首页 > 最新文献

Molecular Cell最新文献

英文 中文
CASTOR1 and CASTOR2 respond to different arginine levels to regulate mTORC1 activity CASTOR1和CASTOR2响应不同的精氨酸水平来调节mTORC1的活性
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-07 DOI: 10.1016/j.molcel.2025.12.016
Chan Liu, Yifan Zhang, Yilun Wang, Min Wu, Yunchao Li, Jiashuai Wei, Jiawen Shi, Rong Wang, Li Su, Tingting Yang, Jin Li, Junjie Xiao, Jianping Ding, Tianlong Zhang
Mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of cell growth, responding to amino acid availability. While mTORC1 is modulated by amino acid sensors like CASTOR1, the mechanisms driving its dynamic response to fluctuating amino acid levels remain unclear. Here, we investigate the role of CASTOR2, an understudied CASTOR1 homolog, in regulating mTORC1 activity. We show that CASTOR1 and CASTOR2 bind to arginine similarly but differ in their sensitivity: CASTOR1 responds to low arginine levels, whereas CASTOR2 responds to high arginine concentrations. Both proteins interact with the GATOR2 component Mios, inhibiting its binding to GATOR1. Arginine binding to CASTOR1/2 induces conformational changes at the aspartate kinase, chorismate mutase, and TyrA (ACT) domain (ACT2-ACT4) interface, leading to its dissociation from Mios. Functionally, we demonstrate that CASTOR proteins are highly expressed in muscle tissue and, in C2C12 cells, they regulate mTORC1 and myogenesis in response to different arginine availability. These findings highlight how CASTOR proteins function as dual arginine sensors to fine-tune mTORC1 activity.
雷帕霉素复合体1的机制靶点(mTORC1)是细胞生长的中心调节剂,响应氨基酸的可用性。虽然mTORC1受氨基酸传感器如CASTOR1调节,但驱动其动态响应氨基酸水平波动的机制尚不清楚。在这里,我们研究了CASTOR2,一个未被充分研究的CASTOR1同源物,在调节mTORC1活性中的作用。我们发现CASTOR1和CASTOR2与精氨酸的结合相似,但它们的敏感性不同:CASTOR1对低精氨酸水平有反应,而CASTOR2对高精氨酸浓度有反应。这两种蛋白都与GATOR2组分Mios相互作用,抑制其与GATOR1的结合。精氨酸与CASTOR1/2的结合诱导了天冬氨酸激酶、choris酸突变酶和TyrA (ACT)结构域(ACT2-ACT4)界面的构象变化,导致其与Mios分离。在功能上,我们证明CASTOR蛋白在肌肉组织中高度表达,在C2C12细胞中,它们调节mTORC1和肌肉发生,以响应不同的精氨酸可用性。这些发现强调了CASTOR蛋白如何作为双精氨酸传感器来微调mTORC1活性。
{"title":"CASTOR1 and CASTOR2 respond to different arginine levels to regulate mTORC1 activity","authors":"Chan Liu, Yifan Zhang, Yilun Wang, Min Wu, Yunchao Li, Jiashuai Wei, Jiawen Shi, Rong Wang, Li Su, Tingting Yang, Jin Li, Junjie Xiao, Jianping Ding, Tianlong Zhang","doi":"10.1016/j.molcel.2025.12.016","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.12.016","url":null,"abstract":"Mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of cell growth, responding to amino acid availability. While mTORC1 is modulated by amino acid sensors like CASTOR1, the mechanisms driving its dynamic response to fluctuating amino acid levels remain unclear. Here, we investigate the role of CASTOR2, an understudied CASTOR1 homolog, in regulating mTORC1 activity. We show that CASTOR1 and CASTOR2 bind to arginine similarly but differ in their sensitivity: CASTOR1 responds to low arginine levels, whereas CASTOR2 responds to high arginine concentrations. Both proteins interact with the GATOR2 component Mios, inhibiting its binding to GATOR1. Arginine binding to CASTOR1/2 induces conformational changes at the aspartate kinase, chorismate mutase, and TyrA (ACT) domain (ACT2-ACT4) interface, leading to its dissociation from Mios. Functionally, we demonstrate that CASTOR proteins are highly expressed in muscle tissue and, in C2C12 cells, they regulate mTORC1 and myogenesis in response to different arginine availability. These findings highlight how CASTOR proteins function as dual arginine sensors to fine-tune mTORC1 activity.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"14 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145907939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The essential co-chaperone Sgt1 regulates client dwell time in the Hsp90 chaperone cycle 必不可少的共同伴侣Sgt1调节Hsp90伴侣周期中的客户端停留时间
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-22 DOI: 10.1016/j.molcel.2025.12.002
Sonja Engler, Florent Delhommel, Christopher Dodt, Abraham Lopez, Ofrah Faust, Annika Elimelech, Valeria Napolitano, Grzegorz M. Popowicz, Rina Rosenzweig, Michael Sattler, Johannes Buchner
