Pub Date : 2024-08-22DOI: 10.1016/j.molcel.2024.07.028
Oliver Meers, Marcus Buschbeck
Histone variants contribute to epigenetic regulation in development and disease but require the chaperone machinery for correct deposition. In this issue of Molecular Cell, Ji et al.1 explain how the chaperone complex FACT removes the histone variant macroH2A1.2 and demonstrate its importance for gene activation in innate immune cells.
{"title":"A FACT about macroH2A removal in immune gene activation","authors":"Oliver Meers, Marcus Buschbeck","doi":"10.1016/j.molcel.2024.07.028","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.07.028","url":null,"abstract":"<p>Histone variants contribute to epigenetic regulation in development and disease but require the chaperone machinery for correct deposition. In this issue of <em>Molecular Cell</em>, Ji et al.<span><span><sup>1</sup></span></span> explain how the chaperone complex FACT removes the histone variant macroH2A1.2 and demonstrate its importance for gene activation in innate immune cells.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142023083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.molcel.2024.07.023
Alison C. Mody, Christina M. Woo
In this issue of Molecular Cell, Yoshida et al.1 report an unconventional sugar-dependent ubiquitination event on Nrf1 that disrupts Nrf1 transcriptional activation.
{"title":"Ubiquitin gets sweet: Sugar-mediated ubiquitination regulates Nrf1 function","authors":"Alison C. Mody, Christina M. Woo","doi":"10.1016/j.molcel.2024.07.023","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.07.023","url":null,"abstract":"<p>In this issue of <em>Molecular Cell</em>, Yoshida et al.<span><span><sup>1</sup></span></span> report an unconventional sugar-dependent ubiquitination event on Nrf1 that disrupts Nrf1 transcriptional activation.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142023050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.molcel.2024.07.004
Yodhara Wijesekara Hanthi, Miguel Angel Ramirez-Otero, Robert Appleby, Anna De Antoni, Luay Joudeh, Vincenzo Sannino, Salli Waked, Alessandra Ardizzoia, Viviana Barra, Daniele Fachinetti, Luca Pellegrini, Vincenzo Costanzo
Abasic sites are DNA lesions repaired by base excision repair. Cleavage of unrepaired abasic sites in single-stranded DNA (ssDNA) can lead to chromosomal breakage during DNA replication. How rupture of abasic DNA is prevented remains poorly understood. Here, using cryoelectron microscopy (cryo-EM), Xenopus laevis egg extracts, and human cells, we show that RAD51 nucleofilaments specifically recognize and protect abasic sites, which increase RAD51 association rate to DNA. In the absence of BRCA2 or RAD51, abasic sites accumulate as a result of DNA base methylation, oxidation, and deamination, inducing abasic ssDNA gaps that make replicating DNA fibers sensitive to APE1. RAD51 assembled on abasic DNA prevents abasic site cleavage by the MRE11-RAD50 complex, suppressing replication fork breakage triggered by an excess of abasic sites or POLθ polymerase inhibition. Our study highlights the critical role of BRCA2 and RAD51 in safeguarding against unrepaired abasic sites in DNA templates stemming from base alterations, ensuring genomic stability.
