首页 > 最新文献

Molecular Cell最新文献

英文 中文
Coordinating mRNA maturation: The U1 relay model 协调mRNA成熟:U1中继模型
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-28 DOI: 10.1016/j.molcel.2026.01.006
Yoseop Yoon, Cailyx Quan, Lindsey V. Soles, Yongsheng Shi
mRNA maturation requires precise coordination among transcription, 5′ capping, splicing, and 3′ end formation. Recent biochemical, structural, and genomic studies demonstrate that these processes are tightly coupled through dynamic interactions among RNA polymerase II, the spliceosome, and cleavage–polyadenylation complexes. Here, we synthesize current mechanistic insights into how transcription elongation factors and RNA processing machineries communicate to ensure efficient and accurate transcript maturation. We propose a “U1 relay” model as a unified framework for understanding co-transcriptional splicing and 3′ end formation. We further discuss how RNAs are sorted into nuclear retention/degradation or export pathways based on the RNA processing status. Importantly, RNA processing factors not only act downstream of transcription but also feed back to modulate transcriptional elongation, pausing, and termination, thereby reinforcing bidirectional coupling between RNA synthesis and processing.
mRNA的成熟需要转录、5 ' capping、剪接和3 ' end形成之间的精确协调。最近的生化、结构和基因组研究表明,这些过程通过RNA聚合酶II、剪接体和切割-聚腺苷酸化复合物之间的动态相互作用紧密耦合。在这里,我们综合了目前关于转录延伸因子和RNA加工机制如何沟通以确保有效和准确的转录成熟的机制见解。我们提出了一个“U1中继”模型作为理解共转录剪接和3 '端形成的统一框架。我们进一步讨论了如何根据RNA加工状态将RNA分类为核保留/降解或输出途径。重要的是,RNA加工因子不仅作用于转录的下游,而且还反馈调节转录的延伸、暂停和终止,从而加强RNA合成和加工之间的双向偶联。
{"title":"Coordinating mRNA maturation: The U1 relay model","authors":"Yoseop Yoon, Cailyx Quan, Lindsey V. Soles, Yongsheng Shi","doi":"10.1016/j.molcel.2026.01.006","DOIUrl":"https://doi.org/10.1016/j.molcel.2026.01.006","url":null,"abstract":"mRNA maturation requires precise coordination among transcription, 5′ capping, splicing, and 3′ end formation. Recent biochemical, structural, and genomic studies demonstrate that these processes are tightly coupled through dynamic interactions among RNA polymerase II, the spliceosome, and cleavage–polyadenylation complexes. Here, we synthesize current mechanistic insights into how transcription elongation factors and RNA processing machineries communicate to ensure efficient and accurate transcript maturation. We propose a “U1 relay” model as a unified framework for understanding co-transcriptional splicing and 3′ end formation. We further discuss how RNAs are sorted into nuclear retention/degradation or export pathways based on the RNA processing status. Importantly, RNA processing factors not only act downstream of transcription but also feed back to modulate transcriptional elongation, pausing, and termination, thereby reinforcing bidirectional coupling between RNA synthesis and processing.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"43 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146070577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Why m⁶A? An RNA surveillance model 为什么m⁶?RNA监测模型
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-27 DOI: 10.1016/j.molcel.2026.01.002
D. Dierks, S. Schwartz
N6-methyladenosine (m⁶A) is the most abundant internal modification of mRNA and is most strongly linked to promoting mRNA decay. Why transcripts are born with a death-promoting mark has remained unclear. A previously proposed "fast-track" model posited regulated, gene-specific modulation of m⁶A to coordinate translation and turnover. However, emerging evidence reveals that m⁶A is broadly and mostly constitutively installed at all DRACH motifs except in the vicinity of splice sites, all of which challenge a fast-track model. We propose an "m⁶A surveillance model": properly spliced transcripts mostly evade methylation, while unspliced, transposon-derived, viral, or aberrant RNAs are hypermethylated and selectively degraded. This model reframes m⁶A as a default quality-control mark that flags undesirable unspliced RNAs for removal. We discuss literature supporting and challenging this model as well as experimental priorities that could allow for a more thorough investigation of this model.