The Hsp90 molecular chaperone system is regulated by numerous co-chaperones that modulate its function. In Saccharomyces cerevisiae, most of these cofactors can be deleted without affecting viability. Of the three essential ones, only the function of Sgt1 has remained enigmatic. Our in vivo and in vitro experiments define key structural elements and determine the essential function of Sgt1 in the chaperoning of client proteins. We demonstrate that yeast Sgt1 adopts a unique binding mode, engaging primarily with the middle domain of Hsp90. Through simultaneous interaction with both Hsp90 and client proteins, Sgt1 enhances client maturation efficiency. Specifically, Sgt1 stabilizes Hsp90-client complexes and prevents their dissociation by the co-chaperone Aha1. Our findings reveal a previously unrecognized layer of Hsp90 regulation, highlighting Sgt1 as a critical modulator of chaperone cycle progression.
Hsp90分子伴侣系统是由许多共同伴侣调节其功能。在酿酒酵母菌中,大多数这些辅助因子可以被删除而不影响其生存能力。在这三个基本基因中,只有Sgt1的功能仍然是个谜。我们的体内和体外实验确定了关键的结构元件,并确定了Sgt1在陪伴客户蛋白中的基本功能。我们证明酵母Sgt1采用一种独特的结合模式,主要与Hsp90的中间结构域结合。通过与Hsp90和客户端蛋白同时作用,Sgt1提高了客户端成熟效率。具体来说,Sgt1稳定了hsp90客户端复合物,并阻止它们被共同伴侣Aha1解离。我们的研究结果揭示了一个以前未被认识的Hsp90调控层,突出了Sgt1作为伴侣蛋白周期进程的关键调节剂。
{"title":"The essential co-chaperone Sgt1 regulates client dwell time in the Hsp90 chaperone cycle","authors":"Sonja Engler, Florent Delhommel, Christopher Dodt, Abraham Lopez, Ofrah Faust, Annika Elimelech, Valeria Napolitano, Grzegorz M. Popowicz, Rina Rosenzweig, Michael Sattler, Johannes Buchner","doi":"10.1016/j.molcel.2025.12.002","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.12.002","url":null,"abstract":"The Hsp90 molecular chaperone system is regulated by numerous co-chaperones that modulate its function. In <em>Saccharomyces cerevisiae</em>, most of these cofactors can be deleted without affecting viability. Of the three essential ones, only the function of Sgt1 has remained enigmatic. Our <em>in vivo</em> and <em>in vitro</em> experiments define key structural elements and determine the essential function of Sgt1 in the chaperoning of client proteins. We demonstrate that yeast Sgt1 adopts a unique binding mode, engaging primarily with the middle domain of Hsp90. Through simultaneous interaction with both Hsp90 and client proteins, Sgt1 enhances client maturation efficiency. Specifically, Sgt1 stabilizes Hsp90-client complexes and prevents their dissociation by the co-chaperone Aha1. Our findings reveal a previously unrecognized layer of Hsp90 regulation, highlighting Sgt1 as a critical modulator of chaperone cycle progression.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"173 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145813174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
miRNA modules for precise, tunable control of gene expression miRNA模块用于精确、可调的基因表达控制
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-19 DOI: 10.1016/j.molcel.2025.11.028
Rongrong Du, Michael J. Flynn, Karan Mahe, Monique Honsa, Bo Gu, Dongyang Li, Sean E. McGeary, Viviana Gradinaru, Ralf Jungmann, Michael B. Elowitz
Accurate control of transgene expression is important for research and therapy but is challenging to achieve in most settings. MicroRNA (miRNA)-based regulatory circuits can be incorporated within transgenes for improved control. However, the design principles, performance limits, and applications of these circuits in research and biotechnology have not been systematically determined. Here, combining modeling and experiments, we introduce miRNA-based circuit modules, termed “dosage invariant miRNA-mediated expression regulators” (DIMMERs), that establish precise, tunable control of transgene expression across diverse cell types to facilitate imaging, editing, and gene therapy. The circuits use multivalent miRNA regulatory interactions to achieve nearly uniform, tunable protein expression over two orders of magnitude variation in gene dosage. They function across diverse cell types and can be multiplexed for the independent regulation of multiple genes. DIMMERs reduce off-target CRISPR base editing, improve single-molecule imaging, and allow live tracking of adeno-associated virus (AAV)-delivered transgene expression in mouse cortical neurons. DIMMERs thus enable accurate regulation for research and biotechnology applications.