消减位点是通过碱基切除修复的 DNA 损伤。在 DNA 复制过程中,单链 DNA(ssDNA)中未修复的缺损位点的裂解可导致染色体断裂。人们对如何防止缺失 DNA 断裂仍然知之甚少。在这里,我们利用低温电子显微镜(cryo-EM)、爪蟾卵提取物和人类细胞,证明了 RAD51 核丝可特异性识别和保护缺失位点,从而提高 RAD51 与 DNA 的结合率。在缺乏 BRCA2 或 RAD51 的情况下,DNA 碱基甲基化、氧化和脱氨基作用会导致缺失位点积累,从而诱发缺失 ssDNA 间隙,使复制 DNA 纤维对 APE1 敏感。组装在缺损 DNA 上的 RAD51 可阻止 MRE11-RAD50 复合物对缺损位点的裂解,从而抑制因缺损位点过多或 POLθ 聚合酶抑制而引发的复制叉断裂。我们的研究强调了 BRCA2 和 RAD51 在防止 DNA 模板中因碱基改变而产生的未修复的缺损位点、确保基因组稳定性方面的关键作用。
{"title":"RAD51 protects abasic sites to prevent replication fork breakage","authors":"Yodhara Wijesekara Hanthi, Miguel Angel Ramirez-Otero, Robert Appleby, Anna De Antoni, Luay Joudeh, Vincenzo Sannino, Salli Waked, Alessandra Ardizzoia, Viviana Barra, Daniele Fachinetti, Luca Pellegrini, Vincenzo Costanzo","doi":"10.1016/j.molcel.2024.07.004","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.07.004","url":null,"abstract":"<p>Abasic sites are DNA lesions repaired by base excision repair. Cleavage of unrepaired abasic sites in single-stranded DNA (ssDNA) can lead to chromosomal breakage during DNA replication. How rupture of abasic DNA is prevented remains poorly understood. Here, using cryoelectron microscopy (cryo-EM), <em>Xenopus laevis</em> egg extracts, and human cells, we show that RAD51 nucleofilaments specifically recognize and protect abasic sites, which increase RAD51 association rate to DNA. In the absence of BRCA2 or RAD51, abasic sites accumulate as a result of DNA base methylation, oxidation, and deamination, inducing abasic ssDNA gaps that make replicating DNA fibers sensitive to APE1. RAD51 assembled on abasic DNA prevents abasic site cleavage by the MRE11-RAD50 complex, suppressing replication fork breakage triggered by an excess of abasic sites or POLθ polymerase inhibition. Our study highlights the critical role of BRCA2 and RAD51 in safeguarding against unrepaired abasic sites in DNA templates stemming from base alterations, ensuring genomic stability.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142023089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stress granules (SGs) are conserved reversible cytoplasmic condensates enriched with aggregation-prone proteins assembled in response to various stresses. How plants regulate SG dynamics is unclear. Here, we show that 26S proteasome is a stable component of SGs, promoting the overall clearance of SGs without affecting the molecular mobility of SG components. Increase in either temperature or duration of heat stress reduces the molecular mobility of SG marker proteins and suppresses SG clearance. Heat stress induces dramatic ubiquitylation of SG components and enhances the activities of SG-resident proteasomes, allowing the degradation of SG components even during the assembly phase. Their proteolytic activities enable the timely disassembly of SGs and secure the survival of plant cells during the recovery from heat stress. Therefore, our findings identify the cellular process that de-couples macroscopic dynamics of SGs from the molecular dynamics of its constituents and highlights the significance of the proteasomes in SG disassembly.
{"title":"Proteasome resides in and dismantles plant heat stress granules constitutively","authors":"Zhouli Xie, Shuai Zhao, Yuchen Tu, Enhui Liu, Ying Li, Xingwei Wang, Changtian Chen, Shuwei Zhai, Jie Qi, Chengyun Wu, Honghong Wu, Mian Zhou, Wei Wang","doi":"10.1016/j.molcel.2024.07.033","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.07.033","url":null,"abstract":"<p>Stress granules (SGs) are conserved reversible cytoplasmic condensates enriched with aggregation-prone proteins assembled in response to various stresses. How plants regulate SG dynamics is unclear. Here, we show that 26S proteasome is a stable component of SGs, promoting the overall clearance of SGs without affecting the molecular mobility of SG components. Increase in either temperature or duration of heat stress reduces the molecular mobility of SG marker proteins and suppresses SG clearance. Heat stress induces dramatic ubiquitylation of SG components and enhances the activities of SG-resident proteasomes, allowing the degradation of SG components even during the assembly phase. Their proteolytic activities enable the timely disassembly of SGs and secure the survival of plant cells during the recovery from heat stress. Therefore, our findings identify the cellular process that de-couples macroscopic dynamics of SGs from the molecular dynamics of its constituents and highlights the significance of the proteasomes in SG disassembly.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142023091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-21DOI: 10.1016/j.molcel.2024.07.032
