首页 > 最新文献

Nature reviews. Chemistry最新文献

英文 中文
On the aqueous origins of the condensation polymers of life 生命缩合聚合物的水性起源。
IF 38.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-27 DOI: 10.1038/s41570-024-00648-5
Daniel Whitaker, Matthew W. Powner
Water is essential for life as we know it, but it has paradoxically been considered inimical to the emergence of life. Proteins and nucleic acids have sustained evolution and life for billions of years, but both are condensation polymers, suggesting that their formation requires the elimination of water. This presents intrinsic challenges at the origins of life, including how condensation polymer synthesis can overcome the thermodynamic pressure of hydrolysis in water and how nucleophiles can kinetically outcompete water to yield condensation products. The answers to these questions lie in balancing thermodynamic activation and kinetic stability. For peptides, an effective strategy is to directly harness the energy trapped in prebiotic molecules, such as nitriles, and avoid the formation of fully hydrolysed monomers. In this Review, we discuss how chemical energy can be built into precursors, retained, and released selectively for polymer synthesis. Looking to the future, the outstanding goals include how nucleic acids can be synthesized, avoiding the formation of fully hydrolysed monomers and what caused information to flow from nucleic acids to proteins. Water is essential for life but paradoxically considered detrimental to the origins of life. Here, we discuss whether avoiding hydrolysed monomers and exploiting the chemical energy in prebiotic precursors may hold the missing key to unlocking biopolymer synthesis.
水对于我们所知的生命来说是必不可少的,但矛盾的是,水却被认为与生命的出现背道而驰。蛋白质和核酸维持了数十亿年的进化和生命,但它们都是缩聚聚合物,这表明它们的形成需要消除水。这给生命起源带来了内在挑战,包括缩合聚合物合成如何克服水中水解的热力学压力,以及亲核物如何在动力学上与水竞争以产生缩合产物。这些问题的答案在于平衡热力学活化和动力学稳定性。对于多肽来说,有效的策略是直接利用腈类等前生物分子中蕴藏的能量,避免形成完全水解的单体。在本综述中,我们将讨论如何在聚合物合成过程中将化学能植入前体、保留并有选择性地释放出来。展望未来,突出的目标包括如何合成核酸,避免形成完全水解的单体,以及是什么导致信息从核酸流向蛋白质。
{"title":"On the aqueous origins of the condensation polymers of life","authors":"Daniel Whitaker, Matthew W. Powner","doi":"10.1038/s41570-024-00648-5","DOIUrl":"10.1038/s41570-024-00648-5","url":null,"abstract":"Water is essential for life as we know it, but it has paradoxically been considered inimical to the emergence of life. Proteins and nucleic acids have sustained evolution and life for billions of years, but both are condensation polymers, suggesting that their formation requires the elimination of water. This presents intrinsic challenges at the origins of life, including how condensation polymer synthesis can overcome the thermodynamic pressure of hydrolysis in water and how nucleophiles can kinetically outcompete water to yield condensation products. The answers to these questions lie in balancing thermodynamic activation and kinetic stability. For peptides, an effective strategy is to directly harness the energy trapped in prebiotic molecules, such as nitriles, and avoid the formation of fully hydrolysed monomers. In this Review, we discuss how chemical energy can be built into precursors, retained, and released selectively for polymer synthesis. Looking to the future, the outstanding goals include how nucleic acids can be synthesized, avoiding the formation of fully hydrolysed monomers and what caused information to flow from nucleic acids to proteins. Water is essential for life but paradoxically considered detrimental to the origins of life. Here, we discuss whether avoiding hydrolysed monomers and exploiting the chemical energy in prebiotic precursors may hold the missing key to unlocking biopolymer synthesis.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 11","pages":"817-832"},"PeriodicalIF":38.1,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The current utility and future potential of multiborylated alkanes 多溴化烷烃的当前用途和未来潜力
IF 38.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-26 DOI: 10.1038/s41570-024-00650-x
Kane A. C. Bastick, Dean D. Roberts, Allan J. B. Watson
Organoboron chemistry has become a cornerstone of modern synthetic methodology. Most of these reactions use an organoboron starting material that contains just one C(sp2)–B or C(sp3)–B bond; however, there has been a recent and accelerating trend to prepare multiborylated alkanes that possess two or more C(sp3)–B bonds. This is despite a lack of general reactivity, meaning many of these compounds currently offer limited downstream synthetic value. This Review summarizes recent advances in the exploration of multiborylated alkanes, including a discussion on how these products may be elaborated in further synthetic manipulations. Monoborylated alkanes display diverse reactivity and broad application; however, despite an increasing number of approaches to access them, multiborylated alkanes have yet to realize their synthetic potential. This Review highlights the current state-of-the-art in approaches to and synthetic applications of multiborylated alkanes.