准确控制转基因表达对研究和治疗很重要,但在大多数情况下很难实现。基于MicroRNA (miRNA)的调控电路可以被纳入转基因以改善控制。然而,这些电路的设计原则、性能限制以及在研究和生物技术中的应用尚未得到系统的确定。在这里,结合建模和实验,我们引入了基于mirna的电路模块,称为“剂量不变mirna介导的表达调节器”(DIMMERs),它在不同细胞类型中建立了精确的、可调的转基因表达控制,以促进成像、编辑和基因治疗。该电路使用多价miRNA调节相互作用,在基因剂量的两个数量级变化中实现几乎一致的可调蛋白表达。它们可以在不同的细胞类型中发挥作用,并且可以为多个基因的独立调节而进行多路复用。二聚体减少脱靶CRISPR碱基编辑,改善单分子成像,并允许在小鼠皮质神经元中实时跟踪腺相关病毒(AAV)传递的转基因表达。因此,调光剂可以对研究和生物技术应用进行精确调节。
{"title":"miRNA modules for precise, tunable control of gene expression","authors":"Rongrong Du, Michael J. Flynn, Karan Mahe, Monique Honsa, Bo Gu, Dongyang Li, Sean E. McGeary, Viviana Gradinaru, Ralf Jungmann, Michael B. Elowitz","doi":"10.1016/j.molcel.2025.11.028","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.11.028","url":null,"abstract":"Accurate control of transgene expression is important for research and therapy but is challenging to achieve in most settings. MicroRNA (miRNA)-based regulatory circuits can be incorporated within transgenes for improved control. However, the design principles, performance limits, and applications of these circuits in research and biotechnology have not been systematically determined. Here, combining modeling and experiments, we introduce miRNA-based circuit modules, termed “dosage invariant miRNA-mediated expression regulators” (DIMMERs), that establish precise, tunable control of transgene expression across diverse cell types to facilitate imaging, editing, and gene therapy. The circuits use multivalent miRNA regulatory interactions to achieve nearly uniform, tunable protein expression over two orders of magnitude variation in gene dosage. They function across diverse cell types and can be multiplexed for the independent regulation of multiple genes. DIMMERs reduce off-target CRISPR base editing, improve single-molecule imaging, and allow live tracking of adeno-associated virus (AAV)-delivered transgene expression in mouse cortical neurons. DIMMERs thus enable accurate regulation for research and biotechnology applications.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"116 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145777700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time and space: How the circadian clock controls DNA break repair location and pathway choice 时间和空间:生物钟如何控制DNA断裂修复位置和途径选择
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-19 DOI: 10.1016/j.molcel.2025.11.025
Catherine H. Freudenreich
{"title":"Time and space: How the circadian clock controls DNA break repair location and pathway choice","authors":"Catherine H. Freudenreich","doi":"10.1016/j.molcel.2025.11.025","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.11.025","url":null,"abstract":"","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"35 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145784405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward community-driven visual proteomics with large-scale cryo-electron tomography of Chlamydomonas reinhardtii 莱茵衣藻大规模低温电子断层扫描的群落驱动视觉蛋白质组学研究
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-19 DOI: 10.1016/j.molcel.2025.11.029
Ron Kelley, Sagar Khavnekar, Ricardo D. Righetto, Jessica Heebner, Martin Obr, Xianjun Zhang, Saikat Chakraborty, Grigory Tagiltsev, Alicia K. Michael, Sofie van Dorst, Florent Waltz, Caitlyn L. McCafferty, Lorenz Lamm, Simon Zufferey, Philippe Van der Stappen, Hugo van den Hoek, Wojciech Wietrzynski, Pavol Harar, William Wan, John A.G. Briggs, Abhay Kotecha
In situ cryo-electron tomography (cryo-ET) has emerged as the method of choice to investigate the structures of biomolecules in their native context. However, challenges remain for the efficient production and sharing of large-scale cryo-ET datasets. Here, we combined cryogenic plasma-based focused ion beam (cryo-PFIB) milling with recent advances in cryo-ET acquisition and processing to generate a dataset of 1,829 annotated tomograms of the green alga Chlamydomonas reinhardtii, which we provide as a community resource to drive method development and inspire biological discovery. To assay data quality, we performed subtomogram averaging of both soluble and membrane-bound complexes ranging in size from >3 MDa to ∼200 kDa, including 80S ribosomes, Rubisco, nucleosomes, microtubules, clathrin, photosystem II, and mitochondrial ATP synthase. The majority of these density maps reached sub-nanometer resolution, demonstrating the potential of this C. reinhardtii dataset as well as the promise of modern cryo-ET workflows and open data sharing to empower visual proteomics.