Mannan Bhola, Kouki Abe, Paola Orozco, Homa Rahnamoun, Pedro Avila-Lopez, Elijah Taylor, Nefertiti Muhammad, Bei Liu, Prachi Patel, John F. Marko, Anne C. Starner, Chuan He, Eric L. Van Nostrand, Alfonso Mondragón, Shannon M. Lauberth
Topoisomerase I (TOP1) is an essential enzyme that relaxes DNA to prevent and dissipate torsional stress during transcription. However, the mechanisms underlying the regulation of TOP1 activity remain elusive. Using enhanced cross-linking and immunoprecipitation (eCLIP) and ultraviolet-cross-linked RNA immunoprecipitation followed by total RNA sequencing (UV-RIP-seq) in human colon cancer cells along with RNA electrophoretic mobility shift assays (EMSAs), biolayer interferometry (BLI), and in vitro RNA-binding assays, we identify TOP1 as an RNA-binding protein (RBP). We show that TOP1 directly binds RNA in vitro and in cells and that most RNAs bound by TOP1 are mRNAs. Using a TOP1 RNA-binding mutant and topoisomerase cleavage complex sequencing (TOP1cc-seq) to map TOP1 catalytic activity, we reveal that RNA opposes TOP1 activity as RNA polymerase II (RNAPII) commences transcription of active genes. We further demonstrate the inhibitory role of RNA in regulating TOP1 activity by employing DNA supercoiling assays and magnetic tweezers. These findings provide insight into the coordinated actions of RNA and TOP1 in regulating DNA topological stress intrinsic to RNAPII-dependent transcription.
{"title":"RNA interacts with topoisomerase I to adjust DNA topology","authors":"Mannan Bhola, Kouki Abe, Paola Orozco, Homa Rahnamoun, Pedro Avila-Lopez, Elijah Taylor, Nefertiti Muhammad, Bei Liu, Prachi Patel, John F. Marko, Anne C. Starner, Chuan He, Eric L. Van Nostrand, Alfonso Mondragón, Shannon M. Lauberth","doi":"10.1016/j.molcel.2024.07.032","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.07.032","url":null,"abstract":"<p>Topoisomerase I (TOP1) is an essential enzyme that relaxes DNA to prevent and dissipate torsional stress during transcription. However, the mechanisms underlying the regulation of TOP1 activity remain elusive. Using enhanced cross-linking and immunoprecipitation (eCLIP) and ultraviolet-cross-linked RNA immunoprecipitation followed by total RNA sequencing (UV-RIP-seq) in human colon cancer cells along with RNA electrophoretic mobility shift assays (EMSAs), biolayer interferometry (BLI), and <em>in vitro</em> RNA-binding assays, we identify TOP1 as an RNA-binding protein (RBP). We show that TOP1 directly binds RNA <em>in vitro</em> and in cells and that most RNAs bound by TOP1 are mRNAs. Using a TOP1 RNA-binding mutant and topoisomerase cleavage complex sequencing (TOP1cc-seq) to map TOP1 catalytic activity, we reveal that RNA opposes TOP1 activity as RNA polymerase II (RNAPII) commences transcription of active genes. We further demonstrate the inhibitory role of RNA in regulating TOP1 activity by employing DNA supercoiling assays and magnetic tweezers. These findings provide insight into the coordinated actions of RNA and TOP1 in regulating DNA topological stress intrinsic to RNAPII-dependent transcription.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142023084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-21DOI: 10.1016/j.molcel.2024.08.005
Katharine R. Page, Vy N. Nguyen, Tino Pleiner, Giovani Pinton Tomaleri, Maxine L. Wang, Alina Guna, Masami Hazu, Ting-Yu Wang, Tsui-Fen Chou, Rebecca M. Voorhees
Mammalian membrane proteins perform essential physiologic functions that rely on their accurate insertion and folding at the endoplasmic reticulum (ER). Using forward and arrayed genetic screens, we systematically studied the biogenesis of a panel of membrane proteins, including several G-protein-coupled receptors (GPCRs). We observed a central role for the insertase, the ER membrane protein complex (EMC), and developed a dual-guide approach to identify genetic modifiers of the EMC. We found that the back of Sec61 (BOS) complex, a component of the multipass translocon, was a physical and genetic interactor of the EMC. Functional and structural analysis of the EMC⋅BOS holocomplex showed that characteristics of a GPCR’s soluble domain determine its biogenesis pathway. In contrast to prevailing models, no single insertase handles all substrates. We instead propose a unifying model for coordination between the EMC, the multipass translocon, and Sec61 for the biogenesis of diverse membrane proteins in human cells.