n6 -甲基腺苷(m26 A)是mRNA中最丰富的内部修饰,与促进mRNA衰变最密切相关。为什么转录本生来就带有促死标记,目前还不清楚。先前提出的一种“快速通道”模型假设受调控的基因特异性调节26 A来协调翻译和转换。然而,新出现的证据表明,除了剪接位点附近,m 26 A广泛且大部分地安装在所有DRACH基序上,所有这些都挑战了快速通道模型。我们提出了一个“m 26 A监视模型”:正确剪接的转录本大多逃避甲基化,而未剪接的、转座子衍生的、病毒的或异常的rna则被超甲基化和选择性降解。这个模型将m26 A重新定义为默认的质量控制标记,标记不需要的未剪接rna以进行移除。我们讨论了支持和挑战这一模型的文献,以及可以允许对该模型进行更彻底调查的实验优先级。
{"title":"Why m⁶A? An RNA surveillance model","authors":"D. Dierks, S. Schwartz","doi":"10.1016/j.molcel.2026.01.002","DOIUrl":"https://doi.org/10.1016/j.molcel.2026.01.002","url":null,"abstract":"N6-methyladenosine (m⁶A) is the most abundant internal modification of mRNA and is most strongly linked to promoting mRNA decay. Why transcripts are born with a death-promoting mark has remained unclear. A previously proposed \"fast-track\" model posited regulated, gene-specific modulation of m⁶A to coordinate translation and turnover. However, emerging evidence reveals that m⁶A is broadly and mostly constitutively installed at all DRACH motifs except in the vicinity of splice sites, all of which challenge a fast-track model. We propose an \"m⁶A surveillance model\": properly spliced transcripts mostly evade methylation, while unspliced, transposon-derived, viral, or aberrant RNAs are hypermethylated and selectively degraded. This model reframes m⁶A as a default quality-control mark that flags undesirable unspliced RNAs for removal. We discuss literature supporting and challenging this model as well as experimental priorities that could allow for a more thorough investigation of this model.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"71 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146072075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ribosome-NAC collaboration: A regulatory platform for cotranslational chaperones, enzymes, and targeting factors 核糖体- nac协作:协同翻译伴侣、酶和靶向因子的调控平台
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-27 DOI: 10.1016/j.molcel.2025.12.031
Martin Gamerdinger, Nicolas Burg, Elke Deuerling
Protein biogenesis requires the ribosome to collaborate with a diverse set of cotranslational factors that shape the fate of nascent chains. These interactions must be precisely choreographed: while cytonuclear proteins require immediate N-terminal maturation and folding, endoplasmic reticulum (ER) and mitochondrial proteins must be maintained in an unfolded state for targeting to their organelles. Reconciling these opposing demands requires a highly selective sorting mechanism operating at the ribosomal exit tunnel. Recent studies identify the conserved nascent polypeptide-associated complex (NAC) as a central coordinator of this process. By sensing nascent signals and dynamically modulating factor access to the ribosome, NAC directs substrates toward the appropriate maturation or targeting pathway. This emerging framework positions NAC as a molecular hub that organizes cotranslational interactions into efficient and orderly protein-biogenesis pathways. In this review, we discuss the mechanistic principles underlying NAC function and consider broader implications for how ribosome-associated networks enforce fidelity in protein biogenesis.