原位冷冻电子断层扫描(cryo-ET)已成为研究生物分子结构的首选方法。然而,大规模低温et数据集的有效生产和共享仍然存在挑战。在这里,我们将低温等离子体聚焦离子束(cryo-PFIB)铣切与低温et采集和处理的最新进展相结合,生成了1829个绿藻莱茵衣藻(Chlamydomonas reinhardtii)带注释的层析图数据集,作为推动方法开发和启发生物学发现的社区资源。为了分析数据质量,我们对可溶性和膜结合复合物进行了亚断层扫描平均,其大小从3mda到200kda不等,包括80S核糖体、Rubisco、核小体、微管、网格蛋白、光系统II和线粒体ATP合成酶。这些密度图中的大多数达到了亚纳米分辨率,展示了C. reinhardtii数据集的潜力,以及现代冷冻et工作流程和开放数据共享的前景,以增强视觉蛋白质组学。
{"title":"Toward community-driven visual proteomics with large-scale cryo-electron tomography of Chlamydomonas reinhardtii","authors":"Ron Kelley, Sagar Khavnekar, Ricardo D. Righetto, Jessica Heebner, Martin Obr, Xianjun Zhang, Saikat Chakraborty, Grigory Tagiltsev, Alicia K. Michael, Sofie van Dorst, Florent Waltz, Caitlyn L. McCafferty, Lorenz Lamm, Simon Zufferey, Philippe Van der Stappen, Hugo van den Hoek, Wojciech Wietrzynski, Pavol Harar, William Wan, John A.G. Briggs, Abhay Kotecha","doi":"10.1016/j.molcel.2025.11.029","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.11.029","url":null,"abstract":"<em>In situ</em> cryo-electron tomography (cryo-ET) has emerged as the method of choice to investigate the structures of biomolecules in their native context. However, challenges remain for the efficient production and sharing of large-scale cryo-ET datasets. Here, we combined cryogenic plasma-based focused ion beam (cryo-PFIB) milling with recent advances in cryo-ET acquisition and processing to generate a dataset of 1,829 annotated tomograms of the green alga <em>Chlamydomonas reinhardtii</em>, which we provide as a community resource to drive method development and inspire biological discovery. To assay data quality, we performed subtomogram averaging of both soluble and membrane-bound complexes ranging in size from &gt;3 MDa to ∼200 kDa, including 80S ribosomes, Rubisco, nucleosomes, microtubules, clathrin, photosystem II, and mitochondrial ATP synthase. The majority of these density maps reached sub-nanometer resolution, demonstrating the potential of this <em>C. reinhardtii</em> dataset as well as the promise of modern cryo-ET workflows and open data sharing to empower visual proteomics.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"31 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145777701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting PRDX6-dependent localization and function of GPX4 enhances ferroptosis-mediated tumor suppression 靶向prdx6依赖的定位和GPX4的功能可增强铁凋亡介导的肿瘤抑制
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-19 DOI: 10.1016/j.molcel.2025.11.023
Yameng Hu, Ziwen Li, Man Li, Xingui Wu, Shuxia Zhang, Miaoling Tang, Ruyuan Yu, Meisongzhu Yang, Xin Chen, Libing Song, Guido Kroemer, Valerian E. Kagan, Hülya Bayir, Rui Kang, Jinbao Liu, Daolin Tang, Jun Li
{"title":"Targeting PRDX6-dependent localization and function of GPX4 enhances ferroptosis-mediated tumor suppression","authors":"Yameng Hu, Ziwen Li, Man Li, Xingui Wu, Shuxia Zhang, Miaoling Tang, Ruyuan Yu, Meisongzhu Yang, Xin Chen, Libing Song, Guido Kroemer, Valerian E. Kagan, Hülya Bayir, Rui Kang, Jinbao Liu, Daolin Tang, Jun Li","doi":"10.1016/j.molcel.2025.11.023","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.11.023","url":null,"abstract":"","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"16 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145784782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A molecular trio anchors RNAs on the cell surface 一个分子三重奏将rna固定在细胞表面
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-19 DOI: 10.1016/j.molcel.2025.11.024
Yu-Hang Pan, Ling-Ling Chen
