首页 > 最新文献

Molecular Cell最新文献

英文 中文
BRCA1 levels and DNA-damage response are controlled by the competitive binding of circHIPK3 or FMRP to the BRCA1 mRNA BRCA1水平和DNA损伤反应受控于circHIPK3或FMRP与BRCA1 mRNA的竞争性结合
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-09 DOI: 10.1016/j.molcel.2024.09.016
Chiara Grelloni, Raffaele Garraffo, Adriano Setti, Francesca Rossi, Giovanna Peruzzi, Mario Cinquanta, Maria Carmela Di Rosa, Marco Alessandro Pierotti, Manuel Beltran, Irene Bozzoni
Circular RNAs (circRNAs) are covalently closed RNA molecules widely expressed in eukaryotes and deregulated in several pathologies, including cancer. Many studies point to their activity as microRNAs (miRNAs) and protein sponges; however, we propose a function based on circRNA-mRNA interaction to regulate mRNA fate. We show that the widely tumor-associated circHIPK3 directly interacts in vivo with the BRCA1 mRNA through the back-splicing region in human cancer cells. This interaction increases BRCA1 translation by competing for the binding of the fragile-X mental retardation 1 protein (FMRP) protein, which we identified as a BRCA1 translational repressor. CircHIPK3 depletion or disruption of the circRNA-mRNA interaction decreases BRCA1 protein levels and increases DNA damage, sensitizing several cancer cells to DNA-damage-inducing agents and rendering them susceptible to synthetic lethality. Additionally, blocking FMRP interaction with BRCA1 mRNA with locked nucleic acid (LNA) restores physiological protein levels in BRCA1 hemizygous breast cancer cells, underscoring the importance of this circRNA-mRNA interaction in regulating DNA-damage response.
环状 RNA(circRNA)是在真核生物中广泛表达的共价闭合 RNA 分子,在包括癌症在内的多种病理过程中都会发生失调。许多研究指出它们具有作为微RNA(miRNA)和蛋白质海绵的活性;然而,我们提出了一种基于circRNA-mRNA相互作用的功能,以调控mRNA的命运。我们发现,在人类癌细胞中,与肿瘤广泛相关的 circHIPK3 通过反向剪接区与 BRCA1 mRNA 直接相互作用。这种相互作用通过竞争fragile-X mental retardation 1 protein (FMRP)蛋白的结合来增加BRCA1的翻译。CircHIPK3耗竭或circRNA-mRNA相互作用中断会降低BRCA1蛋白水平并增加DNA损伤,使一些癌细胞对DNA损伤诱导剂敏感,并使它们易受合成致死的影响。此外,用锁定核酸(LNA)阻断 FMRP 与 BRCA1 mRNA 的相互作用可恢复 BRCA1 半合子乳腺癌细胞的生理性蛋白水平,这突出了 circRNA-mRNA 相互作用在调节 DNA 损伤反应中的重要性。
{"title":"BRCA1 levels and DNA-damage response are controlled by the competitive binding of circHIPK3 or FMRP to the BRCA1 mRNA","authors":"Chiara Grelloni, Raffaele Garraffo, Adriano Setti, Francesca Rossi, Giovanna Peruzzi, Mario Cinquanta, Maria Carmela Di Rosa, Marco Alessandro Pierotti, Manuel Beltran, Irene Bozzoni","doi":"10.1016/j.molcel.2024.09.016","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.09.016","url":null,"abstract":"Circular RNAs (circRNAs) are covalently closed RNA molecules widely expressed in eukaryotes and deregulated in several pathologies, including cancer. Many studies point to their activity as microRNAs (miRNAs) and protein sponges; however, we propose a function based on circRNA-mRNA interaction to regulate mRNA fate. We show that the widely tumor-associated <em>circHIPK3</em> directly interacts <em>in vivo</em> with the <em>BRCA1</em> mRNA through the back-splicing region in human cancer cells. This interaction increases <em>BRCA1</em> translation by competing for the binding of the fragile-X mental retardation 1 protein (FMRP) protein, which we identified as a <em>BRCA1</em> translational repressor. <em>CircHIPK3</em> depletion or disruption of the circRNA-mRNA interaction decreases BRCA1 protein levels and increases DNA damage, sensitizing several cancer cells to DNA-damage-inducing agents and rendering them susceptible to synthetic lethality. Additionally, blocking FMRP interaction with <em>BRCA1</em> mRNA with locked nucleic acid (LNA) restores physiological protein levels in BRCA1 hemizygous breast cancer cells, underscoring the importance of this circRNA-mRNA interaction in regulating DNA-damage response.