首页 > 最新文献

Molecular Cell最新文献

英文 中文
Stress to exhaustion: Proteotoxicity in T cells 应激到衰竭:T细胞中的蛋白质毒性
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-18 DOI: 10.1016/j.molcel.2025.11.016
Ting Zhang, Chen Dong
In a recent Nature paper, Yi et al.1 uncover that a noncanonical proteotoxic stress response (PSR) in exhausted T cells (Tex), termed “Tex-PSR,” drives T cell exhaustion. This response is characterized by sustained global protein synthesis, accumulation of protein aggregate, and selective upregulation of chaperone proteins.
在最近的一篇《自然》杂志的论文中,Yi等人1发现,耗竭T细胞(Tex)中的非典型蛋白毒性应激反应(PSR),称为“Tex-PSR”,驱动T细胞耗竭。这种反应的特征是持续的全球蛋白质合成,蛋白质聚集体的积累和伴侣蛋白的选择性上调。
{"title":"Stress to exhaustion: Proteotoxicity in T cells","authors":"Ting Zhang, Chen Dong","doi":"10.1016/j.molcel.2025.11.016","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.11.016","url":null,"abstract":"In a recent <em>Nature</em> paper, Yi et al.<span><span><sup>1</sup></span></span> uncover that a noncanonical proteotoxic stress response (PSR) in exhausted T cells (Tex), termed “Tex-PSR,” drives T cell exhaustion. This response is characterized by sustained global protein synthesis, accumulation of protein aggregate, and selective upregulation of chaperone proteins.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"7 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145778078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SARM1 as a dsDNA detector to sense nuclear damage and viruses to drive cell death SARM1作为dsDNA探测器,感知核损伤和病毒,驱动细胞死亡
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-18 DOI: 10.1016/j.molcel.2025.11.027
Adel Avetisyan, Ernesto Manzo, Marc R. Freeman
In a recent issue of Cell, Wang et al.1 found that the pro-degenerative NAD+ hydrolase SARM1 can bind and be activated by dsDNA. This expands potential roles for SARM1 to sensing DNA damage or viruses and activating cell death.
在最近一期的Cell杂志上,Wang等人1发现促退行性NAD+水解酶SARM1可以结合并被dsDNA激活。这将SARM1的潜在作用扩展到感知DNA损伤或病毒和激活细胞死亡。
{"title":"SARM1 as a dsDNA detector to sense nuclear damage and viruses to drive cell death","authors":"Adel Avetisyan, Ernesto Manzo, Marc R. Freeman","doi":"10.1016/j.molcel.2025.11.027","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.11.027","url":null,"abstract":"In a recent issue of <em>Cell</em>, Wang et al.<span><span><sup>1</sup></span></span> found that the pro-degenerative NAD<sup>+</sup> hydrolase SARM1 can bind and be activated by dsDNA. This expands potential roles for SARM1 to sensing DNA damage or viruses and activating cell death.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"48 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145777702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phage-encoded small RNA hijacks host replication machinery to support the phage lytic cycle 噬菌体编码的小RNA劫持宿主复制机制以支持噬菌体裂解周期
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-18 DOI: 10.1016/j.molcel.2025.11.019
Aviezer Silverman, Raneem Nashef, Reut Wasserman, Tamar Noy, Susan Born, Tianyou Yao, Yuncong Geng, Hila Rotbard, Adi Levkowitz, Yotam Kaufman, Ido Golding, Sahar Melamed
Bacteriophages (phages) are major drivers of bacterial population dynamics, yet the significance of post-transcriptional regulation during infection remains largely unexplored. Central to this regulatory layer are small RNAs (sRNAs), which regulate target mRNAs via base-pairing, typically facilitated by RNA chaperones such as Hfq. Here, we applied RNA interaction by ligation and sequencing (RIL-seq) to comprehensively map the in vivo RNA-RNA interaction network in Escherichia coli during phage lambda infection. This analysis revealed extensive reprogramming of E. coli-E. coli interactions, phage-specific lambda-lambda interactions, and interkingdom interactions between phage and host RNAs. Among these, we identified a phage-encoded sRNA, phage replication enhancer sRNA (PreS), embedded within the early left operon. PreS regulates essential host genes, including dnaN, which encodes the DNA polymerase β sliding clamp. This regulation enhances DNA replication and fine-tunes the phage lytic cycle. These findings uncover an RNA-level regulatory layer in phage-host interactions and demonstrate how a phage-encoded sRNA can hijack host replication machinery to optimize infection.
