首页 > 最新文献

Molecular Cell最新文献

英文 中文
mTORC1 activity licenses its own release from the lysosomal surface mTORC1 的活性允许自己从溶酶体表面释放出来
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-31 DOI: 10.1016/j.molcel.2024.10.008
Aishwarya Acharya, Constantinos Demetriades
Nutrient signaling converges on mTORC1, which, in turn, orchestrates a physiological cellular response. A key determinant of mTORC1 activity is its shuttling between the lysosomal surface and the cytoplasm, with nutrients promoting its recruitment to lysosomes by the Rag GTPases. Active mTORC1 regulates various cellular functions by phosphorylating distinct substrates at different subcellular locations. Importantly, how mTORC1 that is activated on lysosomes is released to meet its non-lysosomal targets and whether mTORC1 activity itself impacts its localization remain unclear. Here, we show that, in human cells, mTORC1 inhibition prevents its release from lysosomes, even under starvation conditions, which is accompanied by elevated and sustained phosphorylation of its lysosomal substrate TFEB. Mechanistically, “inactive” mTORC1 causes persistent Rag activation, underlining its release as another process actively mediated via the Rags. In sum, we describe a mechanism by which mTORC1 controls its own localization, likely to prevent futile cycling on and off lysosomes.
营养信号汇聚到 mTORC1,而 mTORC1 又反过来协调细胞的生理反应。决定 mTORC1 活性的一个关键因素是它在溶酶体表面和细胞质之间的穿梭,营养物质通过 Rag GTP 酶将其招募到溶酶体。活跃的 mTORC1 通过在不同亚细胞位置磷酸化不同的底物来调节各种细胞功能。重要的是,在溶酶体上被激活的 mTORC1 如何被释放以满足其非溶酶体目标,以及 mTORC1 活性本身是否会影响其定位,这些问题仍不清楚。在这里,我们发现,在人体细胞中,即使在饥饿条件下,抑制 mTORC1 也能阻止其从溶酶体释放,同时溶酶体底物 TFEB 的磷酸化也会升高并持续。从机理上讲,"非活性 "的 mTORC1 会导致持续的 Rag 激活,从而强调其释放是通过 Rags 积极介导的另一个过程。总之,我们描述了一种 mTORC1 控制自身定位的机制,这种机制很可能是为了防止溶酶体上和溶酶体下的徒劳循环。
{"title":"mTORC1 activity licenses its own release from the lysosomal surface","authors":"Aishwarya Acharya, Constantinos Demetriades","doi":"10.1016/j.molcel.2024.10.008","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.10.008","url":null,"abstract":"Nutrient signaling converges on mTORC1, which, in turn, orchestrates a physiological cellular response. A key determinant of mTORC1 activity is its shuttling between the lysosomal surface and the cytoplasm, with nutrients promoting its recruitment to lysosomes by the Rag GTPases. Active mTORC1 regulates various cellular functions by phosphorylating distinct substrates at different subcellular locations. Importantly, how mTORC1 that is activated on lysosomes is released to meet its non-lysosomal targets and whether mTORC1 activity itself impacts its localization remain unclear. Here, we show that, in human cells, mTORC1 inhibition prevents its release from lysosomes, even under starvation conditions, which is accompanied by elevated and sustained phosphorylation of its lysosomal substrate TFEB. Mechanistically, “inactive” mTORC1 causes persistent Rag activation, underlining its release as another process actively mediated via the Rags. In sum, we describe a mechanism by which mTORC1 controls its own localization, likely to prevent futile cycling on and off lysosomes.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"3 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
mTORC1 restricts TFE3 activity by auto-regulating its presence on lysosomes mTORC1 通过自动调节 TFE3 在溶酶体上的存在来限制其活性
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-31 DOI: 10.1016/j.molcel.2024.10.009
Susan Zwakenberg, Denise Westland, Robert M. van Es, Holger Rehmann, Jasper Anink, Jolita Ciapaite, Marjolein Bosma, Ellen Stelloo, Nalan Liv, Paula Sobrevals Alcaraz, Nanda M. Verhoeven-Duif, Judith J.M. Jans, Harmjan R. Vos, Eleonora Aronica, Fried J.T. Zwartkruis
To stimulate cell growth, the protein kinase complex mTORC1 requires intracellular amino acids for activation. Amino-acid sufficiency is relayed to mTORC1 by Rag GTPases on lysosomes, where growth factor signaling enhances mTORC1 activity via the GTPase Rheb. In the absence of amino acids, GATOR1 inactivates the Rags, resulting in lysosomal detachment and inactivation of mTORC1. We demonstrate that in human cells, the release of mTORC1 from lysosomes depends on its kinase activity. In accordance with a negative feedback mechanism, activated mTOR mutants display low lysosome occupancy, causing hypo-phosphorylation and nuclear localization of the lysosomal substrate TFE3. Surprisingly, mTORC1 activated by Rheb does not increase the cytoplasmic/lysosomal ratio of mTORC1, indicating the existence of mTORC1 pools with distinct substrate specificity. Dysregulation of either pool results in aberrant TFE3 activity and may explain nuclear accumulation of TFE3 in epileptogenic malformations in focal cortical dysplasia type II (FCD II) and tuberous sclerosis (TSC).