蛋白质的生物发生需要核糖体与一系列不同的共翻译因子合作,这些共翻译因子塑造了新生链的命运。这些相互作用必须精确编排:当核蛋白需要立即的n端成熟和折叠时,内质网(ER)和线粒体蛋白必须保持在未折叠状态以靶向其细胞器。调和这些对立的需求需要在核糖体出口通道中操作的高度选择性分选机制。最近的研究发现保守的新生多肽相关复合体(NAC)是这一过程的中心协调者。通过感知新生信号和动态调节因子进入核糖体,NAC引导底物走向适当的成熟或靶向途径。这个新出现的框架将NAC定位为一个分子中心,将共翻译相互作用组织成有效和有序的蛋白质生物发生途径。在这篇综述中,我们讨论了NAC功能的机制原理,并考虑了核糖体相关网络如何在蛋白质生物发生中加强保真度的更广泛意义。
{"title":"Ribosome-NAC collaboration: A regulatory platform for cotranslational chaperones, enzymes, and targeting factors","authors":"Martin Gamerdinger, Nicolas Burg, Elke Deuerling","doi":"10.1016/j.molcel.2025.12.031","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.12.031","url":null,"abstract":"Protein biogenesis requires the ribosome to collaborate with a diverse set of cotranslational factors that shape the fate of nascent chains. These interactions must be precisely choreographed: while cytonuclear proteins require immediate N-terminal maturation and folding, endoplasmic reticulum (ER) and mitochondrial proteins must be maintained in an unfolded state for targeting to their organelles. Reconciling these opposing demands requires a highly selective sorting mechanism operating at the ribosomal exit tunnel. Recent studies identify the conserved nascent polypeptide-associated complex (NAC) as a central coordinator of this process. By sensing nascent signals and dynamically modulating factor access to the ribosome, NAC directs substrates toward the appropriate maturation or targeting pathway. This emerging framework positions NAC as a molecular hub that organizes cotranslational interactions into efficient and orderly protein-biogenesis pathways. In this review, we discuss the mechanistic principles underlying NAC function and consider broader implications for how ribosome-associated networks enforce fidelity in protein biogenesis.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"36 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146072073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNA anti-CRISPRs deplete Cas proteins to inhibit the CRISPR-Cas system. RNA抗crispr耗尽Cas蛋白抑制CRISPR-Cas系统。
IF 16.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-22 Epub Date: 2025-12-30 DOI: 10.1016/j.molcel.2025.12.005
Xiaopan Gao, Kaixiang Zhu, Weihe Zhang, Lin Wang, Linyue Wang, Lei Hua, Tongxin Niu, Bo Qin, Xia Yu, Hongtao Zhu, Sheng Cui

RNA-based anti-CRISPRs (Racrs) interfere with the type I-F CRISPR-Cas system by mimicking the repeats found in CRISPR arrays. Here, we determined the cryo-electron microscopy (cryo-EM) structures of the type I-F crRNA-guided surveillance complex (Csy complex) from Pectobacterium atrosepticum and three RacrIF1-induced aberrant subcomplexes. Additionally, we observed that Cas7f proteins could bind to non-specific nucleic acids, forming right-handed superhelical filaments composed of different Cas7 copies. Mechanistically, RacrIF1 lacks the specific S-conformation observed in the corresponding position of the 5' handle in canonical CRISPR complexes, and it instead adopts a periodic "5 + 1" pattern. This conformation creates severe steric hindrance for Cas5f-Cas8f heterodimer and undermines their binding. Furthermore, Cas7f nonspecifically binds nucleic acids and can form infinite superhelical filaments along Racrs molecules. This oligomerization sequesters Cas6f and Cas7f from binding, therefore blocking the formation of functional CRISPR-Cas effector complexes and ultimately blocking antiviral immunity. Our study provides a structural basis underlying Racrs-mediated CRISPRs inhibition.

