Pub Date : 2026-01-08DOI: 10.1016/j.molcel.2025.12.006
Christian Hoffmann, Takahiro Nagao, Taka A Tsunoyama, Johannes Vincent Tromm, Chinyere Logan, Koki Nakamura, Han Wang, Frans Bianchi, Geert van den Bogaart, Akihiro Kusumi, Yusuke Hirabayashi, Dragomir Milovanovic
Mitochondria and the endoplasmic reticulum (ER) contain large areas that are in close proximity. Yet the mechanism of how these inter-organellar adhesions are formed remains elusive. Tight functional connections, termed "membrane contact sites," assemble at these areas and are essential for exchanging metabolites and lipids between the organelles. Recently, the ER-resident protein PDZ domain-containing protein 8 (PDZD8) was identified as a tether between the ER and mitochondria or late endosomes/lysosomes. Here, we show that PDZD8 can undergo phase separation via its intrinsically disordered region (IDR). Endogenously labeled PDZD8 forms condensates on membranes both in vitro and in mammalian cells. Electron microscopy analyses indicate that the expression of full-length PDZD8 rescues the decrease in inter-organelle contacts in PDZD8 knockout cells but not PDZD8 lacking its IDR. Together, this study identifies that PDZD8 condensates at the lipid interfaces act as an adhesive framework that stitches together the neighboring organelles and supports the structural and functional integrity of inter-organelle communication.
{"title":"Membrane-protein-mediated phase separation orchestrates organelle contact sites.","authors":"Christian Hoffmann, Takahiro Nagao, Taka A Tsunoyama, Johannes Vincent Tromm, Chinyere Logan, Koki Nakamura, Han Wang, Frans Bianchi, Geert van den Bogaart, Akihiro Kusumi, Yusuke Hirabayashi, Dragomir Milovanovic","doi":"10.1016/j.molcel.2025.12.006","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.12.006","url":null,"abstract":"<p><p>Mitochondria and the endoplasmic reticulum (ER) contain large areas that are in close proximity. Yet the mechanism of how these inter-organellar adhesions are formed remains elusive. Tight functional connections, termed \"membrane contact sites,\" assemble at these areas and are essential for exchanging metabolites and lipids between the organelles. Recently, the ER-resident protein PDZ domain-containing protein 8 (PDZD8) was identified as a tether between the ER and mitochondria or late endosomes/lysosomes. Here, we show that PDZD8 can undergo phase separation via its intrinsically disordered region (IDR). Endogenously labeled PDZD8 forms condensates on membranes both in vitro and in mammalian cells. Electron microscopy analyses indicate that the expression of full-length PDZD8 rescues the decrease in inter-organelle contacts in PDZD8 knockout cells but not PDZD8 lacking its IDR. Together, this study identifies that PDZD8 condensates at the lipid interfaces act as an adhesive framework that stitches together the neighboring organelles and supports the structural and functional integrity of inter-organelle communication.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"86 1","pages":"135-149.e9"},"PeriodicalIF":16.6,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145945241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-08DOI: 10.1016/j.molcel.2025.12.015
Allen R Buskirk
In this issue of Molecular Cell, Ishiguro et al.1 describe new RNA modifications near the active site of the E. coli ribosome that appear only under anaerobic conditions. These modifications enhance ribosome activity and increase anaerobic growth rates.
{"title":"This ribosome goes to 11.","authors":"Allen R Buskirk","doi":"10.1016/j.molcel.2025.12.015","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.12.015","url":null,"abstract":"<p><p>In this issue of Molecular Cell, Ishiguro et al.<sup>1</sup> describe new RNA modifications near the active site of the E. coli ribosome that appear only under anaerobic conditions. These modifications enhance ribosome activity and increase anaerobic growth rates.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"86 1","pages":"1-2"},"PeriodicalIF":16.6,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145945309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-08Epub Date: 2025-12-22DOI: 10.1016/j.molcel.2025.12.001
Lingzhi Zhu, Kuishen Wu, Jianwei You, Wen Mi, Jie Xu, Liucheng Li, Fang Yang, Xinyi Xia, Haohang Yan, Fei Li, Li Chen, Pingyu Liu, Fuming Li
Oxidative phosphorylation (OXPHOS) fulfills energy metabolism and biosynthesis through the tricarboxylic acid (TCA) cycle and an intact electron transport chain (ETC). Mitochondrial glutamine import (MGI) replenishes the TCA cycle through glutaminolysis, but its broader roles in cancer remain unclear. Here, we show that MGI sustains OXPHOS independently of glutaminolysis by maintaining ETC integrity. Exogenous glutamate availability abrogates cellular dependence on glutaminolysis but not SLC1A5var-mediated MGI. Blocking MGI elicits severe mitochondrial defects, reducing mitochondrial glucose oxidation and increasing glutamine reductive carboxylation. MGI, but not glutaminolysis, is essential for mitochondrial translation by enabling biogenesis of Gln-mt-tRNAGln, the most limiting mitochondrial aminoacyl-tRNA in cancer cells. Finally, deleting SLC1A5 in mice and targeting SLC1A5var in xenograft tumors inhibit Gln-mt-tRNAGln biogenesis and mitochondrial translation and blunt tumor growth. Our findings uncover a previously unrecognized role of MGI in safeguarding ETC integrity independently of glutaminolysis and inform a therapeutic option by targeting MGI to abrogate OXPHOS for cancer treatment.