要刺激细胞生长,蛋白激酶复合物 mTORC1 需要细胞内氨基酸才能激活。氨基酸充足时,溶酶体上的 Rag GTP 酶会向 mTORC1 转运氨基酸,生长因子信号通过 GTP 酶 Rheb 增强 mTORC1 的活性。在缺乏氨基酸的情况下,GATOR1 会使 Rag 失活,导致溶酶体脱离和 mTORC1 失活。我们证明,在人体细胞中,mTORC1 从溶酶体的释放取决于其激酶活性。根据负反馈机制,激活的 mTOR 突变体显示出较低的溶酶体占有率,导致溶酶体底物 TFE3 的低磷酸化和核定位。令人惊讶的是,被 Rheb 激活的 mTORC1 并不增加 mTORC1 的细胞质/溶酶体比例,这表明存在具有不同底物特异性的 mTORC1 池。任何一个池的失调都会导致 TFE3 活性异常,这可能是局灶性皮质发育不良 II 型(FCD II)和结节性硬化症(TSC)致痫畸形中 TFE3 核聚集的原因。
{"title":"mTORC1 restricts TFE3 activity by auto-regulating its presence on lysosomes","authors":"Susan Zwakenberg, Denise Westland, Robert M. van Es, Holger Rehmann, Jasper Anink, Jolita Ciapaite, Marjolein Bosma, Ellen Stelloo, Nalan Liv, Paula Sobrevals Alcaraz, Nanda M. Verhoeven-Duif, Judith J.M. Jans, Harmjan R. Vos, Eleonora Aronica, Fried J.T. Zwartkruis","doi":"10.1016/j.molcel.2024.10.009","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.10.009","url":null,"abstract":"To stimulate cell growth, the protein kinase complex mTORC1 requires intracellular amino acids for activation. Amino-acid sufficiency is relayed to mTORC1 by Rag GTPases on lysosomes, where growth factor signaling enhances mTORC1 activity via the GTPase Rheb. In the absence of amino acids, GATOR1 inactivates the Rags, resulting in lysosomal detachment and inactivation of mTORC1. We demonstrate that in human cells, the release of mTORC1 from lysosomes depends on its kinase activity. In accordance with a negative feedback mechanism, activated mTOR mutants display low lysosome occupancy, causing hypo-phosphorylation and nuclear localization of the lysosomal substrate TFE3. Surprisingly, mTORC1 activated by Rheb does not increase the cytoplasmic/lysosomal ratio of mTORC1, indicating the existence of mTORC1 pools with distinct substrate specificity. Dysregulation of either pool results in aberrant TFE3 activity and may explain nuclear accumulation of TFE3 in epileptogenic malformations in focal cortical dysplasia type II (FCD II) and tuberous sclerosis (TSC).","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"533 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Type II topoisomerases shape multi-scale 3D chromatin folding in regions of positive supercoils II 型拓扑异构酶在正超螺旋区域形成多尺度三维染色质折叠
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-31 DOI: 10.1016/j.molcel.2024.10.007
Gabriel M.C. Longo, Sergi Sayols, Maria E. Stefanova, Ting Xie, Waheba Elsayed, Anastasia Panagi, Amalia I. Stavridou, Giuseppe Petrosino, Elizabeth Ing-Simmons, Uirá Souto Melo, Henrike J. Gothe, Juan M. Vaquerizas, Andriana G. Kotini, Argyris Papantonis, Stefan Mundlos, Vassilis Roukos
Type II topoisomerases (TOP2s) resolve torsional stress accumulated during various cellular processes and are enriched at chromatin loop anchors and topologically associated domain (TAD) boundaries, where, when trapped, can lead to genomic instability promoting the formation of oncogenic fusions. Whether TOP2s relieve topological constraints at these positions and/or participate in 3D chromosome folding remains unclear. Here, we combine 3D genomics, imaging, and GapRUN, a method for the genome-wide profiling of positive supercoiling, to assess the role of TOP2s in shaping chromosome organization in human cells. Acute TOP2 depletion led to the emergence of new, large-scale contacts at the boundaries between active, positively supercoiled, and lamina-associated domains. TOP2-dependent changes at the higher-order chromatin folding were accompanied by remodeling of chromatin-nuclear lamina interactions and of gene expression, while at the chromatin loop level, TOP2 depletion predominantly remodeled transcriptionally anchored, positively supercoiled loops. We propose that TOP2s act as a fine regulator of chromosome folding at multiple scales.