{"title":"A molecular trio anchors RNAs on the cell surface","authors":"Yu-Hang Pan, Ling-Ling Chen","doi":"10.1016/j.molcel.2025.11.024","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.11.024","url":null,"abstract":"","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"93 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145784783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transporting the transporter: TIM22 translocates mitoferrins to enable mitochondrial iron-sulfur cluster synthesis 转运转运蛋白:TIM22转运线粒体铁蛋白,使线粒体铁硫簇合成
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-19 DOI: 10.1016/j.molcel.2025.11.026
Erdem M. Terzi, Richard Possemato
{"title":"Transporting the transporter: TIM22 translocates mitoferrins to enable mitochondrial iron-sulfur cluster synthesis","authors":"Erdem M. Terzi, Richard Possemato","doi":"10.1016/j.molcel.2025.11.026","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.11.026","url":null,"abstract":"","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"10 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145784784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
H4K16 acylations destabilize chromatin architecture and facilitate transcriptional response during metabolic perturbations H4K16酰化破坏染色质结构的稳定性,促进代谢扰动期间的转录反应
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-19 DOI: 10.1016/j.molcel.2025.11.030
Sandra Nitsch, Aria E. Coraor, Tamas Schauer, Yiheng Wu, Jianfeng Sun, Natalie Möritz, Jonas Funke, Harsh Nagpal, Gabriella N.L. Chua, Federica Battistini, Shannon M. Lauberth, Eva Richard, Modesto Orozco, Shixin Liu, Lourdes R. Desviat, Beat Fierz, Hendrik Dietz, Robert G. Roeder, Juan J. de Pablo, Robert Schneider
{"title":"H4K16 acylations destabilize chromatin architecture and facilitate transcriptional response during metabolic perturbations","authors":"Sandra Nitsch, Aria E. Coraor, Tamas Schauer, Yiheng Wu, Jianfeng Sun, Natalie Möritz, Jonas Funke, Harsh Nagpal, Gabriella N.L. Chua, Federica Battistini, Shannon M. Lauberth, Eva Richard, Modesto Orozco, Shixin Liu, Lourdes R. Desviat, Beat Fierz, Hendrik Dietz, Robert G. Roeder, Juan J. de Pablo, Robert Schneider","doi":"10.1016/j.molcel.2025.11.030","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.11.030","url":null,"abstract":"","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"114 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145784785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell-surface RNA forms ternary complex with RNA-binding proteins and heparan sulfate to recruit immune receptors 细胞表面RNA与RNA结合蛋白和硫酸肝素形成三元复合物募集免疫受体
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-19 DOI: 10.1016/j.molcel.2025.11.020
Zeshi Li, Bhagyashree S. Joshi, Hongbo Yin, Ruud H. Wijdeven, Azen Koç, Dick W. Zijlmans, Irene Santos-Barriopedro, Hailiang Mei, Wei Wu, Milad Shademan, Filip M. Zawisza, Eric Bos, Pradeep Chopra, Marvin E. Tanenbaum, Thomas H. Sharp, Michiel Vermeulen, Vered Raz, Chirlmin Joo
{"title":"Cell-surface RNA forms ternary complex with RNA-binding proteins and heparan sulfate to recruit immune receptors","authors":"Zeshi Li, Bhagyashree S. Joshi, Hongbo Yin, Ruud H. Wijdeven, Azen Koç, Dick W. Zijlmans, Irene Santos-Barriopedro, Hailiang Mei, Wei Wu, Milad Shademan, Filip M. Zawisza, Eric Bos, Pradeep Chopra, Marvin E. Tanenbaum, Thomas H. Sharp, Michiel Vermeulen, Vered Raz, Chirlmin Joo","doi":"10.1016/j.molcel.2025.11.020","DOIUrl":"https://doi.org/10.1016/j.molcel.2025.11.020","url":null,"abstract":"","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"29 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145784781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Cell
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1