{"title":"Mitochondrial glutamine import sustains electron transport chain integrity independently of glutaminolysis in cancer.","authors":"Lingzhi Zhu, Kuishen Wu, Jianwei You, Wen Mi, Jie Xu, Liucheng Li, Fang Yang, Xinyi Xia, Haohang Yan, Fei Li, Li Chen, Pingyu Liu, Fuming Li","doi":"10.1016/j.molcel.2025.12.001","DOIUrl":"10.1016/j.molcel.2025.12.001","url":null,"abstract":"<p><p>Oxidative phosphorylation (OXPHOS) fulfills energy metabolism and biosynthesis through the tricarboxylic acid (TCA) cycle and an intact electron transport chain (ETC). Mitochondrial glutamine import (MGI) replenishes the TCA cycle through glutaminolysis, but its broader roles in cancer remain unclear. Here, we show that MGI sustains OXPHOS independently of glutaminolysis by maintaining ETC integrity. Exogenous glutamate availability abrogates cellular dependence on glutaminolysis but not SLC1A5var-mediated MGI. Blocking MGI elicits severe mitochondrial defects, reducing mitochondrial glucose oxidation and increasing glutamine reductive carboxylation. MGI, but not glutaminolysis, is essential for mitochondrial translation by enabling biogenesis of Gln-mt-tRNA<sup>Gln</sup>, the most limiting mitochondrial aminoacyl-tRNA in cancer cells. Finally, deleting SLC1A5 in mice and targeting SLC1A5var in xenograft tumors inhibit Gln-mt-tRNA<sup>Gln</sup> biogenesis and mitochondrial translation and blunt tumor growth. Our findings uncover a previously unrecognized role of MGI in safeguarding ETC integrity independently of glutaminolysis and inform a therapeutic option by targeting MGI to abrogate OXPHOS for cancer treatment.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":" ","pages":"150-165.e9"},"PeriodicalIF":16.6,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145820142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-08DOI: 10.1016/j.molcel.2025.12.023
Noah Ollikainen, Fei Ma, Fatima Zohra Braikia, Ranjan Sen
Effective adaptive immunity requires generation of a diverse repertoire of antigen receptors via V(D)J recombination. To illuminate the underlying mechanisms, we combined biophysical simulations with experimental data to model chromatin folding and dynamics of the mouse immunoglobulin heavy chain gene (Igh) locus. Simulations that best recapitulated experimental data on locus structure and recombination of Igh alleles identified three novel chromatin folding principles. First, we found that prominent structural features of the Igh locus, such as the 3′-anchored stripe, required cohesin loading throughout the locus. Second, the Eμ enhancer was best modeled as a bi-directional loop extrusion blocker, though it does not bind CTCF. Third, we found that utilization of VH genes to obtain maximum diversity required both widespread cohesin loading as well as long-range associations between H3K27ac-marked regions. Our findings provide a conceptual framework to understand chromatin folding principles that enable antibody diversity and reveal mechanisms of long-range genome communication.