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"57 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HOXDeRNA activates a cancerous transcription program and super enhancers via genome-wide binding HOXDeRNA 通过全基因组结合激活癌症转录程序和超级增强子
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-08 DOI: 10.1016/j.molcel.2024.09.018
Evgeny Deforzh, Prakash Kharel, Yanhong Zhang, Anton Karelin, Abdellatif El Khayari, Pavel Ivanov, Anna M. Krichevsky
The role of long non-coding RNAs (lncRNAs) in malignant cell transformation remains elusive. We previously identified an enhancer-associated lncRNA, LINC01116 (named HOXDeRNA), as a transformative factor converting human astrocytes into glioma-like cells. Employing a combination of CRISPR editing, chromatin isolation by RNA purification coupled with sequencing (ChIRP-seq), in situ mapping RNA-genome interactions (iMARGI), chromatin immunoprecipitation sequencing (ChIP-seq), HiC, and RNA/DNA FISH, we found that HOXDeRNA directly binds to CpG islands within the promoters of 35 glioma-specific transcription factors (TFs) distributed throughout the genome, including key stem cell TFs SOX2, OLIG2, POU3F2, and ASCL1, liberating them from PRC2 repression. This process requires a distinct RNA quadruplex structure and other segments of HOXDeRNA, interacting with EZH2 and CpGs, respectively. Subsequent transformation activates multiple oncogenes (e.g., EGFR, miR-21, and WEE1), driven by the SOX2- and OLIG2-dependent glioma-specific super enhancers. These results help reconstruct the sequence of events underlying the process of astrocyte transformation, highlighting HOXDeRNA’s central genome-wide activity and suggesting a shared RNA-dependent mechanism in otherwise heterogeneous and multifactorial gliomagenesis.
长非编码 RNA(lncRNA)在恶性细胞转化中的作用仍然难以捉摸。我们之前发现了一种增强子相关的lncRNA--LINC01116(命名为HOXDeRNA),它是将人类星形胶质细胞转化为胶质瘤样细胞的转化因子。我们结合使用了 CRISPR 编辑、染色质分离 RNA 纯化测序(ChIRP-seq)、原位绘制 RNA 基因组相互作用(iMARGI)、染色质免疫沉淀测序(ChIP-seq)、HiC 和 RNA/DNA FISH、我们发现,HOXDeRNA直接与分布在整个基因组的35个胶质瘤特异性转录因子(TFs)启动子内的CpG岛结合,包括关键的干细胞TFs SOX2、OLIG2、POU3F2和ASCL1,使它们摆脱PRC2的抑制。这一过程需要独特的 RNA 四重结构和 HOXDeRNA 的其他片段,它们分别与 EZH2 和 CpGs 相互作用。随后的转化会激活多种癌基因(如表皮生长因子受体、miR-21 和 WEE1),并由 SOX2- 和 OLIG2 依赖性胶质瘤特异性超级增强子驱动。这些结果有助于重构星形胶质细胞转化过程的事件序列,突出了 HOXDeRNA 在全基因组中的核心活性,并表明在其他异质性和多因素的胶质瘤发生过程中存在一种共享的 RNA 依赖性机制。
{"title":"HOXDeRNA activates a cancerous transcription program and super enhancers via genome-wide binding","authors":"Evgeny Deforzh, Prakash Kharel, Yanhong Zhang, Anton Karelin, Abdellatif El Khayari, Pavel Ivanov, Anna M. Krichevsky","doi":"10.1016/j.molcel.2024.09.018","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.09.018","url":null,"abstract":"The role of long non-coding RNAs (lncRNAs) in malignant cell transformation remains elusive. We previously identified an enhancer-associated lncRNA, LINC01116 (named HOXDeRNA), as a transformative factor converting human astrocytes into glioma-like cells. Employing a combination of CRISPR editing, chromatin isolation by RNA purification coupled with sequencing (ChIRP-seq), <em>in situ</em> mapping RNA-genome interactions (iMARGI), chromatin immunoprecipitation sequencing (ChIP-seq), HiC, and RNA/DNA FISH, we found that HOXDeRNA directly binds to CpG islands within the promoters of 35 glioma-specific transcription factors (TFs) distributed throughout the genome, including key stem cell TFs SOX2, OLIG2, POU3F2, and ASCL1, liberating them from PRC2 repression. This process requires a distinct RNA quadruplex structure and other segments of HOXDeRNA, interacting with EZH2 and CpGs, respectively. Subsequent transformation activates multiple oncogenes (e.g., EGFR, miR-21, and WEE1), driven by the SOX2- and OLIG2-dependent glioma-specific super enhancers. These results help reconstruct the sequence of events underlying the process of astrocyte transformation, highlighting HOXDeRNA’s central genome-wide activity and suggesting a shared RNA-dependent mechanism in otherwise heterogeneous and multifactorial gliomagenesis.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"51 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142384292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inactive Parp2 causes Tp53-dependent lethal anemia by blocking replication-associated nick ligation in erythroblasts 非活性 Parp2 通过阻断红细胞中与复制相关的缺口连接,导致 Tp53 依赖性致死性贫血
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-08 DOI: 10.1016/j.molcel.2024.09.020
Xiaohui Lin, Dipika Gupta, Alina Vaitsiankova, Seema Khattri Bhandari, Kay Sze Karina Leung, Demis Menolfi, Brian J. Lee, Helen R. Russell, Steven Gershik, Xiaoyu Huang, Wei Gu, Peter J. McKinnon, Françoise Dantzer, Eli Rothenberg, Alan E. Tomkinson, Shan Zha
Poly (ADP-ribose) polymerase (PARP) 1 and 2 enzymatic inhibitors (PARPi) are promising cancer treatments. But recently, their use has been hindered by unexplained severe anemia and treatment-related leukemia. In addition to enzymatic inhibition, PARPi also trap PARP1 and 2 at DNA lesions. Here we report that, unlike Parp2−/− mice, which develop normally, mice expressing catalytically inactive Parp2 (E534A and Parp2EA/EA) succumb to Tp53- and Chk2-dependent erythropoietic failure in utero, mirroring Lig1−/− mice. While DNA damage mainly activates PARP1, we demonstrate that DNA replication activates PARP2 robustly. PARP2 is selectively recruited and activated by 5′-phosphorylated nicks (5′p-nicks), including those between Okazaki fragments, resolved by ligase 1 (Lig1) and Lig3. Inactive PARP2, but not its active form or absence, impedes Lig1- and Lig3-mediated ligation, causing dose-dependent replication fork collapse, which is detrimental to erythroblasts with ultra-fast forks. This PARylation-dependent structural function of PARP2 at 5′p-nicks explains the detrimental effects of PARP2 inactivation on erythropoiesis, shedding light on PARPi-induced anemia and the selection for TP53/CHK2 loss.
聚(ADP-核糖)聚合酶(PARP)1 和 2 酶抑制剂(PARPi)是一种很有前景的癌症治疗方法。但最近,这些药物的使用受到了不明原因的严重贫血和治疗相关性白血病的阻碍。除了酶抑制作用外,PARPi 还能将 PARP1 和 2 困在 DNA 病变处。我们在此报告,与正常发育的 Parp2-/-小鼠不同,表达无催化活性的 Parp2(E534A 和 Parp2EA/EA)的小鼠在子宫内会出现 Tp53 和 Chk2 依赖性红细胞生成障碍,这与 Lig1-/- 小鼠的情况如出一辙。虽然 DNA 损伤主要激活 PARP1,但我们证明 DNA 复制能强有力地激活 PARP2。PARP2会被5′-磷酸化缺口(5′p-缺口)选择性地招募和激活,包括被连接酶1(Lig1)和Lig3分解的冈崎片段之间的缺口。非活性 PARP2(而非其活性形式或缺失)会阻碍 Lig1 和 Lig3 介导的连接,导致剂量依赖性复制叉崩溃,这对具有超快复制叉的红细胞是有害的。PARP2 在 5′p 缺口处的这种 PARylation 依赖性结构功能解释了 PARP2 失活对红细胞生成的不利影响,揭示了 PARPi 诱导的贫血和 TP53/CHK2 缺失的选择。