基于rna的抗CRISPR (Racrs)通过模仿CRISPR阵列中的重复序列来干扰I-F型CRISPR- cas系统。在这里,我们确定了来自atrosepticum Pectobacterium的I-F型crrna引导的监视复合物(Csy复合物)和三个racrif1诱导的异常亚复合物的冷冻电镜(cro - em)结构。此外,我们观察到Cas7f蛋白可以与非特异性核酸结合,形成由不同Cas7拷贝组成的右旋超螺旋细丝。从机制上讲,RacrIF1缺乏典型CRISPR复合物中5'手柄对应位置观察到的特定s构象,而是采用周期性的“5 + 1”模式。这种构象对Cas5f-Cas8f异源二聚体造成了严重的空间位阻,破坏了它们的结合。此外,Cas7f非特异性结合核酸,可以沿着Racrs分子形成无限的超螺旋细丝。这种寡聚化隔离了Cas6f和Cas7f的结合,从而阻断了功能性CRISPR-Cas效应复合物的形成,最终阻断了抗病毒免疫。我们的研究提供了racrs介导的crispr抑制的结构基础。
{"title":"RNA anti-CRISPRs deplete Cas proteins to inhibit the CRISPR-Cas system.","authors":"Xiaopan Gao, Kaixiang Zhu, Weihe Zhang, Lin Wang, Linyue Wang, Lei Hua, Tongxin Niu, Bo Qin, Xia Yu, Hongtao Zhu, Sheng Cui","doi":"10.1016/j.molcel.2025.12.005","DOIUrl":"10.1016/j.molcel.2025.12.005","url":null,"abstract":"<p><p>RNA-based anti-CRISPRs (Racrs) interfere with the type I-F CRISPR-Cas system by mimicking the repeats found in CRISPR arrays. Here, we determined the cryo-electron microscopy (cryo-EM) structures of the type I-F crRNA-guided surveillance complex (Csy complex) from Pectobacterium atrosepticum and three RacrIF1-induced aberrant subcomplexes. Additionally, we observed that Cas7f proteins could bind to non-specific nucleic acids, forming right-handed superhelical filaments composed of different Cas7 copies. Mechanistically, RacrIF1 lacks the specific S-conformation observed in the corresponding position of the 5' handle in canonical CRISPR complexes, and it instead adopts a periodic \"5 + 1\" pattern. This conformation creates severe steric hindrance for Cas5f-Cas8f heterodimer and undermines their binding. Furthermore, Cas7f nonspecifically binds nucleic acids and can form infinite superhelical filaments along Racrs molecules. This oligomerization sequesters Cas6f and Cas7f from binding, therefore blocking the formation of functional CRISPR-Cas effector complexes and ultimately blocking antiviral immunity. Our study provides a structural basis underlying Racrs-mediated CRISPRs inhibition.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":" ","pages":"317-331.e5"},"PeriodicalIF":16.6,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145878725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IFI16 senses and protects stalled replication forks. IFI16感知并保护停滞的复制分叉。
IF 16.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-22 Epub Date: 2026-01-08 DOI: 10.1016/j.molcel.2025.12.024
Amelia Gamble, Thomas A Ward, Otto P G Wheeler, Jessica P Morris, Caryl M Jones, Laura G Bennett, Ellen G Vernon, Vithursha Thanendran, Ilaria Ceppi, Swagata Halder, Damiano Borrello, Thomas D J Walker, Jahnavi Rajan, Hadil Suleiman, Daniel Harrison, Manal Alshetiwi, Gillian Dunphy, Lucy H Jackson-Jones, Petr Cejka, Leonie Unterholzner, Christopher J Staples

Replication stress is a key driver of DNA damage and genome instability. Here, we report that replication stress induces an inflammatory response in the absence of DNA damage. The DNA-sensing factor interferon-γ-inducible factor 16 (IFI16) binds nascent DNA at stalled replication forks and signals via the adaptor stimulator of interferon genes (STING) to induce activation of nuclear factor κB (NF-κB) and the production of pro-inflammatory cytokines, independently of the cytosolic DNA sensor cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS). Replication stress-induced fork remodeling generates a new DNA end that is vulnerable to degradation by nucleases and is protected by a range of factors, including the tumor suppressors BRCA1 and BRCA2. IFI16 acts directly at stalled replication forks to protect nascent DNA from degradation by the nucleases MRE11, EXO1, and DNA2. Furthermore, IFI16 is required for the interferon-mediated rescue of fork protection in BRCA-deficient cells, highlighting the critical role of IFI16 in the crosstalk between innate immunity and fork protection during replication stress.

