首页 > 最新文献

Nature reviews. Chemistry最新文献

英文 中文
DNA-empowered synthetic cells as minimalistic life forms DNA 驱动的合成细胞是最基本的生命形式。
IF 36.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-05-15 DOI: 10.1038/s41570-024-00606-1
Avik Samanta, Lorena Baranda Pellejero, Marcos Masukawa, Andreas Walther
Cells, the fundamental units of life, orchestrate intricate functions — motility, adaptation, replication, communication, and self-organization within tissues. Originating from spatiotemporally organized structures and machinery, coupled with information processing in signalling networks, cells embody the ‘sensor–processor–actuator’ paradigm. Can we glean insights from these processes to construct primitive artificial systems with life-like properties? Using de novo design approaches, what can we uncover about the evolutionary path of life? This Review discusses the strides made in crafting synthetic cells, utilizing the powerful toolbox of structural and dynamic DNA nanoscience. We describe how DNA can serve as a versatile tool for engineering entire synthetic cells or subcellular entities, and how DNA enables complex behaviour, including motility and information processing for adaptive and interactive processes. We chart future directions for DNA-empowered synthetic cells, envisioning interactive systems wherein synthetic cells communicate within communities and with living cells. Structural and dynamic DNA nanosciences offer unique tools for engineering bottom–up synthetic cells. This Review provides a holistic overview for using DNA as a structural material, for designing functional entities, and for information-processing circuits for adaptive and interactive behaviour.
细胞是生命的基本单位,协调着错综复杂的功能--运动、适应、复制、通信和组织内的自组织。细胞源于时空组织结构和机械,加上信号网络中的信息处理,体现了 "传感器-处理器-执行器 "范式。我们能否从这些过程中获得启示,构建出具有类似生命特性的原始人工系统?利用全新设计方法,我们能揭示生命进化的路径吗?本综述讨论了利用结构和动态 DNA 纳米科学的强大工具箱在制作合成细胞方面取得的进展。我们描述了 DNA 如何作为一种多功能工具来设计整个合成细胞或亚细胞实体,以及 DNA 如何实现复杂的行为,包括自适应和互动过程中的运动和信息处理。我们描绘了 DNA 驱动合成细胞的未来发展方向,设想了合成细胞在群落内以及与活细胞进行交流的互动系统。
{"title":"DNA-empowered synthetic cells as minimalistic life forms","authors":"Avik Samanta, Lorena Baranda Pellejero, Marcos Masukawa, Andreas Walther","doi":"10.1038/s41570-024-00606-1","DOIUrl":"10.1038/s41570-024-00606-1","url":null,"abstract":"Cells, the fundamental units of life, orchestrate intricate functions — motility, adaptation, replication, communication, and self-organization within tissues. Originating from spatiotemporally organized structures and machinery, coupled with information processing in signalling networks, cells embody the ‘sensor–processor–actuator’ paradigm. Can we glean insights from these processes to construct primitive artificial systems with life-like properties? Using de novo design approaches, what can we uncover about the evolutionary path of life? This Review discusses the strides made in crafting synthetic cells, utilizing the powerful toolbox of structural and dynamic DNA nanoscience. We describe how DNA can serve as a versatile tool for engineering entire synthetic cells or subcellular entities, and how DNA enables complex behaviour, including motility and information processing for adaptive and interactive processes. We chart future directions for DNA-empowered synthetic cells, envisioning interactive systems wherein synthetic cells communicate within communities and with living cells. Structural and dynamic DNA nanosciences offer unique tools for engineering bottom–up synthetic cells. This Review provides a holistic overview for using DNA as a structural material, for designing functional entities, and for information-processing circuits for adaptive and interactive behaviour.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 6","pages":"454-470"},"PeriodicalIF":36.3,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140945474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spearheading a new era in complex colloid synthesis with TPM and other silanes 用 TPM 和其他硅烷开创复杂胶体合成的新纪元
IF 36.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-05-13 DOI: 10.1038/s41570-024-00603-4
Marlous Kamp, Stefano Sacanna, Roel P. A. Dullens
Colloid science has recently grown substantially owing to the innovative use of silane coupling agents (SCAs), especially 3-trimethoxysilylpropyl methacrylate (TPM). SCAs were previously used mainly as modifying agents, but their ability to form droplets and condense onto pre-existing structures has enabled their use as a versatile and powerful tool to create novel anisotropic colloids with increasing complexity. In this Review, we highlight the advances in complex colloid synthesis facilitated by the use of TPM and show how this has driven remarkable new applications. The focus is on TPM as the current state-of-the-art in colloid science, but we also discuss other silanes and their potential to make an impact. We outline the remarkable properties of TPM colloids and their synthesis strategies, and discuss areas of soft matter science that have benefited from TPM and other SCAs. Colloid science has developed through innovative use of silane coupling agents. We highlight the advances in complex colloid synthesis, focussing on 3-trimethoxysilylpropyl methacrylate (TPM) and related compounds. We outline the remarkable properties, unique synthesis strategies and ensuing pioneering applications of TPM colloids.