有机硼化学已成为现代合成方法的基石。这些反应大多使用仅含有一个 C(sp2)-B 或 C(sp3)-B 键的有机硼起始材料;然而,最近制备具有两个或更多 C(sp3)-B 键的多硼化烷烃的趋势正在加速发展。尽管缺乏一般反应性,这意味着许多此类化合物目前的下游合成价值有限。本综述总结了在探索多硼烷方面的最新进展,包括讨论如何在进一步的合成操作中对这些产品进行阐述。
{"title":"The current utility and future potential of multiborylated alkanes","authors":"Kane A. C. Bastick, Dean D. Roberts, Allan J. B. Watson","doi":"10.1038/s41570-024-00650-x","DOIUrl":"10.1038/s41570-024-00650-x","url":null,"abstract":"Organoboron chemistry has become a cornerstone of modern synthetic methodology. Most of these reactions use an organoboron starting material that contains just one C(sp2)–B or C(sp3)–B bond; however, there has been a recent and accelerating trend to prepare multiborylated alkanes that possess two or more C(sp3)–B bonds. This is despite a lack of general reactivity, meaning many of these compounds currently offer limited downstream synthetic value. This Review summarizes recent advances in the exploration of multiborylated alkanes, including a discussion on how these products may be elaborated in further synthetic manipulations. Monoborylated alkanes display diverse reactivity and broad application; however, despite an increasing number of approaches to access them, multiborylated alkanes have yet to realize their synthetic potential. This Review highlights the current state-of-the-art in approaches to and synthetic applications of multiborylated alkanes.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 10","pages":"741-761"},"PeriodicalIF":38.1,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reviving antibiotic power 重振抗生素威力
IF 38.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-24 DOI: 10.1038/s41570-024-00655-6
Sammer Marzouk, Dang Nguyen, Cameron Sabet
Inhibiting a signal transducer, which kicks off the production of β-lactamase in response to the presence of an antibiotic, shuts down resistance and makes β-lactam antibiotics effective once more.
抑制信号转导器(它会在抗生素存在时启动 β-内酰胺酶的产生)可以抑制抗药性,使 β-内酰胺类抗生素再次有效。
{"title":"Reviving antibiotic power","authors":"Sammer Marzouk, Dang Nguyen, Cameron Sabet","doi":"10.1038/s41570-024-00655-6","DOIUrl":"10.1038/s41570-024-00655-6","url":null,"abstract":"Inhibiting a signal transducer, which kicks off the production of β-lactamase in response to the presence of an antibiotic, shuts down resistance and makes β-lactam antibiotics effective once more.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 10","pages":"722-722"},"PeriodicalIF":38.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Not Voodoo website after twenty dynamic years Not Voodoo 网站历经二十年的蓬勃发展。
IF 38.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-24 DOI: 10.1038/s41570-024-00644-9
Alison J. Frontier
2024 marks twenty years of the educational website Not Voodoo: Demystifying Synthetic Organic Chemistry — a fount of knowledge for organic chemistry laboratory techniques, with tips and tricks for both beginning research students and advanced experimentalists. 
2024 年是教育网站 "非巫术"(Not Voodoo)成立二十周年:解密合成有机化学--有机化学实验室技术的知识宝库,为初学研究的学生和高级实验者提供技巧和窍门;
{"title":"The Not Voodoo website after twenty dynamic years","authors":"Alison J. Frontier","doi":"10.1038/s41570-024-00644-9","DOIUrl":"10.1038/s41570-024-00644-9","url":null,"abstract":"2024 marks twenty years of the educational website Not Voodoo: Demystifying Synthetic Organic Chemistry — a fount of knowledge for organic chemistry laboratory techniques, with tips and tricks for both beginning research students and advanced experimentalists. ","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 10","pages":"713-714"},"PeriodicalIF":38.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A zwitterionic twist 齐聚物转折
IF 38.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-23 DOI: 10.1038/s41570-024-00654-7
Sihan Xiong, Khalid Shah, Chuang Liu
An mRNA sequence that encodes a zwitterionic polypeptide fused to a therapeutic protein improves the pharmacokinetic properties of mRNA therapeutics.