复制应激是DNA损伤和基因组不稳定的关键驱动因素。在这里,我们报告了复制应激在没有DNA损伤的情况下诱导炎症反应。DNA感应因子干扰素-γ-诱导因子16 (IFI16)通过干扰素基因适配器刺激器(STING)结合停滞复制分叉处的新生DNA,诱导核因子κB (NF-κB)的激活和促炎细胞因子的产生,而不依赖于胞质DNA感应环鸟苷单磷酸(GMP)-AMP合成酶(cGAS)。复制应激诱导的分叉重塑产生一个新的DNA末端,该末端容易被核酸酶降解,并受到一系列因素的保护,包括肿瘤抑制因子BRCA1和BRCA2。IFI16直接作用于停滞的复制叉,以保护新生DNA免受核酸酶MRE11, EXO1和DNA2的降解。此外,在brca缺陷细胞中,IFI16是干扰素介导的叉保护修复所必需的,这突出了IFI16在复制应激过程中先天免疫和叉保护之间的相互作用中的关键作用。
{"title":"IFI16 senses and protects stalled replication forks.","authors":"Amelia Gamble, Thomas A Ward, Otto P G Wheeler, Jessica P Morris, Caryl M Jones, Laura G Bennett, Ellen G Vernon, Vithursha Thanendran, Ilaria Ceppi, Swagata Halder, Damiano Borrello, Thomas D J Walker, Jahnavi Rajan, Hadil Suleiman, Daniel Harrison, Manal Alshetiwi, Gillian Dunphy, Lucy H Jackson-Jones, Petr Cejka, Leonie Unterholzner, Christopher J Staples","doi":"10.1016/j.molcel.2025.12.024","DOIUrl":"10.1016/j.molcel.2025.12.024","url":null,"abstract":"<p><p>Replication stress is a key driver of DNA damage and genome instability. Here, we report that replication stress induces an inflammatory response in the absence of DNA damage. The DNA-sensing factor interferon-γ-inducible factor 16 (IFI16) binds nascent DNA at stalled replication forks and signals via the adaptor stimulator of interferon genes (STING) to induce activation of nuclear factor κB (NF-κB) and the production of pro-inflammatory cytokines, independently of the cytosolic DNA sensor cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS). Replication stress-induced fork remodeling generates a new DNA end that is vulnerable to degradation by nucleases and is protected by a range of factors, including the tumor suppressors BRCA1 and BRCA2. IFI16 acts directly at stalled replication forks to protect nascent DNA from degradation by the nucleases MRE11, EXO1, and DNA2. Furthermore, IFI16 is required for the interferon-mediated rescue of fork protection in BRCA-deficient cells, highlighting the critical role of IFI16 in the crosstalk between innate immunity and fork protection during replication stress.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":" ","pages":"258-272.e6"},"PeriodicalIF":16.6,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145945226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BRD2 bridges TFIID and MOF-H4K16ac-containing nucleosomes to promote transcriptional initiation. BRD2桥接TFIID和含mof - h4k16ac的核小体,促进转录起始。
IF 16.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-22 Epub Date: 2025-12-31 DOI: 10.1016/j.molcel.2025.12.010
Bin Zheng, Ruxuan Qiu, Sarah Gold, Marta Iwanaszko, Yuki Aoi, Benjamin Charles Howard, Madhurima Das, Ali Shilatifard

Members of the bromodomain and extraterminal domain (BET) protein family play a central role in transcription by RNA polymerase II (RNA Pol II). Small-molecule inhibitors that block interaction between BET bromodomains and acetylated histones have been developed for disease therapeutics. However, the BET protein BRD4 does not require bromodomains to perform its major transcriptional elongation control, and mechanisms by which other BET proteins regulate RNA Pol II remain insufficiently understood. Addressing the disparity between pan-BET degraders and BRD4-specific depletion, we report that the BET protein BRD2 generally functions to promote transcriptional initiation in a bromodomain-dependent manner at both promoters and enhancers in human cell lines. We demonstrate that BRD2 bromodomains preferentially bind to histone H4 harboring MOF-mediated H4K16ac, while the BRD2 C-terminal domain facilitates recruitment of TFIID. Our studies provide mechanistic insight into distinct roles for BRD2 and BRD4 in transcriptional initiation and elongation control for proper regulation of gene expression.