最近,由于硅烷偶联剂(SCA),特别是甲基丙烯酸 3-三甲氧基硅丙酯(TPM)的创新使用,胶体科学得到了长足发展。硅烷偶联剂以前主要用作改性剂,但由于其能够形成液滴并凝结在已有的结构上,因此已成为一种多功能的强大工具,可用于制造复杂性不断增加的新型各向异性胶体。在本综述中,我们将重点介绍使用 TPM 在复杂胶体合成方面取得的进展,并展示这如何推动了令人瞩目的新应用。重点是作为胶体科学当前最先进技术的 TPM,但我们也讨论了其他硅烷及其产生影响的潜力。我们概述了 TPM 胶体的非凡特性及其合成策略,并讨论了受益于 TPM 和其他 SCAs 的软物质科学领域。
{"title":"Spearheading a new era in complex colloid synthesis with TPM and other silanes","authors":"Marlous Kamp, Stefano Sacanna, Roel P. A. Dullens","doi":"10.1038/s41570-024-00603-4","DOIUrl":"10.1038/s41570-024-00603-4","url":null,"abstract":"Colloid science has recently grown substantially owing to the innovative use of silane coupling agents (SCAs), especially 3-trimethoxysilylpropyl methacrylate (TPM). SCAs were previously used mainly as modifying agents, but their ability to form droplets and condense onto pre-existing structures has enabled their use as a versatile and powerful tool to create novel anisotropic colloids with increasing complexity. In this Review, we highlight the advances in complex colloid synthesis facilitated by the use of TPM and show how this has driven remarkable new applications. The focus is on TPM as the current state-of-the-art in colloid science, but we also discuss other silanes and their potential to make an impact. We outline the remarkable properties of TPM colloids and their synthesis strategies, and discuss areas of soft matter science that have benefited from TPM and other SCAs. Colloid science has developed through innovative use of silane coupling agents. We highlight the advances in complex colloid synthesis, focussing on 3-trimethoxysilylpropyl methacrylate (TPM) and related compounds. We outline the remarkable properties, unique synthesis strategies and ensuing pioneering applications of TPM colloids.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 6","pages":"433-453"},"PeriodicalIF":36.3,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140914924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Empowering women and young people in STEM 增强妇女和青年在科学、技术、工程和数学领域的能力。
IF 36.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-05-09 DOI: 10.1038/s41570-024-00611-4
J. Catherine Ngila, Stephanie Greed
Catherine Ngila, executive director of the African Foundation for Women and Youth in Education, Science, Technology and Innovation (AFoWYESTI), talks about her experience of academia and her hopes to promote diversity in STEM.
非洲妇女与青年教育、科学、技术和创新基金会(AFoWYESTI)执行主任凯瑟琳-恩吉拉(Catherine Ngila)讲述了她在学术界的经历,以及她对促进科技、工程和数学领域多样性的希望。
{"title":"Empowering women and young people in STEM","authors":"J. Catherine Ngila, Stephanie Greed","doi":"10.1038/s41570-024-00611-4","DOIUrl":"10.1038/s41570-024-00611-4","url":null,"abstract":"Catherine Ngila, executive director of the African Foundation for Women and Youth in Education, Science, Technology and Innovation (AFoWYESTI), talks about her experience of academia and her hopes to promote diversity in STEM.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 6","pages":"402-403"},"PeriodicalIF":36.3,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140896964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Join the club 加入俱乐部
IF 36.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-05-08 DOI: 10.1038/s41570-024-00613-2
Following the success of our current journal club collaborations, we would like to encourage more groups of early-career researchers to get involved.
在目前的期刊俱乐部合作取得成功后,我们希望鼓励更多的早期研究人员团体参与进来。
{"title":"Join the club","authors":"","doi":"10.1038/s41570-024-00613-2","DOIUrl":"10.1038/s41570-024-00613-2","url":null,"abstract":"Following the success of our current journal club collaborations, we would like to encourage more groups of early-career researchers to get involved.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 6","pages":"401-401"},"PeriodicalIF":36.3,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41570-024-00613-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140892042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Withstanding californium’s RADiolysis 经受住加州辐射的考验。
IF 36.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-05-08 DOI: 10.1038/s41570-024-00607-0
Rachel Meyer, Mikaela Pyrch, Ambarneil Saha
Radiation-induced redox chemistry is an important consideration for practical applications such as production and storage of nuclear fuels. Furthering our fundamental understanding of radioactive elements, here, the decay kinetics of californium in the presence of common anionic compounds is studied.