噬菌体(噬菌体)是细菌种群动态的主要驱动因素,但在感染过程中转录后调控的意义仍未得到充分研究。这个调控层的核心是小RNA (sRNAs),它们通过碱基配对来调节目标mrna,通常由RNA伴侣(如Hfq)促进。在这里,我们采用RNA相互作用的连接和测序(RIL-seq)技术,全面绘制了噬菌体lambda感染过程中大肠杆菌体内RNA-RNA相互作用网络。这一分析揭示了大肠杆菌的广泛重编程。大肠杆菌相互作用,噬菌体特异性的λ - λ相互作用,以及噬菌体和宿主rna之间的王国间相互作用。其中,我们鉴定了噬菌体编码的sRNA,噬菌体复制增强子sRNA (PreS),嵌入在早期左操纵子中。PreS调控必需的宿主基因,包括编码DNA聚合酶β滑动夹的dnaN。这种调节增强了DNA复制并微调了噬菌体裂解周期。这些发现揭示了噬菌体-宿主相互作用中的rna水平调控层,并证明了噬菌体编码的sRNA如何劫持宿主复制机制以优化感染。
{"title":"Phage-encoded small RNA hijacks host replication machinery to support the phage lytic cycle","authors":"Aviezer Silverman, Raneem Nashef, Reut Wasserman, Tamar Noy, Susan Born, Tianyou Yao, Yuncong Geng, Hila Rotbard, Adi Levkowitz, Yotam Kaufman, Ido Golding, Sahar Melamed","doi":"10.1016/j.molcel.2025.11.019","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.11.019","url":null,"abstract":"Bacteriophages (phages) are major drivers of bacterial population dynamics, yet the significance of post-transcriptional regulation during infection remains largely unexplored. Central to this regulatory layer are small RNAs (sRNAs), which regulate target mRNAs via base-pairing, typically facilitated by RNA chaperones such as Hfq. Here, we applied RNA interaction by ligation and sequencing (RIL-seq) to comprehensively map the <em>in vivo</em> RNA-RNA interaction network in <em>Escherichia coli</em> during phage lambda infection. This analysis revealed extensive reprogramming of <em>E. coli</em>-<em>E. coli</em> interactions, phage-specific lambda-lambda interactions, and interkingdom interactions between phage and host RNAs. Among these, we identified a phage-encoded sRNA, phage replication enhancer sRNA (PreS), embedded within the early left operon. PreS regulates essential host genes, including <em>dnaN</em>, which encodes the DNA polymerase β sliding clamp. This regulation enhances DNA replication and fine-tunes the phage lytic cycle. These findings uncover an RNA-level regulatory layer in phage-host interactions and demonstrate how a phage-encoded sRNA can hijack host replication machinery to optimize infection.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"1 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145778080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hypoxia-induced ribosomal RNA modifications in the peptidyl-transferase center contribute to anaerobic growth of bacteria 在肽基转移酶中心缺氧诱导的核糖体RNA修饰有助于细菌的厌氧生长
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-10 DOI: 10.1016/j.molcel.2025.11.018
Kensuke Ishiguro, Karin Midorikawa, Naoki Shigi, Satoshi Kimura, Aivar Liiv, Takeshi Yokoyama, Takuhiro Ito, Mikako Shirouzu, Jaanus Remme, Kenjyo Miyauchi, Tsutomu Suzuki
Ribosomal RNAs (rRNAs) contain various modifications that play critical roles in ribosome assembly and function. Here, we discovered two stereoselective methylations of the rRNA backbone in the peptidyl-transferase center (PTC) of the 50S subunit of Escherichia coli cultured under anaerobic conditions. Methylation occurs at carbon 5'(S) of ribose moieties of dihydrouridine at position 2449 (D5Sm2449) and 2'-O-metylcytidine at position 2498 (Cm5Sm2498). We identified the rlmX gene, encoding a cobalamin-dependent radical S-adenosylmethionine (SAM) methyltransferase responsible for these methylations. Intriguingly, D5Sm2449, Cm5Sm2498, and 5-hydroxycytidine (ho5C2501) in the PTC were elevated under anaerobic growth conditions. A double knockout strain lacking rlmX and rlhA (responsible for ho5C2501) impaired anaerobic growth. Biochemical studies showed that these rRNA modifications stimulate protein synthesis. The cryoelectron microscopy (cryo-EM) structure of the ribosome indicated that these hypoxia-induced modifications stabilize the P-site and the PTC. These findings demonstrate that ribosomes are activated by hypoxia-induced modifications to enhance translational capability and thereby survival, under anaerobic conditions.
核糖体rna (rrna)包含各种修饰,这些修饰在核糖体的组装和功能中起关键作用。在这里,我们发现在厌氧条件下培养的大肠杆菌50S亚基的肽基转移酶中心(PTC)的rRNA主干有两个立体选择性甲基化。甲基化发生在2449 (D5Sm2449)和2498 (Cm5Sm2498)位置的2'- o -甲基胞苷核糖部分的碳5'(S)处。我们确定了rlmX基因,编码负责这些甲基化的钴胺依赖性自由基s -腺苷甲硫氨酸(SAM)甲基转移酶。有趣的是,在厌氧生长条件下,PTC中的D5Sm2449, Cm5Sm2498和5-羟基胞苷(ho5C2501)升高。缺乏rlmX和rlhA(负责ho5C2501)的双敲除菌株会损害厌氧生长。生化研究表明,这些rRNA修饰刺激蛋白质合成。核糖体的冷冻电镜(cryo-EM)结构表明,这些缺氧诱导的修饰稳定了p位点和PTC。这些发现表明,在缺氧条件下,核糖体被缺氧诱导的修饰激活,以增强翻译能力,从而提高生存能力。
{"title":"Hypoxia-induced ribosomal RNA modifications in the peptidyl-transferase center contribute to anaerobic growth of bacteria","authors":"Kensuke Ishiguro, Karin Midorikawa, Naoki Shigi, Satoshi Kimura, Aivar Liiv, Takeshi Yokoyama, Takuhiro Ito, Mikako Shirouzu, Jaanus Remme, Kenjyo Miyauchi, Tsutomu Suzuki","doi":"10.1016/j.molcel.2025.11.018","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.11.018","url":null,"abstract":"Ribosomal RNAs (rRNAs) contain various modifications that play critical roles in ribosome assembly and function. Here, we discovered two stereoselective methylations of the rRNA backbone in the peptidyl-transferase center (PTC) of the 50S subunit of Escherichia coli cultured under anaerobic conditions. Methylation occurs at carbon 5'(S) of ribose moieties of dihydrouridine at position 2449 (D5Sm2449) and 2'-O-metylcytidine at position 2498 (Cm5Sm2498). We identified the rlmX gene, encoding a cobalamin-dependent radical S-adenosylmethionine (SAM) methyltransferase responsible for these methylations. Intriguingly, D5Sm2449, Cm5Sm2498, and 5-hydroxycytidine (ho5C2501) in the PTC were elevated under anaerobic growth conditions. A double knockout strain lacking rlmX and rlhA (responsible for ho5C2501) impaired anaerobic growth. Biochemical studies showed that these rRNA modifications stimulate protein synthesis. The cryoelectron microscopy (cryo-EM) structure of the ribosome indicated that these hypoxia-induced modifications stabilize the P-site and the PTC. These findings demonstrate that ribosomes are activated by hypoxia-induced modifications to enhance translational capability and thereby survival, under anaerobic conditions.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"13 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145731686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HYPK promotes N-terminal protein acetylation through rapid ribosome exchange of NatA HYPK通过NatA的快速核糖体交换促进n端蛋白乙酰化
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-10 DOI: 10.1016/j.molcel.2025.11.017
Alfred M. Lentzsch, Ziyi Fan, Inayat U. Irshad, Edward P. O’Brien, Ajeet K. Sharma, Rachel Green, Shu-ou Shan