{"title":"Inactive Parp2 causes Tp53-dependent lethal anemia by blocking replication-associated nick ligation in erythroblasts","authors":"Xiaohui Lin, Dipika Gupta, Alina Vaitsiankova, Seema Khattri Bhandari, Kay Sze Karina Leung, Demis Menolfi, Brian J. Lee, Helen R. Russell, Steven Gershik, Xiaoyu Huang, Wei Gu, Peter J. McKinnon, Françoise Dantzer, Eli Rothenberg, Alan E. Tomkinson, Shan Zha","doi":"10.1016/j.molcel.2024.09.020","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.09.020","url":null,"abstract":"Poly (ADP-ribose) polymerase (PARP) 1 and 2 enzymatic inhibitors (PARPi) are promising cancer treatments. But recently, their use has been hindered by unexplained severe anemia and treatment-related leukemia. In addition to enzymatic inhibition, PARPi also trap PARP1 and 2 at DNA lesions. Here we report that, unlike <em>Parp2</em><sup><em>−/−</em></sup> mice, which develop normally, mice expressing catalytically inactive Parp2 (E534A and <em>Parp2</em><sup><em>EA/EA</em></sup>) succumb to <em>Tp53</em>- and <em>Chk2</em>-dependent erythropoietic failure <em>in utero</em>, mirroring <em>Lig1</em><sup><em>−/−</em></sup> mice. While DNA damage mainly activates PARP1, we demonstrate that DNA replication activates PARP2 robustly. PARP2 is selectively recruited and activated by 5′-phosphorylated nicks (5′p-nicks), including those between Okazaki fragments, resolved by ligase 1 (Lig1) and Lig3. Inactive PARP2, but not its active form or absence, impedes Lig1- and Lig3-mediated ligation, causing dose-dependent replication fork collapse, which is detrimental to erythroblasts with ultra-fast forks. This PARylation-dependent structural function of PARP2 at 5′p-nicks explains the detrimental effects of PARP2 inactivation on erythropoiesis, shedding light on PARPi-induced anemia and the selection for TP53/CHK2 loss.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"14 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142384289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The H3.3K36M oncohistone disrupts the establishment of epigenetic memory through loss of DNA methylation H3.3K36M 同源组蛋白通过 DNA 甲基化的丧失破坏表观遗传记忆的建立
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-04 DOI: 10.1016/j.molcel.2024.09.015
Joydeb Sinha, Jan F. Nickels, Abby R. Thurm, Connor H. Ludwig, Bella N. Archibald, Michaela M. Hinks, Jun Wan, Dong Fang, Lacramioara Bintu
Histone H3.3 is frequently mutated in tumors, with the lysine 36 to methionine mutation (K36M) being a hallmark of chondroblastomas. While it is known that H3.3K36M changes the epigenetic landscape, its effects on gene expression dynamics remain unclear. Here, we use a synthetic reporter to measure the effects of H3.3K36M on silencing and epigenetic memory after recruitment of the ZNF10 Krüppel-associated box (KRAB) domain, part of the largest class of human repressors and associated with H3K9me3 deposition. We find that H3.3K36M, which decreases H3K36 methylation and increases histone acetylation, leads to a decrease in epigenetic memory and promoter methylation weeks after KRAB release. We propose a model for establishment and maintenance of epigenetic memory, where the H3K36 methylation pathway is necessary to maintain histone deacetylation and convert H3K9me3 domains into DNA methylation for stable epigenetic memory. Our quantitative model can inform oncogenic mechanisms and guide development of epigenetic editing tools.