辐射诱导的氧化还原化学是生产和储存核燃料等实际应用的一个重要考虑因素。为了加深我们对放射性元素的基本了解,本文研究了锎在常见阴离子化合物存在下的衰变动力学。
{"title":"Withstanding californium’s RADiolysis","authors":"Rachel Meyer, Mikaela Pyrch, Ambarneil Saha","doi":"10.1038/s41570-024-00607-0","DOIUrl":"10.1038/s41570-024-00607-0","url":null,"abstract":"Radiation-induced redox chemistry is an important consideration for practical applications such as production and storage of nuclear fuels. Furthering our fundamental understanding of radioactive elements, here, the decay kinetics of californium in the presence of common anionic compounds is studied.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 6","pages":"405-405"},"PeriodicalIF":36.3,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140892043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clarifying the four core effects of high-entropy materials 明确高熵材料的四大核心效应
IF 36.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-05-02 DOI: 10.1038/s41570-024-00602-5
Wei-Lin Hsu, Che-Wei Tsai, An-Chou Yeh, Jien-Wei Yeh
High-entropy materials emerged as a field of research in 2004, when the first research on high-entropy alloys was published. The scope was soon expanded from high-entropy alloys to medium-entropy alloys, as well as to ceramics, polymers and composite materials. A fundamental understanding on high-entropy materials was proposed in 2006 by the ‘four core effects’ — high-entropy, severe-lattice-distortion, sluggish-diffusion and cocktail effects — which are often used to describe and explain the mechanisms of various peculiar phenomena associated with high-entropy materials. Throughout the years, the effects have been examined rigorously, and their validity has been affirmed. This Perspective discusses the fundamental understanding of the four core effects in high-entropy materials and gives further insights to strengthen the understanding for these effects. All these clarifications are believed to be helpful in understanding low-to-high-entropy materials as well as to aid the design of materials when studying new compositions or pursuing their use in applications. The four core effects of high-entropy alloys are discussed and greater insights are presented. These clarifications are helpful in understanding materials from low entropy (simple two-component or three-component alloys) to high entropy (five components or greater), and in general materials design.
高熵材料作为一个研究领域出现于 2004 年,当时发表了第一篇关于高熵合金的研究报告。很快,研究范围从高熵合金扩展到中熵合金,以及陶瓷、聚合物和复合材料。2006 年,"四大核心效应"--高熵效应、严重晶格畸变效应、迟缓扩散效应和鸡尾酒效应--提出了对高熵材料的基本认识。多年来,人们对这些效应进行了严格研究,并肯定了它们的有效性。本视角讨论了对高熵材料中四种核心效应的基本理解,并提出了进一步的见解,以加强对这些效应的理解。相信所有这些说明都有助于理解低熵到高熵材料,并在研究新成分或追求材料应用时帮助设计材料。
{"title":"Clarifying the four core effects of high-entropy materials","authors":"Wei-Lin Hsu, Che-Wei Tsai, An-Chou Yeh, Jien-Wei Yeh","doi":"10.1038/s41570-024-00602-5","DOIUrl":"10.1038/s41570-024-00602-5","url":null,"abstract":"High-entropy materials emerged as a field of research in 2004, when the first research on high-entropy alloys was published. The scope was soon expanded from high-entropy alloys to medium-entropy alloys, as well as to ceramics, polymers and composite materials. A fundamental understanding on high-entropy materials was proposed in 2006 by the ‘four core effects’ — high-entropy, severe-lattice-distortion, sluggish-diffusion and cocktail effects — which are often used to describe and explain the mechanisms of various peculiar phenomena associated with high-entropy materials. Throughout the years, the effects have been examined rigorously, and their validity has been affirmed. This Perspective discusses the fundamental understanding of the four core effects in high-entropy materials and gives further insights to strengthen the understanding for these effects. All these clarifications are believed to be helpful in understanding low-to-high-entropy materials as well as to aid the design of materials when studying new compositions or pursuing their use in applications. The four core effects of high-entropy alloys are discussed and greater insights are presented. These clarifications are helpful in understanding materials from low entropy (simple two-component or three-component alloys) to high entropy (five components or greater), and in general materials design.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 6","pages":"471-485"},"PeriodicalIF":36.3,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140819496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Six degrees of actinide separation 六度锕系元素分离
IF 36.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-05-02 DOI: 10.1038/s41570-024-00610-5
Appie Peterson, Jennifer N. Wacker
Effective separations underpin actinide science and technologies. Here, we provide an overview of six recently reported approaches.