Numerous protein biogenesis factors cotranslationally facilitate the maturation of nascent proteins. Among them, N-terminal acetyltransferase A (NatA) acetylates the N terminus of ∼40% of the eukaryotic proteome. NatA is bound to Huntingtin-interacting protein K (HYPK), which inhibits NatA activity in vitro but enhances function in vivo. Here, kinetic and in-cell measurements resolve this paradox, showing that HYPK acts as a ribosome exchange factor for NatA. Without HYPK, hyper-tight ribosome binding prevents NatA from accessing additional ribosomes following each round of acetylation. HYPK accelerates NatA dissociation from the ribosome to license multiple turnovers, allowing a sub-stoichiometric level of this enzyme to globally acetylate the nascent proteome. Our results uncover a previously unidentified function of HYPK and demonstrate that a "Goldilocks" zone of ribosome interaction kinetics is required for cotranslational protein biogenesis machineries to act on all translating ribosomes in the cell.
许多蛋白质生物发生因子共同翻译促进新生蛋白质的成熟。其中,N端乙酰转移酶A (NatA)使约40%的真核蛋白质组的N端乙酰化。NatA与亨廷顿蛋白相互作用蛋白K (HYPK)结合,在体外抑制NatA活性,但在体内增强其功能。在这里,动力学和细胞内测量解决了这个悖论,表明HYPK作为NatA的核糖体交换因子。没有HYPK,超紧密核糖体结合阻止NatA在每一轮乙酰化后进入额外的核糖体。HYPK加速NatA与核糖体的分离,允许多次转换,允许这种酶的亚化学计量水平来全局乙酰化新生的蛋白质组。我们的研究结果揭示了HYPK先前未被发现的功能,并证明了协同翻译蛋白生物发生机制需要核糖体相互作用动力学的“金发姑娘”区才能作用于细胞中所有翻译核糖体。
{"title":"HYPK promotes N-terminal protein acetylation through rapid ribosome exchange of NatA","authors":"Alfred M. Lentzsch, Ziyi Fan, Inayat U. Irshad, Edward P. O’Brien, Ajeet K. Sharma, Rachel Green, Shu-ou Shan","doi":"10.1016/j.molcel.2025.11.017","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.11.017","url":null,"abstract":"Numerous protein biogenesis factors cotranslationally facilitate the maturation of nascent proteins. Among them, N-terminal acetyltransferase A (NatA) acetylates the N terminus of ∼40% of the eukaryotic proteome. NatA is bound to Huntingtin-interacting protein K (HYPK), which inhibits NatA activity in vitro but enhances function in vivo. Here, kinetic and in-cell measurements resolve this paradox, showing that HYPK acts as a ribosome exchange factor for NatA. Without HYPK, hyper-tight ribosome binding prevents NatA from accessing additional ribosomes following each round of acetylation. HYPK accelerates NatA dissociation from the ribosome to license multiple turnovers, allowing a sub-stoichiometric level of this enzyme to globally acetylate the nascent proteome. Our results uncover a previously unidentified function of HYPK and demonstrate that a \"Goldilocks\" zone of ribosome interaction kinetics is required for cotranslational protein biogenesis machineries to act on all translating ribosomes in the cell.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"1 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145731685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Puromycin-sensitive aminopeptidase acts as an inhibitory auxiliary subunit of volume-regulated anion channels and regulates cGAMP transport 嘌呤霉素敏感氨基肽酶作为抑制辅助性亚基的容量调节阴离子通道和调节cGAMP运输
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-09 DOI: 10.1016/j.molcel.2025.11.014
Wenqiang Zheng, Tatsuya Hagino, Hao Wang, Henry Yi Cheng, Nicholas Koylass, Kevin Hong Chen, Haobo Wang, Sepehr Mani, Anish Kumar Mondal, Edward C. Twomey, Zhaozhu Qiu