编码与治疗蛋白融合的齐聚物多肽的 mRNA 序列可改善 mRNA 疗法的药代动力学特性。
{"title":"A zwitterionic twist","authors":"Sihan Xiong, Khalid Shah, Chuang Liu","doi":"10.1038/s41570-024-00654-7","DOIUrl":"10.1038/s41570-024-00654-7","url":null,"abstract":"An mRNA sequence that encodes a zwitterionic polypeptide fused to a therapeutic protein improves the pharmacokinetic properties of mRNA therapeutics.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 10","pages":"721-721"},"PeriodicalIF":38.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Student partnerships for sustainable change 促进可持续变革的学生伙伴关系
IF 38.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-20 DOI: 10.1038/s41570-024-00653-8
Glenn A. Hurst
Strong partnerships with students are critical to curriculum development and research. This can foster a culture of continual improvement with educational and societal benefit.
与学生建立牢固的伙伴关系对于课程开发和研究至关重要。这可以培养一种不断改进的文化,使教育和社会受益。
{"title":"Student partnerships for sustainable change","authors":"Glenn A. Hurst","doi":"10.1038/s41570-024-00653-8","DOIUrl":"10.1038/s41570-024-00653-8","url":null,"abstract":"Strong partnerships with students are critical to curriculum development and research. This can foster a culture of continual improvement with educational and societal benefit.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 10","pages":"717-718"},"PeriodicalIF":38.1,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organic chemistry for kids 儿童有机化学
IF 38.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-09 DOI: 10.1038/s41570-024-00647-6
Arismel Tena Meza, Laura G. Wonilowicz, Neil K. Garg
Chem Kids is a science camp where children ages 10 to 12 years old learn the notoriously difficult subject of organic chemistry.
Chem Kids 是一个科学夏令营,让 10 至 12 岁的儿童学习众所周知的有机化学难点。
{"title":"Organic chemistry for kids","authors":"Arismel Tena Meza, Laura G. Wonilowicz, Neil K. Garg","doi":"10.1038/s41570-024-00647-6","DOIUrl":"10.1038/s41570-024-00647-6","url":null,"abstract":"Chem Kids is a science camp where children ages 10 to 12 years old learn the notoriously difficult subject of organic chemistry.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 10","pages":"715-716"},"PeriodicalIF":38.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular complexity as a driving force for the advancement of organic synthesis 分子复杂性是推动有机合成发展的动力
IF 38.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-09 DOI: 10.1038/s41570-024-00645-8
Brandon A. Wright, Richmond Sarpong
The generation of molecular complexity is a primary goal in the field of synthetic chemistry. In the context of retrosynthetic analysis, the concept of molecular complexity is central to identifying productive disconnections and the development of efficient total syntheses. However, this field-defining concept is frequently invoked on an intuitive basis without precise definition or appreciation of its subtleties. Methods for quantifying molecular complexity could prove useful for characterizing the state of synthesis in a more rigorous, reliable and reproducible fashion. As a first step to evaluating the importance of these methods to the state of the field, here we present our perspective on the development of molecular complexity quantification and its implications for chemical synthesis. The extension and application of these methods beyond computer-aided synthesis planning and medicinal chemistry to the traditional practice of ‘complex molecule’ synthesis could have the potential to unearth new opportunities and more efficient approaches for synthesis. Quantifying molecular complexity has the potential to enhance retrosynthetic analysis and, thus, aid the development of efficient total syntheses. This Perspective discusses methods for rigorous, reproducible complexity measurement, highlighting their potential to revolutionize traditional complex molecule synthesis and uncover new synthetic opportunities.