II 型拓扑异构酶(TOP2s)可解决各种细胞过程中积累的扭转应力,并富集于染色质环锚和拓扑相关域(TAD)边界,一旦被困,可导致基因组不稳定,促进致癌融合的形成。TOP2 是否能缓解这些位置的拓扑限制和/或参与三维染色体折叠仍不清楚。在这里,我们结合三维基因组学、成像和 GapRUN(一种用于全基因组正向超螺旋剖析的方法)来评估 TOP2 在塑造人类细胞染色体组织中的作用。TOP2的急性耗竭导致活性、正超卷曲和片层相关结构域之间的边界出现了新的大规模接触。依赖于 TOP2 的高阶染色质折叠变化伴随着染色质-核薄层相互作用和基因表达的重塑,而在染色质环水平,TOP2 的耗竭主要重塑了转录锚定的正超螺旋环。我们认为,TOP2 在多个尺度上对染色体折叠起着精细调节作用。
{"title":"Type II topoisomerases shape multi-scale 3D chromatin folding in regions of positive supercoils","authors":"Gabriel M.C. Longo, Sergi Sayols, Maria E. Stefanova, Ting Xie, Waheba Elsayed, Anastasia Panagi, Amalia I. Stavridou, Giuseppe Petrosino, Elizabeth Ing-Simmons, Uirá Souto Melo, Henrike J. Gothe, Juan M. Vaquerizas, Andriana G. Kotini, Argyris Papantonis, Stefan Mundlos, Vassilis Roukos","doi":"10.1016/j.molcel.2024.10.007","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.10.007","url":null,"abstract":"Type II topoisomerases (TOP2s) resolve torsional stress accumulated during various cellular processes and are enriched at chromatin loop anchors and topologically associated domain (TAD) boundaries, where, when trapped, can lead to genomic instability promoting the formation of oncogenic fusions. Whether TOP2s relieve topological constraints at these positions and/or participate in 3D chromosome folding remains unclear. Here, we combine 3D genomics, imaging, and GapRUN, a method for the genome-wide profiling of positive supercoiling, to assess the role of TOP2s in shaping chromosome organization in human cells. Acute TOP2 depletion led to the emergence of new, large-scale contacts at the boundaries between active, positively supercoiled, and lamina-associated domains. TOP2-dependent changes at the higher-order chromatin folding were accompanied by remodeling of chromatin-nuclear lamina interactions and of gene expression, while at the chromatin loop level, TOP2 depletion predominantly remodeled transcriptionally anchored, positively supercoiled loops. We propose that TOP2s act as a fine regulator of chromosome folding at multiple scales.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"18 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
m6Am sequesters PCF11 to suppress premature termination and drive neuroblastoma differentiation m6Am 可封存 PCF11,从而抑制过早终止并驱动神经母细胞瘤分化
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-30 DOI: 10.1016/j.molcel.2024.10.004
Huihui An, Yifan Hong, Yeek Teck Goh, Casslynn W.Q. Koh, Shahzina Kanwal, Yi Zhang, Zhaoqi Lu, Phoebe M.L. Yap, Suat Peng Neo, Chun-Ming Wong, Alice S.T. Wong, Yang Yu, Jessica Sook Yuin Ho, Jayantha Gunaratne, Wee Siong Sho Goh
N6,2′-O-dimethyladenosine (m6Am) is an abundant mRNA modification that impacts multiple diseases, but its function remains controversial because the m6Am reader is unknown. Using quantitative proteomics, we identified transcriptional terminator premature cleavage factor II (PCF11) as a m6Am-specific reader in human cells. Direct quantification of mature versus nascent RNAs reveals that m6Am does not regulate mRNA stability but promotes nascent transcription. Mechanistically, m6Am functions by sequestering PCF11 away from proximal RNA polymerase II (RNA Pol II). This suppresses PCF11 from dissociating RNA Pol II near transcription start sites, thereby promoting full-length transcription of m6Am-modified RNAs. m6Am’s unique relationship with PCF11 means m6Am function is enhanced when PCF11 is reduced, which occurs during all-trans-retinoic-acid (ATRA)-induced neuroblastoma-differentiation therapy. Here, m6Am promotes expression of ATF3, which represses neuroblastoma biomarker MYCN. Depleting m6Am suppresses MYCN repression in ATRA-treated neuroblastoma and maintains their tumor-stem-like properties. Collectively, we characterize m6Am as an anti-terminator RNA modification that suppresses premature termination and modulates neuroblastoma’s therapeutic response.