组蛋白 H3.3 经常在肿瘤中发生突变,其中赖氨酸 36 变蛋氨酸突变(K36M)是软骨母细胞瘤的特征之一。众所周知,H3.3K36M 会改变表观遗传景观,但它对基因表达动态的影响仍不清楚。在这里,我们使用一种合成报告基因来测量 H3.3K36M 招募 ZNF10 Krüppel-associated box(KRAB)结构域后对沉默和表观遗传记忆的影响,ZNF10 Krüppel-associated box(KRAB)结构域是人类最大一类抑制因子的一部分,与 H3K9me3 沉积有关。我们发现,H3.3K36M 会减少 H3K36 甲基化,增加组蛋白乙酰化,从而导致表观遗传记忆和启动子甲基化在 KRAB 释放数周后减少。我们提出了一个建立和维持表观遗传记忆的模型,在该模型中,H3K36甲基化途径是维持组蛋白去乙酰化和将H3K9me3域转化为DNA甲基化以获得稳定的表观遗传记忆所必需的。我们的定量模型可以为致癌机制提供信息,并指导表观遗传编辑工具的开发。
{"title":"The H3.3K36M oncohistone disrupts the establishment of epigenetic memory through loss of DNA methylation","authors":"Joydeb Sinha, Jan F. Nickels, Abby R. Thurm, Connor H. Ludwig, Bella N. Archibald, Michaela M. Hinks, Jun Wan, Dong Fang, Lacramioara Bintu","doi":"10.1016/j.molcel.2024.09.015","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.09.015","url":null,"abstract":"Histone H3.3 is frequently mutated in tumors, with the lysine 36 to methionine mutation (K36M) being a hallmark of chondroblastomas. While it is known that H3.3K36M changes the epigenetic landscape, its effects on gene expression dynamics remain unclear. Here, we use a synthetic reporter to measure the effects of H3.3K36M on silencing and epigenetic memory after recruitment of the ZNF10 Krüppel-associated box (KRAB) domain, part of the largest class of human repressors and associated with H3K9me3 deposition. We find that H3.3K36M, which decreases H3K36 methylation and increases histone acetylation, leads to a decrease in epigenetic memory and promoter methylation weeks after KRAB release. We propose a model for establishment and maintenance of epigenetic memory, where the H3K36 methylation pathway is necessary to maintain histone deacetylation and convert H3K9me3 domains into DNA methylation for stable epigenetic memory. Our quantitative model can inform oncogenic mechanisms and guide development of epigenetic editing tools.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"51 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The structural landscape of Microprocessor-mediated processing of pri-let-7 miRNAs 微处理器介导的 pri-let-7 miRNA 处理结构图
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-04 DOI: 10.1016/j.molcel.2024.09.008
Ankur Garg, Renfu Shang, Todor Cvetanovic, Eric C. Lai, Leemor Joshua-Tor
MicroRNA (miRNA) biogenesis is initiated upon cleavage of a primary miRNA (pri-miRNA) hairpin by the Microprocessor (MP), composed of the Drosha RNase III enzyme and its partner DGCR8. Multiple pri-miRNA sequence motifs affect MP recognition, fidelity, and efficiency. Here, we performed cryoelectron microscopy (cryo-EM) and biochemical studies of several let-7 family pri-miRNAs in complex with human MP. We show that MP has the structural plasticity to accommodate a range of pri-miRNAs. These structures revealed key features of the 5′ UG sequence motif, more comprehensively represented as the “flipped U with paired N” (fUN) motif. Our analysis explains how cleavage of class-II pri-let-7 members harboring a bulged nucleotide generates a non-canonical precursor with a 1-nt 3′ overhang. Finally, the MP-SRSF3-pri-let-7f1 structure reveals how SRSF3 contributes to MP fidelity by interacting with the CNNC motif and Drosha’s Piwi/Argonaute/Zwille (PAZ)-like domain. Overall, this study sheds light on the mechanisms for flexible recognition, accurate cleavage, and regulated processing of different pri-miRNAs by MP.