有效分离是锕系元素科学和技术的基础。在此,我们概述了最近报道的六种方法。
{"title":"Six degrees of actinide separation","authors":"Appie Peterson, Jennifer N. Wacker","doi":"10.1038/s41570-024-00610-5","DOIUrl":"10.1038/s41570-024-00610-5","url":null,"abstract":"Effective separations underpin actinide science and technologies. Here, we provide an overview of six recently reported approaches.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 6","pages":"408-409"},"PeriodicalIF":36.3,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140819436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Another side of side chains 侧链的另一面
IF 36.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-05-02 DOI: 10.1038/s41570-024-00609-y
Fa-Jie Chen
Peptide stapling has traditionally relied on the incorporation of unnatural amino acids and symmetric stapling. A recent article targets a typically inert C–H bond within the serine side chain, offering new avenues for conformational control and side chain engineering.
肽钉合传统上依赖于加入非天然氨基酸和对称钉合。最近的一篇文章以丝氨酸侧链中一个典型的惰性 C-H 键为目标,为构象控制和侧链工程提供了新的途径。
{"title":"Another side of side chains","authors":"Fa-Jie Chen","doi":"10.1038/s41570-024-00609-y","DOIUrl":"10.1038/s41570-024-00609-y","url":null,"abstract":"Peptide stapling has traditionally relied on the incorporation of unnatural amino acids and symmetric stapling. A recent article targets a typically inert C–H bond within the serine side chain, offering new avenues for conformational control and side chain engineering.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 6","pages":"406-407"},"PeriodicalIF":36.3,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140821333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A US perspective on closing the carbon cycle to defossilize difficult-to-electrify segments of our economy 从美国角度看关闭碳循环以化解经济中难以电气化的部分
IF 36.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-05-01 DOI: 10.1038/s41570-024-00587-1
Wendy J. Shaw, Michelle K. Kidder, Simon R. Bare, Massimiliano Delferro, James R. Morris, Francesca M. Toma, Sanjaya D. Senanayake, Tom Autrey, Elizabeth J. Biddinger, Shannon Boettcher, Mark E. Bowden, Phillip F. Britt, Robert C. Brown, R. Morris Bullock, Jingguang G. Chen, Claus Daniel, Peter K. Dorhout, Rebecca A. Efroymson, Kelly J. Gaffney, Laura Gagliardi, Aaron S. Harper, David J. Heldebrant, Oana R. Luca, Maxim Lyubovsky, Jonathan L. Male, Daniel J. Miller, Tanya Prozorov, Robert Rallo, Rachita Rana, Robert M. Rioux, Aaron D. Sadow, Joshua A. Schaidle, Lisa A. Schulte, William A. Tarpeh, Dionisios G. Vlachos, Bryan D. Vogt, Robert S. Weber, Jenny Y. Yang, Elke Arenholz, Brett A. Helms, Wenyu Huang, James L. Jordahl, Canan Karakaya, Kourosh (Cyrus) Kian, Jotheeswari Kothandaraman, Johannes Lercher, Ping Liu, Deepika Malhotra, Karl T. Mueller, Casey P. O’Brien, Robert M. Palomino, Long Qi, José A. Rodriguez, Roger Rousseau, Jake C. Russell, Michele L. Sarazen, David S. Sholl, Emily A. Smith, Michaela Burke Stevens, Yogesh Surendranath, Christopher J. Tassone, Ba Tran, William Tumas, Krista S. Walton
Electrification to reduce or eliminate greenhouse gas emissions is essential to mitigate climate change. However, a substantial portion of our manufacturing and transportation infrastructure will be difficult to electrify and/or will continue to use carbon as a key component, including areas in aviation, heavy-duty and marine transportation, and the chemical industry. In this Roadmap, we explore how multidisciplinary approaches will enable us to close the carbon cycle and create a circular economy by defossilizing these difficult-to-electrify areas and those that will continue to need carbon. We discuss two approaches for this: developing carbon alternatives and improving our ability to reuse carbon, enabled by separations. Furthermore, we posit that co-design and use-driven fundamental science are essential to reach aggressive greenhouse gas reduction targets. To achieve net-zero carbon emissions, we must close the carbon cycle for industries that are difficult to electrify. Developing the needed science to provide carbon alternatives and non-fossil carbon will accelerate advances towards defossilization.