Volume-regulated anion channels (VRACs) are large-pore channels expressed in most vertebrate cells and are critical for cell volume regulation and autocrine/paracrine signaling. Here, we identify the ubiquitously expressed puromycin-sensitive aminopeptidase (PSA) as a binding partner of the obligatory VRAC subunit SWELL1 (also known as LRRC8A) and determine the cryo-electron microscopy structure of the SWELL1-PSA complex. Three PSA molecules bind a single SWELL1 hexamer, coupling adjacent leucine-rich repeat (LRR) domains into local dimers. Functionally, PSA overexpression suppresses VRAC activation, whereas PSA deletion dramatically elevates basal channel activity. Notably, PSA’s modulation of VRACs requires physical binding but not aminopeptidase activity, indicating a structural mechanism. Our findings identify PSA as an auxiliary subunit of VRACs, highlight the role of intracellular LRR domains in allosteric channel gating, and suggest a strategy to tune VRAC function in diverse physiological contexts, including 2′3′-cyclic GMP-AMP (cGAMP) transport and downstream stimulator of interferon genes (STING) signaling.
体积调节阴离子通道(vrac)是在大多数脊椎动物细胞中表达的大孔通道,对细胞体积调节和自分泌/旁分泌信号传导至关重要。在这里,我们确定了无处不在表达的嘌呤霉素敏感氨基肽酶(PSA)作为VRAC必需亚基SWELL1(也称为LRRC8A)的结合伙伴,并确定了SWELL1-PSA复合物的低温电镜结构。三个PSA分子结合一个单一的SWELL1六聚体,将邻近的富含亮氨酸重复序列(LRR)结构域偶联成局部二聚体。功能上,PSA过表达抑制VRAC激活,而PSA缺失显著提高基础通道活性。值得注意的是,PSA对vrac的调节需要物理结合而不是氨基肽酶活性,这表明了一种结构机制。我们的研究结果确定了PSA是VRAC的辅助亚基,强调了细胞内LRR结构域在变构通道门控中的作用,并提出了在不同生理环境下调节VRAC功能的策略,包括2 ‘ 3 ’环GMP-AMP (cGAMP)运输和干扰素基因下游刺激因子(STING)信号传导。
{"title":"Puromycin-sensitive aminopeptidase acts as an inhibitory auxiliary subunit of volume-regulated anion channels and regulates cGAMP transport","authors":"Wenqiang Zheng, Tatsuya Hagino, Hao Wang, Henry Yi Cheng, Nicholas Koylass, Kevin Hong Chen, Haobo Wang, Sepehr Mani, Anish Kumar Mondal, Edward C. Twomey, Zhaozhu Qiu","doi":"10.1016/j.molcel.2025.11.014","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.11.014","url":null,"abstract":"Volume-regulated anion channels (VRACs) are large-pore channels expressed in most vertebrate cells and are critical for cell volume regulation and autocrine/paracrine signaling. Here, we identify the ubiquitously expressed puromycin-sensitive aminopeptidase (PSA) as a binding partner of the obligatory VRAC subunit SWELL1 (also known as LRRC8A) and determine the cryo-electron microscopy structure of the SWELL1-PSA complex. Three PSA molecules bind a single SWELL1 hexamer, coupling adjacent leucine-rich repeat (LRR) domains into local dimers. Functionally, PSA overexpression suppresses VRAC activation, whereas PSA deletion dramatically elevates basal channel activity. Notably, PSA’s modulation of VRACs requires physical binding but not aminopeptidase activity, indicating a structural mechanism. Our findings identify PSA as an auxiliary subunit of VRACs, highlight the role of intracellular LRR domains in allosteric channel gating, and suggest a strategy to tune VRAC function in diverse physiological contexts, including 2′3′-cyclic GMP-AMP (cGAMP) transport and downstream stimulator of interferon genes (STING) signaling.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"1 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145710971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GCN2 monitors mRNA translation termination GCN2监测mRNA翻译终止
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-09 DOI: 10.1016/j.molcel.2025.11.015
