Earth. The chiroptical properties of the chiral backbones of phospholipids provide a guide for future investigations into the origins of phospholipid membrane homochirality. We highlight a plausible common pathway towards homochirality of lipids, amino acids, and sugars starting from enantioenriched monomers. Finally, given their high recalcitrance and resistance to degradation, lipids are among the best candidate biomarkers in exobiology. Compartmentalization is crucial for life’s evolution. Yet, the origin of modern phospholipid membranes and their species-dependent homochirality remains unknown. Amphiphile detection in extraterrestrial samples suggests diverse interstellar chemistry, enriching Earth’s prebiotic chemistry with vital membrane precursors. Moreover, chiroptical properties guide research into membrane homochirality origins.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 9","pages":"652-664"},"PeriodicalIF":38.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-16DOI: 10.1038/s41570-024-00631-0
Dan E. Angelescu
Understanding our water supplies is vital for our health and wellbeing. While traditional water quality analyses require a slow and costly approach, Fluidion deploys automated chemical and microbiological monitoring in areas with impaired drinking water and at the Seine River 2024 Paris Olympics site, enhancing public health and environmental protection.
{"title":"Monitoring a planetary resource under threat","authors":"Dan E. Angelescu","doi":"10.1038/s41570-024-00631-0","DOIUrl":"10.1038/s41570-024-00631-0","url":null,"abstract":"Understanding our water supplies is vital for our health and wellbeing. While traditional water quality analyses require a slow and costly approach, Fluidion deploys automated chemical and microbiological monitoring in areas with impaired drinking water and at the Seine River 2024 Paris Olympics site, enhancing public health and environmental protection.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 8","pages":"561-563"},"PeriodicalIF":38.1,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-09DOI: 10.1038/s41570-024-00623-0
Jet Tsien, Chao Hu, Rohan R. Merchant, Tian Qin
Benzenes, the most ubiquitous structural moiety in marketed small-molecule drugs, are frequently associated with poor ‘drug-like’ properties, including metabolic instability, and poor aqueous solubility. In an effort to overcome these limitations, recent developments in medicinal chemistry have demonstrated the improved physicochemical profiles of C(sp3)-rich bioisosteric scaffolds relative to arenes. In the past two decades, we have witnessed an exponential increase in synthetic methods for accessing saturated bioisosteres of monosubstituted and para-substituted benzenes. However, until recent discoveries, analogous three-dimensional ortho-substituted and meta-substituted biososteres have remained underexplored, owing to their ring strain and increased s-character hybridization. This Review summarizes the emerging synthetic methodologies to access such saturated motifs and their impact on the application of bioisosteres for ortho-substituted, meta-substituted and multi-substituted benzene rings. It concludes with a perspective on the development of next-generation bioisosteres, including those within novel chemical space. In this Review, synthetic approaches to polycyclic scaffolds, which can act as saturated, three-dimensional bioisosteric replacements of ortho-substituted, meta-substituted and multi-substituted benzenes, are discussed. Their application in medicinal chemistry is also summarized.