{"title":"Chromatin folding principles underlying the generation of antibody diversity","authors":"Noah Ollikainen, Fei Ma, Fatima Zohra Braikia, Ranjan Sen","doi":"10.1016/j.molcel.2025.12.023","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.12.023","url":null,"abstract":"Effective adaptive immunity requires generation of a diverse repertoire of antigen receptors via V(D)J recombination. To illuminate the underlying mechanisms, we combined biophysical simulations with experimental data to model chromatin folding and dynamics of the mouse immunoglobulin heavy chain gene (<em>Igh</em>) locus. Simulations that best recapitulated experimental data on locus structure and recombination of <em>Igh</em> alleles identified three novel chromatin folding principles. First, we found that prominent structural features of the <em>Igh</em> locus, such as the 3′-anchored stripe, required cohesin loading throughout the locus. Second, the Eμ enhancer was best modeled as a bi-directional loop extrusion blocker, though it does not bind CTCF. Third, we found that utilization of V<sub>H</sub> genes to obtain maximum diversity required both widespread cohesin loading as well as long-range associations between H3K27ac-marked regions. Our findings provide a conceptual framework to understand chromatin folding principles that enable antibody diversity and reveal mechanisms of long-range genome communication.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"40 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145920248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-08DOI: 10.1016/j.molcel.2025.12.014
Yury S Bykov, Johannes M Herrmann
In this issue of Molecular Cell, Zhu et al.1 show that mitochondria of cancer cells rely on the import of glutamine not only to fuel metabolite synthesis via the tricarboxylic acid cycle but also to charge mt-tRNAGln to allow mitochondrial protein synthesis and respiration.
{"title":"Don't forget protein synthesis! Mitochondria of cancer cells import glutamine to fuel metabolism and to charge tRNAs for translation.","authors":"Yury S Bykov, Johannes M Herrmann","doi":"10.1016/j.molcel.2025.12.014","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.12.014","url":null,"abstract":"<p><p>In this issue of Molecular Cell, Zhu et al.<sup>1</sup> show that mitochondria of cancer cells rely on the import of glutamine not only to fuel metabolite synthesis via the tricarboxylic acid cycle but also to charge mt-tRNA<sup>Gln</sup> to allow mitochondrial protein synthesis and respiration.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"86 1","pages":"6-8"},"PeriodicalIF":16.6,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145945153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-07DOI: 10.1016/j.molcel.2025.12.016
Chan Liu, Yifan Zhang, Yilun Wang, Min Wu, Yunchao Li, Jiashuai Wei, Jiawen Shi, Rong Wang, Li Su, Tingting Yang, Jin Li, Junjie Xiao, Jianping Ding, Tianlong Zhang
Mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of cell growth, responding to amino acid availability. While mTORC1 is modulated by amino acid sensors like CASTOR1, the mechanisms driving its dynamic response to fluctuating amino acid levels remain unclear. Here, we investigate the role of CASTOR2, an understudied CASTOR1 homolog, in regulating mTORC1 activity. We show that CASTOR1 and CASTOR2 bind to arginine similarly but differ in their sensitivity: CASTOR1 responds to low arginine levels, whereas CASTOR2 responds to high arginine concentrations. Both proteins interact with the GATOR2 component Mios, inhibiting its binding to GATOR1. Arginine binding to CASTOR1/2 induces conformational changes at the aspartate kinase, chorismate mutase, and TyrA (ACT) domain (ACT2-ACT4) interface, leading to its dissociation from Mios. Functionally, we demonstrate that CASTOR proteins are highly expressed in muscle tissue and, in C2C12 cells, they regulate mTORC1 and myogenesis in response to different arginine availability. These findings highlight how CASTOR proteins function as dual arginine sensors to fine-tune mTORC1 activity.
{"title":"CASTOR1 and CASTOR2 respond to different arginine levels to regulate mTORC1 activity","authors":"Chan Liu, Yifan Zhang, Yilun Wang, Min Wu, Yunchao Li, Jiashuai Wei, Jiawen Shi, Rong Wang, Li Su, Tingting Yang, Jin Li, Junjie Xiao, Jianping Ding, Tianlong Zhang","doi":"10.1016/j.molcel.2025.12.016","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.12.016","url":null,"abstract":"Mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of cell growth, responding to amino acid availability. While mTORC1 is modulated by amino acid sensors like CASTOR1, the mechanisms driving its dynamic response to fluctuating amino acid levels remain unclear. Here, we investigate the role of CASTOR2, an understudied CASTOR1 homolog, in regulating mTORC1 activity. We show that CASTOR1 and CASTOR2 bind to arginine similarly but differ in their sensitivity: CASTOR1 responds to low arginine levels, whereas CASTOR2 responds to high arginine concentrations. Both proteins interact with the GATOR2 component Mios, inhibiting its binding to GATOR1. Arginine binding to CASTOR1/2 induces conformational changes at the aspartate kinase, chorismate mutase, and TyrA (ACT) domain (ACT2-ACT4) interface, leading to its dissociation from Mios. Functionally, we demonstrate that CASTOR proteins are highly expressed in muscle tissue and, in C2C12 cells, they regulate mTORC1 and myogenesis in response to different arginine availability. These findings highlight how CASTOR proteins function as dual arginine sensors to fine-tune mTORC1 activity.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"14 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145907939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-22DOI: 10.1016/j.molcel.2025.12.002
Sonja Engler, Florent Delhommel, Christopher Dodt, Abraham Lopez, Ofrah Faust, Annika Elimelech, Valeria Napolitano, Grzegorz M. Popowicz, Rina Rosenzweig, Michael Sattler, Johannes Buchner
The Hsp90 molecular chaperone system is regulated by numerous co-chaperones that modulate its function. In Saccharomyces cerevisiae, most of these cofactors can be deleted without affecting viability. Of the three essential ones, only the function of Sgt1 has remained enigmatic. Our in vivo and in vitro experiments define key structural elements and determine the essential function of Sgt1 in the chaperoning of client proteins. We demonstrate that yeast Sgt1 adopts a unique binding mode, engaging primarily with the middle domain of Hsp90. Through simultaneous interaction with both Hsp90 and client proteins, Sgt1 enhances client maturation efficiency. Specifically, Sgt1 stabilizes Hsp90-client complexes and prevents their dissociation by the co-chaperone Aha1. Our findings reveal a previously unrecognized layer of Hsp90 regulation, highlighting Sgt1 as a critical modulator of chaperone cycle progression.