Kailey Worner, Katharine R. Maschhoff, Gabrielle M. Schuh, Wenqian Hu
Controlling mRNA translation is critical for proper protein production. Although translation initiation and elongation regulations are becoming increasingly clear, whether and how translation termination is monitored remains poorly understood. Using an acute protein degradation system coupled with phenotypic rescue via ectopic expression, here we show that the impaired translation termination reaction leads to the rapid activation of GCN2, resulting in eIF2α phosphorylation and inhibition of translation initiation, which occurs prior to ribosome collisions. Ribosome profiling analyses reveal that GCN2 monitors terminating ribosomes and prevents ribosome collisions and translation readthrough when translation termination is compromised. This rapid activation of GCN2 by compromised translation termination occurs in both stem and somatic cells and in mouse and human cells. These results suggest a conserved surveillance mechanism for translation termination.
控制mRNA的翻译是正确的蛋白质生产的关键。虽然翻译起始和延伸的规定变得越来越清楚,是否以及如何监测翻译终止仍然知之甚少。利用急性蛋白质降解系统和异位表达的表型拯救,我们发现受损的翻译终止反应导致GCN2的快速激活,导致eIF2α磷酸化和翻译起始抑制,这发生在核糖体碰撞之前。核糖体分析表明,GCN2监测终止核糖体,并在翻译终止受损时防止核糖体碰撞和翻译读出。这种通过翻译终止受损的GCN2快速激活发生在干细胞和体细胞以及小鼠和人类细胞中。这些结果提示翻译终止存在一个保守的监视机制。
{"title":"GCN2 monitors mRNA translation termination","authors":"Kailey Worner, Katharine R. Maschhoff, Gabrielle M. Schuh, Wenqian Hu","doi":"10.1016/j.molcel.2025.11.015","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.11.015","url":null,"abstract":"Controlling mRNA translation is critical for proper protein production. Although translation initiation and elongation regulations are becoming increasingly clear, whether and how translation termination is monitored remains poorly understood. Using an acute protein degradation system coupled with phenotypic rescue via ectopic expression, here we show that the impaired translation termination reaction leads to the rapid activation of GCN2, resulting in eIF2α phosphorylation and inhibition of translation initiation, which occurs prior to ribosome collisions. Ribosome profiling analyses reveal that GCN2 monitors terminating ribosomes and prevents ribosome collisions and translation readthrough when translation termination is compromised. This rapid activation of GCN2 by compromised translation termination occurs in both stem and somatic cells and in mouse and human cells. These results suggest a conserved surveillance mechanism for translation termination.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"5 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145704488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hi-Coatis: Capturing the 3D interplay between transcription and chromatin architecture Hi-Coatis:捕捉转录和染色质结构之间的3D相互作用
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-04 DOI: 10.1016/j.molcel.2025.11.007
Meichen Wang, Hai-Qiang Dai
Conventional methods have failed to simultaneously integrate one-dimensional transcriptional studies with three-dimensional chromatin architecture. In this issue, Li et al.1 present Hi-Coatis, an antibody- and probe-free approach that seamlessly maps active transcription-associated chromatin networks with high sensitivity and spatial resolution.