溴域和端外结构域(BET)蛋白家族的成员在RNA聚合酶II (RNA Pol II)的转录中起着核心作用。阻断BET溴结构域和乙酰化组蛋白相互作用的小分子抑制剂已被开发用于疾病治疗。然而,BET蛋白BRD4不需要溴结构域来执行其主要的转录延伸控制,并且其他BET蛋白调节RNA Pol II的机制仍不充分了解。为了解决泛BET降解物和brd4特异性缺失之间的差异,我们报道了在人类细胞系的启动子和增强子中,BET蛋白BRD2通常以溴域依赖的方式促进转录起始。我们发现BRD2溴结构域优先结合含有mof介导的H4K16ac的组蛋白H4,而BRD2 c端结构域促进TFIID的募集。我们的研究为BRD2和BRD4在转录起始和延伸控制中的不同作用提供了机制见解,以适当调节基因表达。
{"title":"BRD2 bridges TFIID and MOF-H4K16ac-containing nucleosomes to promote transcriptional initiation.","authors":"Bin Zheng, Ruxuan Qiu, Sarah Gold, Marta Iwanaszko, Yuki Aoi, Benjamin Charles Howard, Madhurima Das, Ali Shilatifard","doi":"10.1016/j.molcel.2025.12.010","DOIUrl":"10.1016/j.molcel.2025.12.010","url":null,"abstract":"<p><p>Members of the bromodomain and extraterminal domain (BET) protein family play a central role in transcription by RNA polymerase II (RNA Pol II). Small-molecule inhibitors that block interaction between BET bromodomains and acetylated histones have been developed for disease therapeutics. However, the BET protein BRD4 does not require bromodomains to perform its major transcriptional elongation control, and mechanisms by which other BET proteins regulate RNA Pol II remain insufficiently understood. Addressing the disparity between pan-BET degraders and BRD4-specific depletion, we report that the BET protein BRD2 generally functions to promote transcriptional initiation in a bromodomain-dependent manner at both promoters and enhancers in human cell lines. We demonstrate that BRD2 bromodomains preferentially bind to histone H4 harboring MOF-mediated H4K16ac, while the BRD2 C-terminal domain facilitates recruitment of TFIID. Our studies provide mechanistic insight into distinct roles for BRD2 and BRD4 in transcriptional initiation and elongation control for proper regulation of gene expression.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":" ","pages":"273-288.e6"},"PeriodicalIF":16.6,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145889669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anchoring the acentric: How retention elements give ecDNA immortality 锚定无中心:留存元素如何赋予ecDNA不朽性
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-22 DOI: 10.1016/j.molcel.2025.12.027
Xing Kang, Haiyun Gan
{"title":"Anchoring the acentric: How retention elements give ecDNA immortality","authors":"Xing Kang, Haiyun Gan","doi":"10.1016/j.molcel.2025.12.027","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.12.027","url":null,"abstract":"","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"38 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146033189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Whaling for the mechanisms of cancer resistance and long lifespans 捕鲸是为了抗癌和延长寿命的机制
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-22 DOI: 10.1016/j.molcel.2025.12.028
Vincent J. Lynch
{"title":"Whaling for the mechanisms of cancer resistance and long lifespans","authors":"Vincent J. Lynch","doi":"10.1016/j.molcel.2025.12.028","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.12.028","url":null,"abstract":"","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"7 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146033909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Heavy Chain Reaction: Unraveling loop extrusion dynamics during VDJ recombination 重链式反应:VDJ复合过程中展开环挤压动力学
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-22 DOI: 10.1016/j.molcel.2025.12.021
Naiming Chen, Rushad Pavri
In this issue of Molecular Cell, Ollikainen et al. combine computational simulations with empirical data to reveal how the dynamics of chromatin loop extrusion at the immunoglobulin heavy chain locus enable comparable frequencies of VDJ recombination across megabases of chromatin.