{"title":"Role of a holo-insertase complex in the biogenesis of biophysically diverse ER membrane proteins","authors":"Katharine R. Page, Vy N. Nguyen, Tino Pleiner, Giovani Pinton Tomaleri, Maxine L. Wang, Alina Guna, Masami Hazu, Ting-Yu Wang, Tsui-Fen Chou, Rebecca M. Voorhees","doi":"10.1016/j.molcel.2024.08.005","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.08.005","url":null,"abstract":"<p>Mammalian membrane proteins perform essential physiologic functions that rely on their accurate insertion and folding at the endoplasmic reticulum (ER). Using forward and arrayed genetic screens, we systematically studied the biogenesis of a panel of membrane proteins, including several G-protein-coupled receptors (GPCRs). We observed a central role for the insertase, the ER membrane protein complex (EMC), and developed a dual-guide approach to identify genetic modifiers of the EMC. We found that the back of Sec61 (BOS) complex, a component of the multipass translocon, was a physical and genetic interactor of the EMC. Functional and structural analysis of the EMC⋅BOS holocomplex showed that characteristics of a GPCR’s soluble domain determine its biogenesis pathway. In contrast to prevailing models, no single insertase handles all substrates. We instead propose a unifying model for coordination between the EMC, the multipass translocon, and Sec61 for the biogenesis of diverse membrane proteins in human cells.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142023030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-21DOI: 10.1016/j.molcel.2024.08.007
Havva Ortabozkoyun, Pin-Yao Huang, Edgar Gonzalez-Buendia, Hyein Cho, Sang Y. Kim, Aristotelis Tsirigos, Esteban O. Mazzoni, Danny Reinberg
Partitioning of repressive from actively transcribed chromatin in mammalian cells fosters cell-type-specific gene expression patterns. While this partitioning is reconstructed during differentiation, the chromatin occupancy of the key insulator, CCCTC-binding factor (CTCF), is unchanged at the developmentally important Hox clusters. Thus, dynamic changes in chromatin boundaries must entail other activities. Given its requirement for chromatin loop formation, we examined cohesin-based chromatin occupancy without known insulators, CTCF and Myc-associated zinc-finger protein (MAZ), and identified a family of zinc-finger proteins (ZNFs), some of which exhibit tissue-specific expression. Two such ZNFs foster chromatin boundaries at the Hox clusters that are distinct from each other and from MAZ. PATZ1 was critical to the thoracolumbar boundary in differentiating motor neurons and mouse skeleton, while ZNF263 contributed to cervicothoracic boundaries. We propose that these insulating activities act with cohesin, alone or combinatorially, with or without CTCF, to implement precise positional identity and cell fate during development.