由 Drosha RNase III 酶及其伙伴 DGCR8 组成的微处理器(MP)对初级 miRNA(pri-miRNA)发夹进行切割后,就开始了微 RNA(miRNA)的生物生成。多种 pri-miRNA 序列基序会影响 MP 的识别、保真度和效率。在这里,我们对几种与人类 MP 复合的 let-7 家族 pri-miRNA 进行了冷冻电子显微镜(cryo-EM)和生化研究。我们发现 MP 具有结构可塑性,可以容纳一系列 pri-miRNA。这些结构揭示了 5′ UG 序列基序的关键特征,更全面地表述为 "带成对 N 的翻转 U"(fUN)基序。我们的分析解释了携带凸起核苷酸的 II 类 pri-let-7 成员如何通过裂解产生具有 1-nt 3′ 悬垂的非经典前体。最后,MP-SRSF3-pri-let-7f1结构揭示了SRSF3如何通过与CNNC基序和Drosha的Piwi/Argonaute/Zwille(PAZ)样结构域相互作用来促进MP的保真度。总之,这项研究揭示了 MP 灵活识别、准确切割和调控处理不同 pri-miRNA 的机制。
{"title":"The structural landscape of Microprocessor-mediated processing of pri-let-7 miRNAs","authors":"Ankur Garg, Renfu Shang, Todor Cvetanovic, Eric C. Lai, Leemor Joshua-Tor","doi":"10.1016/j.molcel.2024.09.008","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.09.008","url":null,"abstract":"MicroRNA (miRNA) biogenesis is initiated upon cleavage of a primary miRNA (pri-miRNA) hairpin by the Microprocessor (MP), composed of the Drosha RNase III enzyme and its partner DGCR8. Multiple pri-miRNA sequence motifs affect MP recognition, fidelity, and efficiency. Here, we performed cryoelectron microscopy (cryo-EM) and biochemical studies of several let-7 family pri-miRNAs in complex with human MP. We show that MP has the structural plasticity to accommodate a range of pri-miRNAs. These structures revealed key features of the 5′ UG sequence motif, more comprehensively represented as the “flipped U with paired N” (fUN) motif. Our analysis explains how cleavage of class-II pri-let-7 members harboring a bulged nucleotide generates a non-canonical precursor with a 1-nt 3′ overhang. Finally, the MP-SRSF3-pri-let-7f1 structure reveals how SRSF3 contributes to MP fidelity by interacting with the CNNC motif and Drosha’s Piwi/Argonaute/Zwille (PAZ)-like domain. Overall, this study sheds light on the mechanisms for flexible recognition, accurate cleavage, and regulated processing of different pri-miRNAs by MP.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"9 8 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell-cycle-dependent mRNA localization in P-bodies 细胞周期依赖的 mRNA 在 P 体内的定位
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-04 DOI: 10.1016/j.molcel.2024.09.011
Adham Safieddine, Marie-Noëlle Benassy, Thomas Bonte, Floric Slimani, Oriane Pourcelot, Michel Kress, Michèle Ernoult-Lange, Maïté Courel, Emeline Coleno, Arthur Imbert, Antoine Laine, Annie Munier Godebert, Angelique Vinit, Corinne Blugeon, Guillaume Chevreux, Daniel Gautheret, Thomas Walter, Edouard Bertrand, Marianne Bénard, Dominique Weil
Understanding the dynamics of RNA targeting to membraneless organelles is essential to disentangle their functions. Here, we investigate how P-bodies (PBs) evolve during cell-cycle progression in HEK293 cells. PB purification across the cell cycle uncovers widespread changes in their RNA content, partly uncoupled from cell-cycle-dependent changes in RNA expression. Single-molecule fluorescence in situ hybridization (FISH) shows various mRNA localization patterns in PBs peaking in G1, S, or G2, with examples illustrating the timely capture of mRNAs in PBs when their encoded protein becomes dispensable. Rather than directly reflecting absence of translation, cyclic mRNA localization in PBs can be controlled by RBPs, such as HuR in G2, and by RNA features. Indeed, while PB mRNAs are AU rich at all cell-cycle phases, they are specifically longer in G1, possibly related to post-mitotic PB reassembly. Altogether, our study supports a model where PBs are more than a default location for excess untranslated mRNAs.