在本期的《分子细胞》杂志上,Ollikainen等人将计算模拟与经验数据结合起来,揭示了免疫球蛋白重链位点染色质环挤压的动力学如何使染色质上的VDJ重组频率在大碱基上相当。
{"title":"A Heavy Chain Reaction: Unraveling loop extrusion dynamics during VDJ recombination","authors":"Naiming Chen, Rushad Pavri","doi":"10.1016/j.molcel.2025.12.021","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.12.021","url":null,"abstract":"In this issue of <em>Molecular Cell</em>, Ollikainen et al. combine computational simulations with empirical data to reveal how the dynamics of chromatin loop extrusion at the immunoglobulin heavy chain locus enable comparable frequencies of VDJ recombination across megabases of chromatin.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"43 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146022166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Capsid restructuring activates semi-conservative dsRNA transcription in cystovirus ɸ6. 囊病毒衣壳重组激活半保守dsRNA转录。
IF 16.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-22 Epub Date: 2026-01-08 DOI: 10.1016/j.molcel.2025.12.025
Serban L Ilca, Xiaoyu Sun, Esa-Pekka Kumpula, Katri Eskelin, David I Stuart, Minna M Poranen, Juha T Huiskonen

Double-stranded (ds)RNA viruses replicate and transcribe their genome within a proteinaceous viral capsid to evade host cell defenses. While Reovirales members use conservative transcription, most dsRNA viruses, including cystoviruses, utilize semi-conservative transcription, in which a newly synthesized positive strand replaces the parental positive strand, which is released as mRNA. Here, we visualize semi-conservative transcription activation in cystovirus ɸ6 double-layered particles using cryogenic electron microscopy. We observe nucleotide-triggered disassembly of the domain-swapped outer capsid layer, subsequent expansion of the inner capsid layer, and stepwise assembly of transcription complexes at the opposing poles of the spooled dsRNA genome. These complexes consist of the viral polymerases embedded into a triskelion formed by the minor protein P7, which we show as essential for continuous transcription. The packaging hexamers proximal to the transcription sites channel the viral mRNA exit. Our results define the complex molecular pathway from the quiescent state to activated semi-conservative transcription.

双链RNA病毒在蛋白质病毒衣壳内复制和转录其基因组以逃避宿主细胞防御。Reovirales成员使用保守转录,而大多数dsRNA病毒,包括囊病毒,使用半保守转录,其中新合成的正链取代亲本正链,以mRNA的形式释放。在这里,我们使用低温电子显微镜观察半保守转录激活的囊病毒h 6双层颗粒。我们观察到核苷酸触发的结构域交换的外衣壳层的拆卸,随后的内衣壳层的扩展,以及转录复合物在卷曲dsRNA基因组的相反两极的逐步组装。这些复合物由嵌入由次要蛋白P7形成的三叉戟中的病毒聚合酶组成,我们证明P7对连续转录至关重要。靠近转录位点的包装六聚体引导病毒mRNA出口。我们的研究结果确定了从静止状态到激活的半保守转录的复杂分子途径。
{"title":"Capsid restructuring activates semi-conservative dsRNA transcription in cystovirus ɸ6.","authors":"Serban L Ilca, Xiaoyu Sun, Esa-Pekka Kumpula, Katri Eskelin, David I Stuart, Minna M Poranen, Juha T Huiskonen","doi":"10.1016/j.molcel.2025.12.025","DOIUrl":"10.1016/j.molcel.2025.12.025","url":null,"abstract":"<p><p>Double-stranded (ds)RNA viruses replicate and transcribe their genome within a proteinaceous viral capsid to evade host cell defenses. While Reovirales members use conservative transcription, most dsRNA viruses, including cystoviruses, utilize semi-conservative transcription, in which a newly synthesized positive strand replaces the parental positive strand, which is released as mRNA. Here, we visualize semi-conservative transcription activation in cystovirus ɸ6 double-layered particles using cryogenic electron microscopy. We observe nucleotide-triggered disassembly of the domain-swapped outer capsid layer, subsequent expansion of the inner capsid layer, and stepwise assembly of transcription complexes at the opposing poles of the spooled dsRNA genome. These complexes consist of the viral polymerases embedded into a triskelion formed by the minor protein P7, which we show as essential for continuous transcription. The packaging hexamers proximal to the transcription sites channel the viral mRNA exit. Our results define the complex molecular pathway from the quiescent state to activated semi-conservative transcription.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":" ","pages":"289-303.e5"},"PeriodicalIF":16.6,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145945229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Cell
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1