生成分子复杂性是合成化学领域的首要目标。在逆合成分析中,分子复杂性的概念对于识别生产性断裂和开发高效的全合成至关重要。然而,这一定义领域的概念经常被直观地引用,而没有精确的定义或对其微妙之处的理解。量化分子复杂性的方法将有助于以更严谨、可靠和可重复的方式描述合成状态。作为评估这些方法对该领域现状的重要性的第一步,我们在此介绍我们对分子复杂性量化的发展及其对化学合成的影响的看法。将这些方法从计算机辅助合成规划和药物化学推广应用到传统的 "复杂分子 "合成实践中,有可能发现新的机遇和更有效的合成方法。
{"title":"Molecular complexity as a driving force for the advancement of organic synthesis","authors":"Brandon A. Wright, Richmond Sarpong","doi":"10.1038/s41570-024-00645-8","DOIUrl":"10.1038/s41570-024-00645-8","url":null,"abstract":"The generation of molecular complexity is a primary goal in the field of synthetic chemistry. In the context of retrosynthetic analysis, the concept of molecular complexity is central to identifying productive disconnections and the development of efficient total syntheses. However, this field-defining concept is frequently invoked on an intuitive basis without precise definition or appreciation of its subtleties. Methods for quantifying molecular complexity could prove useful for characterizing the state of synthesis in a more rigorous, reliable and reproducible fashion. As a first step to evaluating the importance of these methods to the state of the field, here we present our perspective on the development of molecular complexity quantification and its implications for chemical synthesis. The extension and application of these methods beyond computer-aided synthesis planning and medicinal chemistry to the traditional practice of ‘complex molecule’ synthesis could have the potential to unearth new opportunities and more efficient approaches for synthesis. Quantifying molecular complexity has the potential to enhance retrosynthetic analysis and, thus, aid the development of efficient total syntheses. This Perspective discusses methods for rigorous, reproducible complexity measurement, highlighting their potential to revolutionize traditional complex molecule synthesis and uncover new synthetic opportunities.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 10","pages":"776-792"},"PeriodicalIF":38.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conformational control over proton-coupled electron transfer in metalloenzymes 金属酶中质子耦合电子转移的构象控制。
IF 38.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-02 DOI: 10.1038/s41570-024-00646-7
Saman Fatima, Lisa Olshansky
From the reduction of dinitrogen to the oxidation of water, the chemical transformations catalysed by metalloenzymes underlie global geochemical and biochemical cycles. These reactions represent some of the most kinetically and thermodynamically challenging processes known and require the complex choreography of the fundamental building blocks of nature, electrons and protons, to be carried out with utmost precision and accuracy. The rate-determining step of catalysis in many metalloenzymes consists of a protein structural rearrangement, suggesting that nature has evolved to leverage macroscopic changes in protein molecular structure to control subatomic changes in metallocofactor electronic structure. The proton-coupled electron transfer mechanisms operative in nitrogenase, photosystem II and ribonucleotide reductase exemplify this interplay between molecular and electronic structural control. We present the culmination of decades of study on each of these systems and clarify what is known regarding the interplay between structural changes and functional outcomes in these metalloenzyme linchpins. Rate-limiting conformational changes often gate the formation of catalytically active metalloenzyme states. We review examples of the interplay between macroscopic changes in protein molecular structure and subatomic changes in metallocofactor electronic structure that together enable precision control over nature’s redox machines.
从二氮的还原到水的氧化,金属酶催化的化学变化是全球地球化学和生物化学循环的基础。这些反应是已知的动力学和热力学上最具挑战性的过程,需要对自然界的基本组成单元--电子和质子--进行复杂的编排,以达到最高的精确度和准确性。许多金属酶催化作用的决定速率步骤包括蛋白质结构的重新排列,这表明大自然已经进化到可以利用蛋白质分子结构的宏观变化来控制金属因子电子结构的亚原子变化。氮化酶、光系统 II 和核糖核苷酸还原酶中的质子耦合电子传递机制就是分子结构和电子结构控制之间相互作用的例证。我们介绍了数十年来对上述每个系统的研究成果,并阐明了这些金属酶连接蛋白的结构变化与功能结果之间的相互作用。
{"title":"Conformational control over proton-coupled electron transfer in metalloenzymes","authors":"Saman Fatima, Lisa Olshansky","doi":"10.1038/s41570-024-00646-7","DOIUrl":"10.1038/s41570-024-00646-7","url":null,"abstract":"From the reduction of dinitrogen to the oxidation of water, the chemical transformations catalysed by metalloenzymes underlie global geochemical and biochemical cycles. These reactions represent some of the most kinetically and thermodynamically challenging processes known and require the complex choreography of the fundamental building blocks of nature, electrons and protons, to be carried out with utmost precision and accuracy. The rate-determining step of catalysis in many metalloenzymes consists of a protein structural rearrangement, suggesting that nature has evolved to leverage macroscopic changes in protein molecular structure to control subatomic changes in metallocofactor electronic structure. The proton-coupled electron transfer mechanisms operative in nitrogenase, photosystem II and ribonucleotide reductase exemplify this interplay between molecular and electronic structural control. We present the culmination of decades of study on each of these systems and clarify what is known regarding the interplay between structural changes and functional outcomes in these metalloenzyme linchpins. Rate-limiting conformational changes often gate the formation of catalytically active metalloenzyme states. We review examples of the interplay between macroscopic changes in protein molecular structure and subatomic changes in metallocofactor electronic structure that together enable precision control over nature’s redox machines.