{"title":"The essential co-chaperone Sgt1 regulates client dwell time in the Hsp90 chaperone cycle","authors":"Sonja Engler, Florent Delhommel, Christopher Dodt, Abraham Lopez, Ofrah Faust, Annika Elimelech, Valeria Napolitano, Grzegorz M. Popowicz, Rina Rosenzweig, Michael Sattler, Johannes Buchner","doi":"10.1016/j.molcel.2025.12.002","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.12.002","url":null,"abstract":"The Hsp90 molecular chaperone system is regulated by numerous co-chaperones that modulate its function. In <em>Saccharomyces cerevisiae</em>, most of these cofactors can be deleted without affecting viability. Of the three essential ones, only the function of Sgt1 has remained enigmatic. Our <em>in vivo</em> and <em>in vitro</em> experiments define key structural elements and determine the essential function of Sgt1 in the chaperoning of client proteins. We demonstrate that yeast Sgt1 adopts a unique binding mode, engaging primarily with the middle domain of Hsp90. Through simultaneous interaction with both Hsp90 and client proteins, Sgt1 enhances client maturation efficiency. Specifically, Sgt1 stabilizes Hsp90-client complexes and prevents their dissociation by the co-chaperone Aha1. Our findings reveal a previously unrecognized layer of Hsp90 regulation, highlighting Sgt1 as a critical modulator of chaperone cycle progression.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"173 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145813174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-19DOI: 10.1016/j.molcel.2025.11.028
Rongrong Du, Michael J. Flynn, Karan Mahe, Monique Honsa, Bo Gu, Dongyang Li, Sean E. McGeary, Viviana Gradinaru, Ralf Jungmann, Michael B. Elowitz
Accurate control of transgene expression is important for research and therapy but is challenging to achieve in most settings. MicroRNA (miRNA)-based regulatory circuits can be incorporated within transgenes for improved control. However, the design principles, performance limits, and applications of these circuits in research and biotechnology have not been systematically determined. Here, combining modeling and experiments, we introduce miRNA-based circuit modules, termed “dosage invariant miRNA-mediated expression regulators” (DIMMERs), that establish precise, tunable control of transgene expression across diverse cell types to facilitate imaging, editing, and gene therapy. The circuits use multivalent miRNA regulatory interactions to achieve nearly uniform, tunable protein expression over two orders of magnitude variation in gene dosage. They function across diverse cell types and can be multiplexed for the independent regulation of multiple genes. DIMMERs reduce off-target CRISPR base editing, improve single-molecule imaging, and allow live tracking of adeno-associated virus (AAV)-delivered transgene expression in mouse cortical neurons. DIMMERs thus enable accurate regulation for research and biotechnology applications.