苯系物是市场上小分子药物中最常见的结构分子,但其 "类药物 "特性往往较差,包括代谢不稳定和水溶性差。为了克服这些局限性,药物化学的最新发展表明,富含 C(sp3)的生物异构支架的理化特性比烷烃更好。在过去二十年中,我们见证了获得单取代苯和对取代苯饱和生物异构体的合成方法呈指数级增长。然而,直到最近的发现,类似的三维正取代和元取代生物异构体由于其环应变和更多的 s 字符杂化,仍未得到充分探索。本综述总结了获取此类饱和基团的新兴合成方法及其对正取代、元取代和多取代苯环生物异构体应用的影响。综述最后展望了下一代生物异构体的发展,包括新型化学空间内的生物异构体。
{"title":"Three-dimensional saturated C(sp3)-rich bioisosteres for benzene","authors":"Jet Tsien, Chao Hu, Rohan R. Merchant, Tian Qin","doi":"10.1038/s41570-024-00623-0","DOIUrl":"10.1038/s41570-024-00623-0","url":null,"abstract":"Benzenes, the most ubiquitous structural moiety in marketed small-molecule drugs, are frequently associated with poor ‘drug-like’ properties, including metabolic instability, and poor aqueous solubility. In an effort to overcome these limitations, recent developments in medicinal chemistry have demonstrated the improved physicochemical profiles of C(sp3)-rich bioisosteric scaffolds relative to arenes. In the past two decades, we have witnessed an exponential increase in synthetic methods for accessing saturated bioisosteres of monosubstituted and para-substituted benzenes. However, until recent discoveries, analogous three-dimensional ortho-substituted and meta-substituted biososteres have remained underexplored, owing to their ring strain and increased s-character hybridization. This Review summarizes the emerging synthetic methodologies to access such saturated motifs and their impact on the application of bioisosteres for ortho-substituted, meta-substituted and multi-substituted benzene rings. It concludes with a perspective on the development of next-generation bioisosteres, including those within novel chemical space. In this Review, synthetic approaches to polycyclic scaffolds, which can act as saturated, three-dimensional bioisosteric replacements of ortho-substituted, meta-substituted and multi-substituted benzenes, are discussed. Their application in medicinal chemistry is also summarized.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 8","pages":"605-627"},"PeriodicalIF":38.1,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1038/s41570-024-00622-1
Seongkoo Kang, Suwon Lee, Hakwoo Lee, Yong-Mook Kang
The fact that ordered materials are rarely perfectly crystalline is widely acknowledged among materials scientists, but its impact is often overlooked or underestimated when studying how structure relates to properties. Various investigations demonstrate that intrinsic and extrinsic defects, and disorder generated by physicochemical reactions, are responsible for unexpectedly detrimental or beneficial functionalities. The task remains to modulate the disorder to produce desired properties in materials. As disorder is often correlated with local interactions, it is controllable. In this Review, we explore the structural disorder in cathode materials as a novel approach for improving their electrochemical performance. We revisit cathode materials for alkali-ion batteries and outline the origins and beneficial consequences of disorder. Focusing on layered, cubic rocksalt and other metal oxides, we discuss how disorder improves electrochemical properties of cathode materials and which interactions generate the disorder. We also present the potential pitfalls of disorder that must be considered. We conclude with perspectives for enhancing the electrochemical performance of cathode materials by using disorder. Disorder can be used as a design parameter to improve the electrochemical performance of cathode materials. In this Review, the advantages of disorder engineering are highlighted by revisiting cathode materials and the chemical interactions that lead to different types of disorder.
{"title":"Manipulating disorder within cathodes of alkali-ion batteries","authors":"Seongkoo Kang, Suwon Lee, Hakwoo Lee, Yong-Mook Kang","doi":"10.1038/s41570-024-00622-1","DOIUrl":"10.1038/s41570-024-00622-1","url":null,"abstract":"The fact that ordered materials are rarely perfectly crystalline is widely acknowledged among materials scientists, but its impact is often overlooked or underestimated when studying how structure relates to properties. Various investigations demonstrate that intrinsic and extrinsic defects, and disorder generated by physicochemical reactions, are responsible for unexpectedly detrimental or beneficial functionalities. The task remains to modulate the disorder to produce desired properties in materials. As disorder is often correlated with local interactions, it is controllable. In this Review, we explore the structural disorder in cathode materials as a novel approach for improving their electrochemical performance. We revisit cathode materials for alkali-ion batteries and outline the origins and beneficial consequences of disorder. Focusing on layered, cubic rocksalt and other metal oxides, we discuss how disorder improves electrochemical properties of cathode materials and which interactions generate the disorder. We also present the potential pitfalls of disorder that must be considered. We conclude with perspectives for enhancing the electrochemical performance of cathode materials by using disorder. Disorder can be used as a design parameter to improve the electrochemical performance of cathode materials. In this Review, the advantages of disorder engineering are highlighted by revisiting cathode materials and the chemical interactions that lead to different types of disorder.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 8","pages":"587-604"},"PeriodicalIF":38.1,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141489598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}