了解 RNA 靶向无膜细胞器的动态对于厘清其功能至关重要。在这里,我们研究了P-抗体(PBs)在HEK293细胞的细胞周期进展过程中是如何演变的。PB在整个细胞周期中的纯化发现了其RNA含量的广泛变化,这种变化与细胞周期依赖的RNA表达变化部分脱钩。单分子荧光原位杂交(FISH)显示了在 G1、S 或 G2 期达到峰值的 PB 中的各种 mRNA 定位模式,并有实例说明当 mRNA 的编码蛋白变得可有可无时,PB 中的 mRNA 会被及时捕获。PB 中的循环 mRNA 定位不是直接反映翻译的缺失,而是受 RBPs(如 G2 中的 HuR)和 RNA 特征的控制。事实上,虽然 PB mRNA 在所有细胞周期阶段都富含 AU,但在 G1 阶段却特别长,这可能与有丝分裂后 PB 的重新组装有关。总之,我们的研究支持这样一种模式,即 PB 不仅仅是多余的非翻译 mRNA 的默认位置。
{"title":"Cell-cycle-dependent mRNA localization in P-bodies","authors":"Adham Safieddine, Marie-Noëlle Benassy, Thomas Bonte, Floric Slimani, Oriane Pourcelot, Michel Kress, Michèle Ernoult-Lange, Maïté Courel, Emeline Coleno, Arthur Imbert, Antoine Laine, Annie Munier Godebert, Angelique Vinit, Corinne Blugeon, Guillaume Chevreux, Daniel Gautheret, Thomas Walter, Edouard Bertrand, Marianne Bénard, Dominique Weil","doi":"10.1016/j.molcel.2024.09.011","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.09.011","url":null,"abstract":"Understanding the dynamics of RNA targeting to membraneless organelles is essential to disentangle their functions. Here, we investigate how P-bodies (PBs) evolve during cell-cycle progression in HEK293 cells. PB purification across the cell cycle uncovers widespread changes in their RNA content, partly uncoupled from cell-cycle-dependent changes in RNA expression. Single-molecule fluorescence <em>in situ</em> hybridization (FISH) shows various mRNA localization patterns in PBs peaking in G1, S, or G2, with examples illustrating the timely capture of mRNAs in PBs when their encoded protein becomes dispensable. Rather than directly reflecting absence of translation, cyclic mRNA localization in PBs can be controlled by RBPs, such as HuR in G2, and by RNA features. Indeed, while PB mRNAs are AU rich at all cell-cycle phases, they are specifically longer in G1, possibly related to post-mitotic PB reassembly. Altogether, our study supports a model where PBs are more than a default location for excess untranslated mRNAs.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"207 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The challenges of investigating RNA function 研究 RNA 功能面临的挑战
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1016/j.molcel.2024.08.019
Li Yang, Igor Ulitsky, Wendy V. Gilbert, Chengqi Yi, Jernej Ule, Maïwen Caudron-Herger
High-throughput sequencing methods have led to the discovery of many non-coding RNAs, RNA modifications, and protein-RNA interactions. While the list keeps growing, the challenge of determining their functions remains. For our focus issue on RNA biology, we spoke with several researchers about their perspective on investigating the functions of RNA.
高通量测序方法发现了许多非编码 RNA、RNA 修饰以及蛋白质与 RNA 之间的相互作用。虽然发现的数量在不断增加,但确定其功能的挑战依然存在。针对我们的 RNA 生物学焦点问题,我们采访了几位研究人员,了解他们对研究 RNA 功能的看法。
{"title":"The challenges of investigating RNA function","authors":"Li Yang, Igor Ulitsky, Wendy V. Gilbert, Chengqi Yi, Jernej Ule, Maïwen Caudron-Herger","doi":"10.1016/j.molcel.2024.08.019","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.08.019","url":null,"abstract":"High-throughput sequencing methods have led to the discovery of many non-coding RNAs, RNA modifications, and protein-RNA interactions. While the list keeps growing, the challenge of determining their functions remains. For our <span><span>focus issue on RNA biology</span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span>, we spoke with several researchers about their perspective on investigating the functions of RNA.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"54 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142369134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PRC2-RNA interactions: Viewpoint from Tom Cech, Chen Davidovich, and Richard Jenner PRC2-RNA 相互作用:Tom Cech、Chen Davidovich 和 Richard Jenner 的观点
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1016/j.molcel.2024.09.010
Thomas R. Cech, Chen Davidovich, Richard G. Jenner
Diverse biochemical, structural, and in vivo data support models for the regulation of polycomb repressive complex 2 (PRC2) activity by RNAs, which may contribute to the maintenance of epigenetic states. Here, we summarize this research and also suggest why it can be difficult to capture biologically relevant PRC2-RNA interactions in living cells.