N6,2′-O-二甲基腺苷(m6Am)是一种影响多种疾病的大量 mRNA 修饰,但由于 m6Am 的阅读器尚不清楚,其功能仍存在争议。利用定量蛋白质组学,我们发现转录终止子过早裂解因子 II(PCF11)是人体细胞中 m6Am 的特异性阅读器。成熟 RNA 与新生 RNA 的直接定量分析显示,m6Am 并不调节 mRNA 的稳定性,而是促进新生转录。从机理上讲,m6Am 通过将 PCF11 与近端 RNA 聚合酶 II(RNA Pol II)隔离而发挥作用。m6Am 与 PCF11 的独特关系意味着,当 PCF11 减少时,m6Am 的功能就会增强,这种情况发生在全反式维甲酸(ATRA)诱导的神经母细胞瘤分化治疗过程中。在这里,m6Am 可促进 ATF3 的表达,而 ATF3 可抑制神经母细胞瘤生物标志物 MYCN。消耗m6Am可抑制ATRA处理的神经母细胞瘤的MYCN抑制,并保持其肿瘤干样特性。总之,我们将 m6Am 定性为一种抗终止子 RNA 修饰,它能抑制过早终止并调节神经母细胞瘤的治疗反应。
{"title":"m6Am sequesters PCF11 to suppress premature termination and drive neuroblastoma differentiation","authors":"Huihui An, Yifan Hong, Yeek Teck Goh, Casslynn W.Q. Koh, Shahzina Kanwal, Yi Zhang, Zhaoqi Lu, Phoebe M.L. Yap, Suat Peng Neo, Chun-Ming Wong, Alice S.T. Wong, Yang Yu, Jessica Sook Yuin Ho, Jayantha Gunaratne, Wee Siong Sho Goh","doi":"10.1016/j.molcel.2024.10.004","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.10.004","url":null,"abstract":"<em>N</em><sup>6</sup>,2′-O-dimethyladenosine (m<sup>6</sup>Am) is an abundant mRNA modification that impacts multiple diseases, but its function remains controversial because the m<sup>6</sup>Am reader is unknown. Using quantitative proteomics, we identified transcriptional terminator premature cleavage factor II (PCF11) as a m<sup>6</sup>Am-specific reader in human cells. Direct quantification of mature versus nascent RNAs reveals that m<sup>6</sup>Am does not regulate mRNA stability but promotes nascent transcription. Mechanistically, m<sup>6</sup>Am functions by sequestering PCF11 away from proximal RNA polymerase II (RNA Pol II). This suppresses PCF11 from dissociating RNA Pol II near transcription start sites, thereby promoting full-length transcription of m<sup>6</sup>Am-modified RNAs. m<sup>6</sup>Am’s unique relationship with PCF11 means m<sup>6</sup>Am function is enhanced when PCF11 is reduced, which occurs during all-<em>trans</em>-retinoic-acid (ATRA)-induced neuroblastoma-differentiation therapy. Here, m<sup>6</sup>Am promotes expression of ATF3, which represses neuroblastoma biomarker MYCN. Depleting m<sup>6</sup>Am suppresses MYCN repression in ATRA-treated neuroblastoma and maintains their tumor-stem-like properties. Collectively, we characterize m<sup>6</sup>Am as an anti-terminator RNA modification that suppresses premature termination and modulates neuroblastoma’s therapeutic response.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"125 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Senescence suppresses the integrated stress response and activates a stress-remodeled secretory phenotype 衰老抑制综合应激反应,激活应激重塑分泌表型
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-30 DOI: 10.1016/j.molcel.2024.10.003
Matthew J. Payea, Showkat A. Dar, Carlos Anerillas, Jennifer L. Martindale, Cedric Belair, Rachel Munk, Sulochan Malla, Jinshui Fan, Yulan Piao, Xiaoling Yang, Abid Rehman, Nirad Banskota, Kotb Abdelmohsen, Myriam Gorospe, Manolis Maragkakis
Senescence is a state of indefinite cell-cycle arrest associated with aging, cancer, and age-related diseases. Here, we find that translational deregulation, together with a corresponding maladaptive integrated stress response (ISR), is a hallmark of senescence that desensitizes senescent cells to stress. We present evidence that senescent cells maintain high levels of eIF2α phosphorylation, typical of ISR activation, but translationally repress production of the stress response activating transcription factor 4 (ATF4) by ineffective bypass of the inhibitory upstream open reading frames (uORFs). Surprisingly, ATF4 translation remains inhibited even after acute proteotoxic and amino acid starvation stressors, resulting in a highly diminished stress response. We also find that stress augments the senescence-associated secretory phenotype with sustained remodeling of inflammatory factors expression that is suppressed by non-uORF carrying ATF4 mRNA expression. Our results thus show that senescent cells possess a unique response to stress, which entails an increase in their inflammatory profile.
衰老是一种细胞周期无限期停滞的状态,与衰老、癌症和与年龄相关的疾病有关。在这里,我们发现翻译失调以及相应的适应不良综合应激反应(ISR)是衰老的一个标志,它使衰老细胞对应激脱敏。我们提出的证据表明,衰老细胞保持着高水平的eIF2α磷酸化,这是ISR激活的典型表现,但通过无效绕过抑制性上游开放阅读框(uORF),翻译抑制了应激反应激活转录因子4(ATF4)的产生。令人惊讶的是,即使在急性蛋白毒性和氨基酸饥饿胁迫下,ATF4 的翻译仍会受到抑制,从而导致应激反应的高度减弱。我们还发现,应激会增强衰老相关的分泌表型,持续重塑炎症因子的表达,而非uORF携带的ATF4 mRNA表达会抑制炎症因子的表达。因此,我们的研究结果表明,衰老细胞对应激有一种独特的反应,即增加其炎症特征。
{"title":"Senescence suppresses the integrated stress response and activates a stress-remodeled secretory phenotype","authors":"Matthew J. Payea, Showkat A. Dar, Carlos Anerillas, Jennifer L. Martindale, Cedric Belair, Rachel Munk, Sulochan Malla, Jinshui Fan, Yulan Piao, Xiaoling Yang, Abid Rehman, Nirad Banskota, Kotb Abdelmohsen, Myriam Gorospe, Manolis Maragkakis","doi":"10.1016/j.molcel.2024.10.003","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.10.003","url":null,"abstract":"Senescence is a state of indefinite cell-cycle arrest associated with aging, cancer, and age-related diseases. Here, we find that translational deregulation, together with a corresponding maladaptive integrated stress response (ISR), is a hallmark of senescence that desensitizes senescent cells to stress. We present evidence that senescent cells maintain high levels of eIF2α phosphorylation, typical of ISR activation, but translationally repress production of the stress response activating transcription factor 4 (ATF4) by ineffective bypass of the inhibitory upstream open reading frames (uORFs). Surprisingly, ATF4 translation remains inhibited even after acute proteotoxic and amino acid starvation stressors, resulting in a highly diminished stress response. We also find that stress augments the senescence-associated secretory phenotype with sustained remodeling of inflammatory factors expression that is suppressed by non-uORF carrying ATF4 mRNA expression. Our results thus show that senescent cells possess a unique response to stress, which entails an increase in their inflammatory profile.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"4 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