传统的方法未能同时整合一维转录研究与三维染色质结构。在这一期中,Li等人1提出了Hi-Coatis,这是一种无抗体和无探针的方法,可以无缝地绘制活性转录相关的染色质网络,具有高灵敏度和空间分辨率。
{"title":"Hi-Coatis: Capturing the 3D interplay between transcription and chromatin architecture","authors":"Meichen Wang, Hai-Qiang Dai","doi":"10.1016/j.molcel.2025.11.007","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.11.007","url":null,"abstract":"Conventional methods have failed to simultaneously integrate one-dimensional transcriptional studies with three-dimensional chromatin architecture. In this issue, Li et al.<span><span><sup>1</sup></span></span> present Hi-Coatis, an antibody- and probe-free approach that seamlessly maps active transcription-associated chromatin networks with high sensitivity and spatial resolution.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"1 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145673649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two CTCF motifs impede cohesin-mediated DNA loop extrusion 两个CTCF基序阻碍黏结素介导的DNA环挤压
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-04 DOI: 10.1016/j.molcel.2025.11.001
Roman Barth, Richard Janissen, Laura Muras, Jaco van der Torre, Gabriele Litos, Eli van der Sluis, Ashmiani van den Berg, Iain F. Davidson, Jan-Michael Peters, Cees Dekker
Human cohesin extrudes DNA into loops and is positioned along the genome by stalling at the human CCCTC-binding factor (CTCF) upon encountering its N-terminal region (NTR). The mechanism underlying this stalling, however, is unresolved. Using single-molecule assays that monitor DNA loop extrusion (LE) in the presence of NTR fragments, we identify two amino acid motifs, YDF and KTYQR, which hinder LE. KTYQR is found to completely block LE activity, while YDF hinders cohesin from completing LE step cycles and converts cohesin into a unidirectional extruder by strengthening the affinity of STAG1 to DNA. We thus identify two distinct NTR motifs that stall LE via different yet synergistic mechanisms, highlighting the multifaceted ways employed by CTCF to modulate LE to shape and regulate genomes.
人黏结蛋白将DNA挤出成环,并在遇到人ccctc结合因子(CTCF)的n端区域(NTR)时停留在其上,沿基因组定位。然而,这种停滞背后的机制尚不清楚。利用单分子检测技术,在NTR片段存在的情况下监测DNA环挤压(LE),我们发现了两个氨基酸基序,YDF和KTYQR,它们阻碍了LE。发现KTYQR完全阻断LE活性,而YDF通过增强STAG1对DNA的亲和力,阻碍内聚蛋白完成LE阶跃循环,将内聚蛋白转化为单向挤出剂。因此,我们确定了两种不同的NTR基序,它们通过不同的协同机制阻止LE,突出了CTCF通过多方面的方式调节LE来塑造和调节基因组。
{"title":"Two CTCF motifs impede cohesin-mediated DNA loop extrusion","authors":"Roman Barth, Richard Janissen, Laura Muras, Jaco van der Torre, Gabriele Litos, Eli van der Sluis, Ashmiani van den Berg, Iain F. Davidson, Jan-Michael Peters, Cees Dekker","doi":"10.1016/j.molcel.2025.11.001","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.11.001","url":null,"abstract":"Human cohesin extrudes DNA into loops and is positioned along the genome by stalling at the human CCCTC-binding factor (CTCF) upon encountering its N-terminal region (NTR). The mechanism underlying this stalling, however, is unresolved. Using single-molecule assays that monitor DNA loop extrusion (LE) in the presence of NTR fragments, we identify two amino acid motifs, YDF and KTYQR, which hinder LE. KTYQR is found to completely block LE activity, while YDF hinders cohesin from completing LE step cycles and converts cohesin into a unidirectional extruder by strengthening the affinity of STAG1 to DNA. We thus identify two distinct NTR motifs that stall LE via different yet synergistic mechanisms, highlighting the multifaceted ways employed by CTCF to modulate LE to shape and regulate genomes.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"13 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145673651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