实现电气化以减少或消除温室气体排放,对于减缓气候变化至关重要。然而,我们的大部分制造和运输基础设施将难以电气化和/或将继续使用碳作为关键部件,包括航空、重型和海洋运输以及化学工业领域。在本路线图中,我们将探讨如何通过多学科方法,使这些难以电气化的领域和将继续需要碳的领域实现非化石化,从而关闭碳循环,创造循环经济。为此,我们讨论了两种方法:开发碳替代品和通过分离提高碳的再利用能力。此外,我们还认为,共同设计和使用驱动的基础科学对于实现积极的温室气体减排目标至关重要。
{"title":"A US perspective on closing the carbon cycle to defossilize difficult-to-electrify segments of our economy","authors":"Wendy J. Shaw, Michelle K. Kidder, Simon R. Bare, Massimiliano Delferro, James R. Morris, Francesca M. Toma, Sanjaya D. Senanayake, Tom Autrey, Elizabeth J. Biddinger, Shannon Boettcher, Mark E. Bowden, Phillip F. Britt, Robert C. Brown, R. Morris Bullock, Jingguang G. Chen, Claus Daniel, Peter K. Dorhout, Rebecca A. Efroymson, Kelly J. Gaffney, Laura Gagliardi, Aaron S. Harper, David J. Heldebrant, Oana R. Luca, Maxim Lyubovsky, Jonathan L. Male, Daniel J. Miller, Tanya Prozorov, Robert Rallo, Rachita Rana, Robert M. Rioux, Aaron D. Sadow, Joshua A. Schaidle, Lisa A. Schulte, William A. Tarpeh, Dionisios G. Vlachos, Bryan D. Vogt, Robert S. Weber, Jenny Y. Yang, Elke Arenholz, Brett A. Helms, Wenyu Huang, James L. Jordahl, Canan Karakaya, Kourosh (Cyrus) Kian, Jotheeswari Kothandaraman, Johannes Lercher, Ping Liu, Deepika Malhotra, Karl T. Mueller, Casey P. O’Brien, Robert M. Palomino, Long Qi, José A. Rodriguez, Roger Rousseau, Jake C. Russell, Michele L. Sarazen, David S. Sholl, Emily A. Smith, Michaela Burke Stevens, Yogesh Surendranath, Christopher J. Tassone, Ba Tran, William Tumas, Krista S. Walton","doi":"10.1038/s41570-024-00587-1","DOIUrl":"10.1038/s41570-024-00587-1","url":null,"abstract":"Electrification to reduce or eliminate greenhouse gas emissions is essential to mitigate climate change. However, a substantial portion of our manufacturing and transportation infrastructure will be difficult to electrify and/or will continue to use carbon as a key component, including areas in aviation, heavy-duty and marine transportation, and the chemical industry. In this Roadmap, we explore how multidisciplinary approaches will enable us to close the carbon cycle and create a circular economy by defossilizing these difficult-to-electrify areas and those that will continue to need carbon. We discuss two approaches for this: developing carbon alternatives and improving our ability to reuse carbon, enabled by separations. Furthermore, we posit that co-design and use-driven fundamental science are essential to reach aggressive greenhouse gas reduction targets. To achieve net-zero carbon emissions, we must close the carbon cycle for industries that are difficult to electrify. Developing the needed science to provide carbon alternatives and non-fossil carbon will accelerate advances towards defossilization.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 5","pages":"376-400"},"PeriodicalIF":36.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41570-024-00587-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140819431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The power of putting education first 教育为先的力量
IF 36.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-04-29 DOI: 10.1038/s41570-024-00604-3
Tebello Nyokong, Stephanie Greed
From high school to distinguished professor of chemistry at Rhodes University, Tebello Nyokong discusses her inspiration and ambitions to promote science in South Africa.
从高中生到罗德大学杰出的化学教授,特贝罗-尼奥孔(Tebello Nyokong)讲述了她在南非推广科学的灵感和抱负。
{"title":"The power of putting education first","authors":"Tebello Nyokong, Stephanie Greed","doi":"10.1038/s41570-024-00604-3","DOIUrl":"10.1038/s41570-024-00604-3","url":null,"abstract":"From high school to distinguished professor of chemistry at Rhodes University, Tebello Nyokong discusses her inspiration and ambitions to promote science in South Africa.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 5","pages":"295-296"},"PeriodicalIF":36.3,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140814901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature reviews. Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1