COLD6-OSM1 module senses chilling for cold tolerance via 2′,3′-cAMP signaling in rice 水稻中的 COLD6-OSM1 模块通过 2′,3′-cAMP 信号传导感知寒冷以提高耐寒性
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-30 DOI: 10.1016/j.molcel.2024.09.031
Wei Luo, Yunyuan Xu, Jie Cao, Xiaoyu Guo, Jingdan Han, Yuanyuan Zhang, Yuda Niu, Meiling Zhang, Yi Wang, Guohua Liang, Qian Qian, Song Ge, Kang Chong
While it is known that temperature sensors trigger calcium (Ca2+) signaling to confer cold tolerance in cells, less is known about sensors that couple with other secondary messengers. Here, we identify a cold sensor complex of CHILLING-TOLERANCE DIVERGENCE 6 (COLD6) and osmotin-like 1 (OSM1), which triggers 2′,3′-cyclic adenosine monophosphate (2′,3′-cAMP) production to enhance cold tolerance in rice. COLD6, which is encoded by a major quantitative trait locus (QTL) gene, interacts with the rice G protein α subunit (RGA1) at the plasma membrane under normal conditions. Upon exposure to chilling, cold-induced OSM1 binds to COLD6, kicking out RGA1 from interaction. This triggers an elevation of 2′,3′-cAMP levels for enhancing chilling tolerance. Genetic data show that COLD6 negatively regulates cold tolerance and functionally depends on OSM1 in chilling stress. COLD6 alleles were selected during rice domestication. Knockout and natural variation of COLD6 in hybrid rice enhanced chilling tolerance, hinting design potential for breeding. This highlighted a module triggering 2′,3′-cAMP to improve chilling tolerance in crops.
众所周知,温度传感器会触发钙(Ca2+)信号传导,从而赋予细胞耐寒性,但人们对与其他次级信使耦合的传感器却知之甚少。在这里,我们发现了一个由寒冷-耐受分化6(COLD6)和类渗透蛋白1(OSM1)组成的冷传感器复合物,它能触发2′,3′-环磷酸腺苷(2′,3′-cAMP)的产生,从而增强水稻的耐寒性。COLD6 由一个主要的数量性状基因座(QTL)基因编码,在正常情况下与质膜上的水稻 G 蛋白 α 亚基(RGA1)相互作用。在寒冷条件下,冷诱导的 OSM1 与 COLD6 结合,将 RGA1 从相互作用中踢出。这引发了 2′,3′-cAMP 水平的升高,从而增强了耐寒性。遗传数据表明,COLD6 负向调节耐寒性,并在寒冷胁迫中对 OSM1 起作用。COLD6 等位基因是在水稻驯化过程中筛选出来的。杂交水稻中 COLD6 的敲除和自然变异增强了耐寒性,为育种设计提供了潜力。这突显了一个触发 2′,3′-cAMP 的模块可提高作物的耐寒性。
{"title":"COLD6-OSM1 module senses chilling for cold tolerance via 2′,3′-cAMP signaling in rice","authors":"Wei Luo, Yunyuan Xu, Jie Cao, Xiaoyu Guo, Jingdan Han, Yuanyuan Zhang, Yuda Niu, Meiling Zhang, Yi Wang, Guohua Liang, Qian Qian, Song Ge, Kang Chong","doi":"10.1016/j.molcel.2024.09.031","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.09.031","url":null,"abstract":"While it is known that temperature sensors trigger calcium (Ca<sup>2+</sup>) signaling to confer cold tolerance in cells, less is known about sensors that couple with other secondary messengers. Here, we identify a cold sensor complex of CHILLING-TOLERANCE DIVERGENCE 6 (COLD6) and osmotin-like 1 (OSM1), which triggers 2′,3′-cyclic adenosine monophosphate (2′,3′-cAMP) production to enhance cold tolerance in rice. COLD6, which is encoded by a major quantitative trait locus (QTL) gene, interacts with the rice G protein α subunit (RGA1) at the plasma membrane under normal conditions. Upon exposure to chilling, cold-induced OSM1 binds to COLD6, kicking out RGA1 from interaction. This triggers an elevation of 2′,3′-cAMP levels for enhancing chilling tolerance. Genetic data show that COLD6 negatively regulates cold tolerance and functionally depends on OSM1 in chilling stress. <em>COLD6</em> alleles were selected during rice domestication. Knockout and natural variation of <em>COLD6</em> in hybrid rice enhanced chilling tolerance, hinting design potential for breeding. This highlighted a module triggering 2′,3′-cAMP to improve chilling tolerance in crops.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"17 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tumor-suppressive activities for pogo transposable element derived with KRAB domain via ribosome biogenesis restriction 带有 KRAB 结构域的 pogo 转座元件通过核糖体生物生成限制产生抑癌活性
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-30 DOI: 10.1016/j.molcel.2024.09.025
Zhenbo Tu, Mahmoud A. Bassal, George W. Bell, Yanzhou Zhang, Yi Hu, Liza M. Quintana, Deeptha Gokul, Daniel G. Tenen, Antoine E. Karnoub
Transposable elements (TEs) are indispensable for human development, with critical functions in pluripotency and embryogenesis. TE sequences also contribute to human pathologies, especially cancer, with documented activities as cis/trans transcriptional regulators, as sources of non-coding RNAs, and as mutagens that disrupt tumor suppressors. Despite this knowledge, little is known regarding the involvement of TE-derived genes (TEGs) in tumor pathogenesis. Here, systematic analyses of TEG expression across human cancer reveal a prominent role for pogo TE derived with KRAB domain (POGK). We show that POGK acts as a tumor suppressor in triple-negative breast cancer (TNBC) cells and that it couples with the co-repressor TRIM28 to directly block the transcription of ribosomal genes RPS16 and RPS29, in turn causing widespread inhibition of ribosomal biogenesis. We report that POGK undergoes deactivation by isoform switching in clinical TNBC, altogether revealing its exapted activities in tumor growth control.