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 10","pages":"762-775"},"PeriodicalIF":38.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-equilibrium self-assembly for living matter-like properties 非平衡自组装实现类生命物质特性
IF 38.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-23 DOI: 10.1038/s41570-024-00640-z
Abhishek Singh, Payel Parvin, Bapan Saha, Dibyendu Das
The soft and wet machines of life emerged as the spatially enclosed ensemble of biomolecules with replicating capabilities integrated with metabolic reaction cycles that operate at far-from-equilibrium. A thorough step-by-step synthetic integration of these elements, namely metabolic and replicative properties all confined and operating far-from-equilibrium, can set the stage from which we can ask questions related to the construction of chemical-based evolving systems with living matter-like properties — a monumental endeavour of systems chemistry. The overarching concept of this Review maps the discoveries on this possible integration of reaction networks, self-reproduction and compartmentalization under non-equilibrium conditions. We deconvolute the events of reaction networks and transient compartmentalization and extend the discussion towards self-reproducing systems that can be sustained under non-equilibrium conditions. Although enormous challenges lie ahead in terms of molecular diversity, information transfer, adaptation and selection that are required for open-ended evolution, emerging strategies to generate minimal metabolic cycles can extend our growing understanding of the chemical emergence of the biosphere of Earth. The origins of complex life forms from simple chemicals remain one of the most enigmatic mysteries. This Review explores how non-equilibrium chemical-based systems can exhibit living matter-like properties with an outlook that connects the possibility of diversification, adaptation and evolution.
生命的软机器和湿机器是由具有复制能力的生物分子组成的空间封闭集合体,它们与在远离平衡状态下运行的新陈代谢反应循环相结合。将这些元素,即新陈代谢和复制特性全部封闭在远离平衡的环境中运行,进行彻底的逐步合成整合,可以为我们提出与构建具有类似生命物质特性的化学进化系统相关的问题--系统化学的一项艰巨任务--奠定基础。本综述的总体构想映射了非平衡条件下反应网络、自我繁殖和区隔的可能整合发现。我们对反应网络和瞬时区隔化事件进行了解构,并将讨论扩展到可在非平衡态条件下维持的自我繁殖系统。虽然未来在开放式进化所需的分子多样性、信息传递、适应性和选择等方面存在巨大挑战,但生成最小代谢循环的新兴战略可以扩展我们对地球生物圈化学萌发的不断深入的理解。
{"title":"Non-equilibrium self-assembly for living matter-like properties","authors":"Abhishek Singh, Payel Parvin, Bapan Saha, Dibyendu Das","doi":"10.1038/s41570-024-00640-z","DOIUrl":"10.1038/s41570-024-00640-z","url":null,"abstract":"The soft and wet machines of life emerged as the spatially enclosed ensemble of biomolecules with replicating capabilities integrated with metabolic reaction cycles that operate at far-from-equilibrium. A thorough step-by-step synthetic integration of these elements, namely metabolic and replicative properties all confined and operating far-from-equilibrium, can set the stage from which we can ask questions related to the construction of chemical-based evolving systems with living matter-like properties — a monumental endeavour of systems chemistry. The overarching concept of this Review maps the discoveries on this possible integration of reaction networks, self-reproduction and compartmentalization under non-equilibrium conditions. We deconvolute the events of reaction networks and transient compartmentalization and extend the discussion towards self-reproducing systems that can be sustained under non-equilibrium conditions. Although enormous challenges lie ahead in terms of molecular diversity, information transfer, adaptation and selection that are required for open-ended evolution, emerging strategies to generate minimal metabolic cycles can extend our growing understanding of the chemical emergence of the biosphere of Earth. The origins of complex life forms from simple chemicals remain one of the most enigmatic mysteries. This Review explores how non-equilibrium chemical-based systems can exhibit living matter-like properties with an outlook that connects the possibility of diversification, adaptation and evolution.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 10","pages":"723-740"},"PeriodicalIF":38.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142045632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature reviews. Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1