Polycomb repressive complex 2 (PRC2) is an epigenetic regulator that trimethylates lysine 27 of histone 3 (H3K27me3) and is essential for embryonic development and cellular differentiation. H3K27me3 is associated with transcriptionally repressed chromatin and is established when PRC2 is allosterically activated upon methyl-lysine binding by the regulatory subunit EED. Automethylation of the catalytic subunit enhancer of zeste homolog 2 (EZH2) stimulates its activity by an unknown mechanism. Here, we show that human PRC2 forms a dimer on chromatin in which an inactive, automethylated PRC2 protomer is the allosteric activator of a second PRC2 that is poised to methylate H3 of a substrate nucleosome. Functional assays support our model of allosteric trans-autoactivation via EED, suggesting a previously unknown mechanism mediating context-dependent activation of PRC2. Our work showcases the molecular mechanism of auto-modification-coupled dimerization in the regulation of chromatin-modifying complexes.
mRNAs interact with RNA-binding proteins (RBPs) throughout their processing and maturation. While efforts have assigned RBPs to RNA substrates, less exploration has leveraged protein-protein interactions (PPIs) to study proteins in mRNA life-cycle stages. We generated an RNA-aware, RBP-centric PPI map across the mRNA life cycle in human cells by immunopurification-mass spectrometry (IP-MS) of ∼100 endogenous RBPs with and without RNase, augmented by size exclusion chromatography-mass spectrometry (SEC-MS). We identify 8,742 known and 20,802 unreported interactions between 1,125 proteins and determine that 73% of the IP-MS-identified interactions are RNA regulated. Our interactome links many proteins, some with unknown functions, to specific mRNA life-cycle stages, with nearly half associated with multiple stages. We demonstrate the value of this resource by characterizing the splicing and export functions of enhancer of rudimentary homolog (ERH), and by showing that small nuclear ribonucleoprotein U5 subunit 200 (SNRNP200) interacts with stress granule proteins and binds cytoplasmic RNA differently during stress.
Cys2-His2 zinc-finger proteins (C2H2-ZNFs) constitute the largest class of DNA-binding transcription factors (TFs) yet remain largely uncharacterized. Although certain family members, e.g., GTF3A, have been shown to bind both DNA and RNA, the extent to which C2H2-ZNFs interact with—and regulate—RNA-associated processes is not known. Using UV crosslinking and immunoprecipitation (CLIP), we observe that 148 of 150 analyzed C2H2-ZNFs bind directly to RNA in human cells. By integrating CLIP sequencing (CLIP-seq) RNA-binding maps for 50 of these C2H2-ZNFs with data from chromatin immunoprecipitation sequencing (ChIP-seq), protein-protein interaction assays, and transcriptome profiling experiments, we observe that the RNA-binding profiles of C2H2-ZNFs are generally distinct from their DNA-binding preferences and that they regulate a variety of post-transcriptional processes, including pre-mRNA splicing, cleavage and polyadenylation, and m6A modification of mRNA. Our results thus define a substantially expanded repertoire of C2H2-ZNFs that bind RNA and provide an important resource for elucidating post-transcriptional regulatory programs.
In this issue of Molecular Cell, De La Cruz, Pradhan, Veettil et al.1 examine how selective partitioning of proteins via low-affinity IDR-dependent interactions may help regulate RNA polymerase II (RNA Pol II) function and identify sequence features that drive partitioning in cells.
RNA interactome studies have revealed that hundreds of zinc-finger proteins (ZFPs) are candidate RNA-binding proteins (RBPs), yet their RNA substrates and functional significance remain largely uncharacterized. Here, we present a systematic multi-omics analysis of the DNA- and RNA-binding targets and regulatory roles of more than 100 ZFPs representing 37 zinc-finger families. We show that multiple ZFPs are previously unknown regulators of RNA splicing, alternative polyadenylation, stability, or translation. The examined ZFPs show widespread sequence-specific RNA binding and preferentially bind proximal to transcription start sites. Additionally, several ZFPs associate with their targets at both the DNA and RNA levels. We highlight ZNF277, a C2H2 ZFP that binds thousands of RNA targets and acts as a multi-functional RBP. We also show that ZNF473 is a DNA/RNA-associated protein that regulates the expression and splicing of cell cycle genes. Our results reveal diverse roles for ZFPs in transcriptional and post-transcriptional gene regulation.
In two recent studies in Nature, Hör et al.1 and Chambers et al.2 report that ubiquitin-like conjugation in bacteria antagonizes phage replication.
In this issue of Molecular Cell, Engeholm et al.1 present cryo-EM structures of the chromatin remodeler Chd1 bound to a hexasome-nucleosome complex, an intermediate state during transcription either with or without FACT to restore the missing H2A-H2B dimer. These two binding modes reveal how Chd1 and FACT cooperate in nucleosome re-establishment during transcription.
Stimulator of interferon genes (STING) is activated in many pathophysiological conditions, leading to TBK1-dependent interferon production in higher organisms. However, primordial functions of STING independent of TBK1 are poorly understood. Here, through proteomics and bioinformatics approaches, we identify lysosomal biogenesis as an unexpected function of STING. Transcription factor EB (TFEB), an evolutionarily conserved regulator of lysosomal biogenesis and host defense, is activated by STING from multiple species, including humans, mice, and frogs. STING-mediated TFEB activation is independent of TBK1, but it requires STING trafficking and its conserved proton channel. GABARAP lipidation, stimulated by the channel of STING, is key for STING-dependent TFEB activation. STING stimulates global upregulation of TFEB-target genes, mediating lysosomal biogenesis and autophagy. TFEB supports cell survival during chronic sterile STING activation, a common condition in aging and age-related diseases. These results reveal a primordial function of STING in the biogenesis of lysosomes, essential organelles in immunity and cellular stress resistance.
During cold shock, bacteria shut down translation of all but a set of cold-shock proteins critical for recovery; in this issue of Molecular Cell, Delaleau et al.1 show that Rho-dependent transcription termination plays an important role in cold adaptation, via temperature-regulated termination of the cold-shock protein mRNAs.