可转座元件(TE)是人类发育过程中不可或缺的元素,在多能性和胚胎发生过程中发挥着关键作用。可转座元件序列作为顺式/反式转录调控因子、非编码 RNA 的来源以及破坏肿瘤抑制因子的突变因子,对人类病症(尤其是癌症)也有贡献。尽管有这些知识,但人们对 TE 衍生基因(TEG)参与肿瘤发病机制的情况知之甚少。在这里,对人类癌症中 TEG 表达的系统分析揭示了具有 KRAB 结构域的 pogo TE 派生基因(POGK)的重要作用。我们发现,POGK 在三阴性乳腺癌(TNBC)细胞中充当肿瘤抑制因子,它与共抑制因子 TRIM28 相互耦合,直接阻断核糖体基因 RPS16 和 RPS29 的转录,进而导致核糖体生物发生的广泛抑制。我们报告说,在临床 TNBC 中,POGK 通过异构体转换而失活,从而揭示了它在肿瘤生长控制中的特殊活性。
{"title":"Tumor-suppressive activities for pogo transposable element derived with KRAB domain via ribosome biogenesis restriction","authors":"Zhenbo Tu, Mahmoud A. Bassal, George W. Bell, Yanzhou Zhang, Yi Hu, Liza M. Quintana, Deeptha Gokul, Daniel G. Tenen, Antoine E. Karnoub","doi":"10.1016/j.molcel.2024.09.025","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.09.025","url":null,"abstract":"Transposable elements (TEs) are indispensable for human development, with critical functions in pluripotency and embryogenesis. TE sequences also contribute to human pathologies, especially cancer, with documented activities as <em>cis</em>/<em>trans</em> transcriptional regulators, as sources of non-coding RNAs, and as mutagens that disrupt tumor suppressors. Despite this knowledge, little is known regarding the involvement of TE-derived genes (TEGs) in tumor pathogenesis. Here, systematic analyses of TEG expression across human cancer reveal a prominent role for pogo TE derived with KRAB domain (POGK). We show that POGK acts as a tumor suppressor in triple-negative breast cancer (TNBC) cells and that it couples with the co-repressor TRIM28 to directly block the transcription of ribosomal genes RPS16 and RPS29, in turn causing widespread inhibition of ribosomal biogenesis. We report that POGK undergoes deactivation by isoform switching in clinical TNBC, altogether revealing its exapted activities in tumor growth control.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"26 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Excessive MYC-topoisome activity triggers acute DNA damage, MYC degradation, and replacement by a p53-topoisome 过度的 MYC-拓扑结构活性会引发急性 DNA 损伤、MYC 降解并被 p53-拓扑结构所取代
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-30 DOI: 10.1016/j.molcel.2024.10.006
Subhendu K. Das, Sharmistha Karmakar, Harish Venkatachalapathy, Rajiv Kumar Jha, Eric Batchelor, David Levens
Hyperproliferation driven by the protooncogene MYC may lead to tumor suppressor p53 activating DNA damage that has been presumed to derive from hypertranscription and over-replication. Here, we report that excessive MYC-topoisome (MYC/topoisomerase 1/topoisomerase 2) activity acutely damages DNA-activating pATM and p53. In turn, MYC is shut off and degraded, releasing TOP1 and TOP2A from MYC topoisomes in vitro and in vivo. To manage the topological and torsional stress generated at its target genes, p53 assembles a separate topoisome. Because topoisomerase activity is intrinsically DNA damaging, p53 topoisomes provoke an initial burst of DNA damage. Because p53, unlike MYC, upregulates the DNA-damage response (DDR) and activates tyrosyl-DNA-phosphodiesterase (TDP) 1 and TDP2, it suppresses further topoisome-mediated damage. The physical coupling and activation of TOP1 and TOP2 by p53 creates a tool that supports p53-target expression while braking MYC-driven proliferation in mammalian cells.