mTOR signaling during T cell activation promotes cytokine production in T cells through 3' UTR-mediated translation control. T细胞激活过程中的mTOR信号通过3' utr介导的翻译控制促进T细胞细胞因子的产生。
IF 16.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-04 DOI: 10.1016/j.molcel.2025.11.005
Anouk P Jurgens, Josephine Zwijnen, Antonia Bradarić, Floris P J van Alphen, Kaspar Bresser, Koos Rooijers, Arie J Hoogendijk, Branka Popović, Monika C Wolkers

T cells are key contributors to clearing our body of infected and malignant cells. During activation, T cells undergo profound translational alterations, and the evolutionarily and highly conserved kinase mammalian target of rapamycin (mTOR) is central in this process. It mediates T cell differentiation, homeostasis, and activation and promotes the production of pro-inflammatory cytokines. mTOR executes its translation activity through terminal oligopyrimidine (TOP) motifs located in the 5' untranslated region (5' UTR) of target genes. Here, we uncovered a distinct 3' UTR-mediated mechanism of mTOR signaling on cytokine production in T cells. Non-classical TOP motifs present in the cytokine 3' UTRs do not contribute to mTOR-mediated translation regulation. Rather, AU-rich elements (AREs) are required for mTOR-mediated cytokine production. Furthermore, we discovered that the RNA-binding protein DDX21 binds to 3' UTR AREs and confers mTOR-mediated translation control. In conclusion, we present a previously unappreciated ARE-dependent, 3' UTR-mediated mechanism that mTOR employs to regulate cytokine production.

T细胞是清除我们体内感染和恶性细胞的关键因素。在激活过程中,T细胞经历了深刻的翻译改变,而进化上高度保守的哺乳动物雷帕霉素靶蛋白激酶(mTOR)在这一过程中起着核心作用。它介导T细胞分化、稳态和激活,并促进促炎细胞因子的产生。mTOR通过位于靶基因5‘非翻译区(5’ UTR)的末端寡聚嘧啶(TOP)基序执行其翻译活性。在这里,我们发现了一个独特的3' utr介导的mTOR信号传导对T细胞细胞因子产生的机制。存在于细胞因子3′utr中的非经典TOP基序不参与mtor介导的翻译调控。相反,富含au的元素(AREs)是mtor介导的细胞因子产生所必需的。此外,我们发现rna结合蛋白DDX21与3' UTR区域结合,并赋予mtor介导的翻译控制。总之,我们提出了一种以前未被认识到的依赖于re的,3' utr介导的mTOR调节细胞因子产生的机制。
{"title":"mTOR signaling during T cell activation promotes cytokine production in T cells through 3' UTR-mediated translation control.","authors":"Anouk P Jurgens, Josephine Zwijnen, Antonia Bradarić, Floris P J van Alphen, Kaspar Bresser, Koos Rooijers, Arie J Hoogendijk, Branka Popović, Monika C Wolkers","doi":"10.1016/j.molcel.2025.11.005","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.11.005","url":null,"abstract":"<p><p>T cells are key contributors to clearing our body of infected and malignant cells. During activation, T cells undergo profound translational alterations, and the evolutionarily and highly conserved kinase mammalian target of rapamycin (mTOR) is central in this process. It mediates T cell differentiation, homeostasis, and activation and promotes the production of pro-inflammatory cytokines. mTOR executes its translation activity through terminal oligopyrimidine (TOP) motifs located in the 5' untranslated region (5' UTR) of target genes. Here, we uncovered a distinct 3' UTR-mediated mechanism of mTOR signaling on cytokine production in T cells. Non-classical TOP motifs present in the cytokine 3' UTRs do not contribute to mTOR-mediated translation regulation. Rather, AU-rich elements (AREs) are required for mTOR-mediated cytokine production. Furthermore, we discovered that the RNA-binding protein DDX21 binds to 3' UTR AREs and confers mTOR-mediated translation control. In conclusion, we present a previously unappreciated ARE-dependent, 3' UTR-mediated mechanism that mTOR employs to regulate cytokine production.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"85 23","pages":"4452-4462.e5"},"PeriodicalIF":16.6,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145687715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Cell
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1