{"title":"miRNA modules for precise, tunable control of gene expression","authors":"Rongrong Du, Michael J. Flynn, Karan Mahe, Monique Honsa, Bo Gu, Dongyang Li, Sean E. McGeary, Viviana Gradinaru, Ralf Jungmann, Michael B. Elowitz","doi":"10.1016/j.molcel.2025.11.028","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.11.028","url":null,"abstract":"Accurate control of transgene expression is important for research and therapy but is challenging to achieve in most settings. MicroRNA (miRNA)-based regulatory circuits can be incorporated within transgenes for improved control. However, the design principles, performance limits, and applications of these circuits in research and biotechnology have not been systematically determined. Here, combining modeling and experiments, we introduce miRNA-based circuit modules, termed “dosage invariant miRNA-mediated expression regulators” (DIMMERs), that establish precise, tunable control of transgene expression across diverse cell types to facilitate imaging, editing, and gene therapy. The circuits use multivalent miRNA regulatory interactions to achieve nearly uniform, tunable protein expression over two orders of magnitude variation in gene dosage. They function across diverse cell types and can be multiplexed for the independent regulation of multiple genes. DIMMERs reduce off-target CRISPR base editing, improve single-molecule imaging, and allow live tracking of adeno-associated virus (AAV)-delivered transgene expression in mouse cortical neurons. DIMMERs thus enable accurate regulation for research and biotechnology applications.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"116 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145777700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-19DOI: 10.1016/j.molcel.2025.11.025
Catherine H. Freudenreich
{"title":"Time and space: How the circadian clock controls DNA break repair location and pathway choice","authors":"Catherine H. Freudenreich","doi":"10.1016/j.molcel.2025.11.025","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.11.025","url":null,"abstract":"","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"35 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145784405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-19DOI: 10.1016/j.molcel.2025.11.029
Ron Kelley, Sagar Khavnekar, Ricardo D. Righetto, Jessica Heebner, Martin Obr, Xianjun Zhang, Saikat Chakraborty, Grigory Tagiltsev, Alicia K. Michael, Sofie van Dorst, Florent Waltz, Caitlyn L. McCafferty, Lorenz Lamm, Simon Zufferey, Philippe Van der Stappen, Hugo van den Hoek, Wojciech Wietrzynski, Pavol Harar, William Wan, John A.G. Briggs, Abhay Kotecha
In situ cryo-electron tomography (cryo-ET) has emerged as the method of choice to investigate the structures of biomolecules in their native context. However, challenges remain for the efficient production and sharing of large-scale cryo-ET datasets. Here, we combined cryogenic plasma-based focused ion beam (cryo-PFIB) milling with recent advances in cryo-ET acquisition and processing to generate a dataset of 1,829 annotated tomograms of the green alga Chlamydomonas reinhardtii, which we provide as a community resource to drive method development and inspire biological discovery. To assay data quality, we performed subtomogram averaging of both soluble and membrane-bound complexes ranging in size from >3 MDa to ∼200 kDa, including 80S ribosomes, Rubisco, nucleosomes, microtubules, clathrin, photosystem II, and mitochondrial ATP synthase. The majority of these density maps reached sub-nanometer resolution, demonstrating the potential of this C. reinhardtii dataset as well as the promise of modern cryo-ET workflows and open data sharing to empower visual proteomics.
{"title":"Toward community-driven visual proteomics with large-scale cryo-electron tomography of Chlamydomonas reinhardtii","authors":"Ron Kelley, Sagar Khavnekar, Ricardo D. Righetto, Jessica Heebner, Martin Obr, Xianjun Zhang, Saikat Chakraborty, Grigory Tagiltsev, Alicia K. Michael, Sofie van Dorst, Florent Waltz, Caitlyn L. McCafferty, Lorenz Lamm, Simon Zufferey, Philippe Van der Stappen, Hugo van den Hoek, Wojciech Wietrzynski, Pavol Harar, William Wan, John A.G. Briggs, Abhay Kotecha","doi":"10.1016/j.molcel.2025.11.029","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.11.029","url":null,"abstract":"<em>In situ</em> cryo-electron tomography (cryo-ET) has emerged as the method of choice to investigate the structures of biomolecules in their native context. However, challenges remain for the efficient production and sharing of large-scale cryo-ET datasets. Here, we combined cryogenic plasma-based focused ion beam (cryo-PFIB) milling with recent advances in cryo-ET acquisition and processing to generate a dataset of 1,829 annotated tomograms of the green alga <em>Chlamydomonas reinhardtii</em>, which we provide as a community resource to drive method development and inspire biological discovery. To assay data quality, we performed subtomogram averaging of both soluble and membrane-bound complexes ranging in size from >3 MDa to ∼200 kDa, including 80S ribosomes, Rubisco, nucleosomes, microtubules, clathrin, photosystem II, and mitochondrial ATP synthase. The majority of these density maps reached sub-nanometer resolution, demonstrating the potential of this <em>C. reinhardtii</em> dataset as well as the promise of modern cryo-ET workflows and open data sharing to empower visual proteomics.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"31 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145777701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}