原癌基因 MYC 驱动的过度增殖可能会导致肿瘤抑制因子 p53 激活 DNA 损伤,而这种损伤被认为来自于过度转录和过度复制。在这里,我们报告了过度的 MYC-拓扑异构体(MYC/拓扑异构酶 1/拓扑异构酶 2)活性会急性损伤激活 pATM 和 p53 的 DNA。反过来,MYC 被关闭和降解,在体外和体内从 MYC 拓扑异构体中释放出 TOP1 和 TOP2A。为了管理在其靶基因上产生的拓扑和扭转压力,p53 组装了一个独立的拓扑异构体。由于拓扑异构酶活性本质上具有 DNA 损伤性,p53 拓扑体会引发最初的 DNA 损伤爆发。与 MYC 不同,p53 会上调 DNA 损伤反应(DDR)并激活酪氨酰-DNA 磷酸二酯酶(TDP)1 和 TDP2,从而抑制拓扑异构体介导的进一步损伤。p53 对 TOP1 和 TOP2 的物理耦合和激活创造了一种工具,在支持 p53 目标表达的同时,抑制哺乳动物细胞中 MYC 驱动的增殖。
{"title":"Excessive MYC-topoisome activity triggers acute DNA damage, MYC degradation, and replacement by a p53-topoisome","authors":"Subhendu K. Das, Sharmistha Karmakar, Harish Venkatachalapathy, Rajiv Kumar Jha, Eric Batchelor, David Levens","doi":"10.1016/j.molcel.2024.10.006","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.10.006","url":null,"abstract":"Hyperproliferation driven by the protooncogene MYC may lead to tumor suppressor p53 activating DNA damage that has been presumed to derive from hypertranscription and over-replication. Here, we report that excessive MYC-topoisome (MYC/topoisomerase 1/topoisomerase 2) activity acutely damages DNA-activating pATM and p53. In turn, MYC is shut off and degraded, releasing TOP1 and TOP2A from MYC topoisomes <em>in vitro</em> and <em>in vivo</em>. To manage the topological and torsional stress generated at its target genes, p53 assembles a separate topoisome. Because topoisomerase activity is intrinsically DNA damaging, p53 topoisomes provoke an initial burst of DNA damage. Because p53, unlike MYC, upregulates the DNA-damage response (DDR) and activates tyrosyl-DNA-phosphodiesterase (TDP) 1 and TDP2, it suppresses further topoisome-mediated damage. The physical coupling and activation of TOP1 and TOP2 by p53 creates a tool that supports p53-target expression while braking MYC-driven proliferation in mammalian cells.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"15 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transient promoter interactions modulate developmental gene activation 瞬时启动子相互作用调节发育基因的激活
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-29 DOI: 10.1016/j.molcel.2024.10.005
Sylvia Mahara, Sonja Prüssing, Valeriia Smialkovska, Samuel Krall, Susannah Holliman, Belinda Blum, Victoria Dachtler, Helena Borgers, Etienne Sollier, Christoph Plass, Angelika Feldmann
Transcriptional induction coincides with the formation of various chromatin topologies. Strong evidence supports that gene activation is accompanied by a general increase in promoter-enhancer interactions. However, it remains unclear how these topological changes are coordinated across time and space during transcriptional activation. Here, we combine chromatin conformation capture with transcription and chromatin profiling during an embryonic stem cell (ESC) differentiation time course to determine how 3D genome restructuring is related to transcriptional transitions. This approach allows us to identify distinct topological alterations that are associated with the magnitude of transcriptional induction. We detect transiently formed interactions and demonstrate by genetic deletions that associated distal regulatory elements (DREs), as well as appropriate formation and disruption of these interactions, can contribute to the transcriptional induction of linked genes. Together, our study links topological dynamics to the magnitude of transcriptional induction and detects an uncharacterized type of transcriptionally important DREs.