多种生化、结构和体内数据支持 RNA 调节多聚核抑制复合体 2(PRC2)活性的模型,这可能有助于表观遗传状态的维持。在此,我们对这些研究进行了总结,并提出了为什么在活细胞中难以捕捉到与生物学相关的 PRC2-RNA 相互作用。
{"title":"PRC2-RNA interactions: Viewpoint from Tom Cech, Chen Davidovich, and Richard Jenner","authors":"Thomas R. Cech, Chen Davidovich, Richard G. Jenner","doi":"10.1016/j.molcel.2024.09.010","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.09.010","url":null,"abstract":"Diverse biochemical, structural, and <em>in vivo</em> data support models for the regulation of polycomb repressive complex 2 (PRC2) activity by RNAs, which may contribute to the maintenance of epigenetic states. Here, we summarize this research and also suggest why it can be difficult to capture biologically relevant PRC2-RNA interactions in living cells.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"77 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142369140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNA-driven phase transitions in biomolecular condensates 生物分子凝聚体中的 RNA 驱动相变
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1016/j.molcel.2024.09.005
Gable M. Wadsworth, Sukanya Srinivasan, Lien B. Lai, Moulisubhro Datta, Venkat Gopalan, Priya R. Banerjee
RNAs and RNA-binding proteins can undergo spontaneous or active condensation into phase-separated liquid-like droplets. These condensates are cellular hubs for various physiological processes, and their dysregulation leads to diseases. Although RNAs are core components of many cellular condensates, the underlying molecular determinants for the formation, regulation, and function of ribonucleoprotein condensates have largely been studied from a protein-centric perspective. Here, we highlight recent developments in ribonucleoprotein condensate biology with a particular emphasis on RNA-driven phase transitions. We also present emerging future directions that might shed light on the role of RNA condensates in spatiotemporal regulation of cellular processes and inspire bioengineering of RNA-based therapeutics.
RNA 和 RNA 结合蛋白可自发或主动凝结成相分离的液状小滴。这些凝聚体是各种生理过程的细胞枢纽,它们的失调会导致疾病。尽管核糖核酸是许多细胞凝聚体的核心成分,但人们大多从以蛋白质为中心的角度研究核糖核蛋白凝聚体的形成、调控和功能的基本分子决定因素。在此,我们将重点介绍核糖核蛋白凝聚态生物学的最新进展,尤其是 RNA 驱动的相变。我们还介绍了未来的新方向,这些方向可能会揭示 RNA 凝聚物在时空调控细胞过程中的作用,并启发基于 RNA 的生物工程疗法。
{"title":"RNA-driven phase transitions in biomolecular condensates","authors":"Gable M. Wadsworth, Sukanya Srinivasan, Lien B. Lai, Moulisubhro Datta, Venkat Gopalan, Priya R. Banerjee","doi":"10.1016/j.molcel.2024.09.005","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.09.005","url":null,"abstract":"RNAs and RNA-binding proteins can undergo spontaneous or active condensation into phase-separated liquid-like droplets. These condensates are cellular hubs for various physiological processes, and their dysregulation leads to diseases. Although RNAs are core components of many cellular condensates, the underlying molecular determinants for the formation, regulation, and function of ribonucleoprotein condensates have largely been studied from a protein-centric perspective. Here, we highlight recent developments in ribonucleoprotein condensate biology with a particular emphasis on RNA-driven phase transitions. We also present emerging future directions that might shed light on the role of RNA condensates in spatiotemporal regulation of cellular processes and inspire bioengineering of RNA-based therapeutics.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"12 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142369674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Timing is everything: When is m6A deposited? 时间就是一切:何时存放 m6A?
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1016/j.molcel.2024.09.012
David Dierks, Schraga Schwartz
In this issue of Molecular Cell, Tang et al. suggest that m6A deposition is predominantly post-transcriptional.1 They further propose that nuclear dwell time dictates the post-transcriptional accumulation of m6A. These findings have important implications for m6A biogenesis and function.
在本期《分子细胞》(Molecular Cell)杂志上,Tang 等人提出,m6A 的沉积主要是转录后的1 。他们进一步提出,核停留时间决定了 m6A 的转录后积累。这些发现对 m6A 的生物发生和功能具有重要意义。
{"title":"Timing is everything: When is m6A deposited?","authors":"David Dierks, Schraga Schwartz","doi":"10.1016/j.molcel.2024.09.012","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.09.012","url":null,"abstract":"In this issue of <em>Molecular Cell</em>, Tang et al. suggest that m6A deposition is predominantly post-transcriptional.<span><span><sup>1</sup></span></span> They further propose that nuclear dwell time dictates the post-transcriptional accumulation of m6A. These findings have important implications for m6A biogenesis and function.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"12 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142369135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Cell
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1