转录诱导与各种染色质拓扑结构的形成相吻合。强有力的证据表明,基因激活伴随着启动子-增强子相互作用的普遍增加。然而,目前仍不清楚在转录激活过程中,这些拓扑结构的变化是如何在时间和空间上协调的。在这里,我们将染色质构象捕获与胚胎干细胞(ESC)分化过程中的转录和染色质图谱分析相结合,以确定三维基因组重组与转录转换之间的关系。通过这种方法,我们可以确定与转录诱导程度相关的不同拓扑学改变。我们检测了瞬时形成的相互作用,并通过基因缺失证明了相关的远端调控元件(DREs)以及这些相互作用的适当形成和破坏可促进相关基因的转录诱导。总之,我们的研究将拓扑动态与转录诱导的幅度联系起来,并发现了一种未被描述的具有转录重要意义的 DREs 类型。
{"title":"Transient promoter interactions modulate developmental gene activation","authors":"Sylvia Mahara, Sonja Prüssing, Valeriia Smialkovska, Samuel Krall, Susannah Holliman, Belinda Blum, Victoria Dachtler, Helena Borgers, Etienne Sollier, Christoph Plass, Angelika Feldmann","doi":"10.1016/j.molcel.2024.10.005","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.10.005","url":null,"abstract":"Transcriptional induction coincides with the formation of various chromatin topologies. Strong evidence supports that gene activation is accompanied by a general increase in promoter-enhancer interactions. However, it remains unclear how these topological changes are coordinated across time and space during transcriptional activation. Here, we combine chromatin conformation capture with transcription and chromatin profiling during an embryonic stem cell (ESC) differentiation time course to determine how 3D genome restructuring is related to transcriptional transitions. This approach allows us to identify distinct topological alterations that are associated with the magnitude of transcriptional induction. We detect transiently formed interactions and demonstrate by genetic deletions that associated distal regulatory elements (DREs), as well as appropriate formation and disruption of these interactions, can contribute to the transcriptional induction of linked genes. Together, our study links topological dynamics to the magnitude of transcriptional induction and detects an uncharacterized type of transcriptionally important DREs.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"126 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Palmitoylation licenses RIPK1 kinase activity and cytotoxicity in the TNF pathway 棕榈酰化许可 TNF 通路中的 RIPK1 激酶活性和细胞毒性
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-28 DOI: 10.1016/j.molcel.2024.10.002
Na Zhang, Jianping Liu, Rui Guo, Lingjie Yan, Yuanxin Yang, Chen Shi, Mengmeng Zhang, Bing Shan, Wanjin Li, Jinyang Gu, Daichao Xu
Tumor necrosis factor (TNF)-induced receptor-interacting serine/threonine protein kinase 1 (RIPK1)-mediated cell death, including apoptosis and necroptosis, is increasingly recognized as a major driver of inflammatory diseases. Cell death checkpoints normally suppress RIPK1 kinase to safeguard the organism from its detrimental consequences. However, the mechanisms licensing RIPK1 kinase activity when a protective checkpoint is disabled remain unclear. Here, we identified S-palmitoylation as a licensing modification for RIPK1 kinase. TNF induces RIPK1 palmitoylation, mediated by DHHC5 and dependent on K63-linked ubiquitination of RIPK1, which enhances RIPK1 kinase activity by promoting the homo-interaction of its kinase domain and promotes cell death upon cell death checkpoint blockade. Furthermore, DHHC5 is amplified by fatty acid in the livers of mice with metabolic dysfunction-associated steatohepatitis, contributing to increased RIPK1 cytotoxicity observed in this condition. Our findings reveal that ubiquitination-dependent palmitoylation licenses RIPK1 kinase activity to induce downstream cell death signaling and suggest RIPK1 palmitoylation as a feasible target for inflammatory diseases.
肿瘤坏死因子(TNF)诱导的受体丝氨酸/苏氨酸蛋白激酶 1(RIPK1)介导的细胞死亡(包括细胞凋亡和坏死)越来越被认为是炎症性疾病的主要驱动因素。细胞死亡检查点通常会抑制 RIPK1 激酶,以保护生物体免受其有害后果的影响。然而,当保护性检查点失效时,许可 RIPK1 激酶活性的机制仍不清楚。在这里,我们发现S-棕榈酰化是RIPK1激酶的一种许可修饰。TNF诱导RIPK1棕榈酰化,由DHHC5介导,依赖于RIPK1的K63连接泛素化,通过促进其激酶结构域的同源相互作用增强RIPK1激酶活性,并在细胞死亡检查点阻断后促进细胞死亡。此外,在患有代谢功能障碍相关性脂肪性肝炎的小鼠肝脏中,DHHC5会被脂肪酸放大,从而导致在这种情况下观察到的RIPK1细胞毒性增强。我们的研究结果表明,泛素化依赖的棕榈酰化作用会许可 RIPK1 激酶的活性,从而诱导下游细胞死亡信号转导,这表明 RIPK1 棕榈酰化作用是治疗炎症性疾病的一个可行靶点。
{"title":"Palmitoylation licenses RIPK1 kinase activity and cytotoxicity in the TNF pathway","authors":"Na Zhang, Jianping Liu, Rui Guo, Lingjie Yan, Yuanxin Yang, Chen Shi, Mengmeng Zhang, Bing Shan, Wanjin Li, Jinyang Gu, Daichao Xu","doi":"10.1016/j.molcel.2024.10.002","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.10.002","url":null,"abstract":"Tumor necrosis factor (TNF)-induced receptor-interacting serine/threonine protein kinase 1 (RIPK1)-mediated cell death, including apoptosis and necroptosis, is increasingly recognized as a major driver of inflammatory diseases. Cell death checkpoints normally suppress RIPK1 kinase to safeguard the organism from its detrimental consequences. However, the mechanisms licensing RIPK1 kinase activity when a protective checkpoint is disabled remain unclear. Here, we identified <em>S</em>-palmitoylation as a licensing modification for RIPK1 kinase. TNF induces RIPK1 palmitoylation, mediated by DHHC5 and dependent on K63-linked ubiquitination of RIPK1, which enhances RIPK1 kinase activity by promoting the homo-interaction of its kinase domain and promotes cell death upon cell death checkpoint blockade. Furthermore, DHHC5 is amplified by fatty acid in the livers of mice with metabolic dysfunction-associated steatohepatitis, contributing to increased RIPK1 cytotoxicity observed in this condition. Our findings reveal that ubiquitination-dependent palmitoylation licenses RIPK1 kinase activity to induce downstream cell death signaling and suggest RIPK1 palmitoylation as a feasible target for inflammatory diseases.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"50 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Cell
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1