{"title":"Members of an array of zinc-finger proteins specify distinct Hox chromatin boundaries","authors":"Havva Ortabozkoyun, Pin-Yao Huang, Edgar Gonzalez-Buendia, Hyein Cho, Sang Y. Kim, Aristotelis Tsirigos, Esteban O. Mazzoni, Danny Reinberg","doi":"10.1016/j.molcel.2024.08.007","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.08.007","url":null,"abstract":"<p>Partitioning of repressive from actively transcribed chromatin in mammalian cells fosters cell-type-specific gene expression patterns. While this partitioning is reconstructed during differentiation, the chromatin occupancy of the key insulator, CCCTC-binding factor (CTCF), is unchanged at the developmentally important <em>Hox</em> clusters. Thus, dynamic changes in chromatin boundaries must entail other activities. Given its requirement for chromatin loop formation, we examined cohesin-based chromatin occupancy without known insulators, CTCF and Myc-associated zinc-finger protein (MAZ), and identified a family of zinc-finger proteins (ZNFs), some of which exhibit tissue-specific expression. Two such ZNFs foster chromatin boundaries at the <em>Hox</em> clusters that are distinct from each other and from MAZ. PATZ1 was critical to the thoracolumbar boundary in differentiating motor neurons and mouse skeleton, while ZNF263 contributed to cervicothoracic boundaries. We propose that these insulating activities act with cohesin, alone or combinatorially, with or without CTCF, to implement precise positional identity and cell fate during development.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142023081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-21DOI: 10.1016/j.molcel.2024.08.001
Li Nie, Chenjie Fei, Yizeng Fan, Fabin Dang, Ziyue Zhao, Tingfang Zhu, Xiangyu Wu, Ting Dai, Arumugam Balasubramanian, Jing Pan, Yang Hu, Hongbo R. Luo, Wenyi Wei, Jiong Chen
NLRP3 inflammasome activation, essential for cytokine secretion and pyroptosis in response to diverse stimuli, is closely associated with various diseases. Upon stimulation, NLRP3 undergoes subcellular membrane trafficking and conformational rearrangements, preparing itself for inflammasome assembly at the microtubule-organizing center (MTOC). Here, we elucidate an orchestrated mechanism underlying these ordered processes using human and murine cells. Specifically, NLRP3 undergoes palmitoylation at two sites by palmitoyl transferase zDHHC1, facilitating its trafficking between subcellular membranes, including the mitochondria, trans-Golgi network (TGN), and endosome. This dynamic trafficking culminates in the localization of NLRP3 to the MTOC, where LATS1/2, pre-recruited to MTOC during priming, phosphorylates NLRP3 to further facilitate its interaction with NIMA-related kinase 7 (NEK7), ultimately leading to full NLRP3 activation. Consistently, Zdhhc1-deficiency mitigated LPS-induced inflammation and conferred protection against mortality in mice. Altogether, our findings provide valuable insights into the regulation of NLRP3 membrane trafficking and inflammasome activation, governed by palmitoylation and phosphorylation events.
{"title":"Consecutive palmitoylation and phosphorylation orchestrates NLRP3 membrane trafficking and inflammasome activation","authors":"Li Nie, Chenjie Fei, Yizeng Fan, Fabin Dang, Ziyue Zhao, Tingfang Zhu, Xiangyu Wu, Ting Dai, Arumugam Balasubramanian, Jing Pan, Yang Hu, Hongbo R. Luo, Wenyi Wei, Jiong Chen","doi":"10.1016/j.molcel.2024.08.001","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.08.001","url":null,"abstract":"<p>NLRP3 inflammasome activation, essential for cytokine secretion and pyroptosis in response to diverse stimuli, is closely associated with various diseases. Upon stimulation, NLRP3 undergoes subcellular membrane trafficking and conformational rearrangements, preparing itself for inflammasome assembly at the microtubule-organizing center (MTOC). Here, we elucidate an orchestrated mechanism underlying these ordered processes using human and murine cells. Specifically, NLRP3 undergoes palmitoylation at two sites by palmitoyl transferase zDHHC1, facilitating its trafficking between subcellular membranes, including the mitochondria, <em>trans</em>-Golgi network (TGN), and endosome. This dynamic trafficking culminates in the localization of NLRP3 to the MTOC, where LATS1/2, pre-recruited to MTOC during priming, phosphorylates NLRP3 to further facilitate its interaction with NIMA-related kinase 7 (NEK7), ultimately leading to full NLRP3 activation. Consistently, <em>Zdhhc1</em>-deficiency mitigated LPS-induced inflammation and conferred protection against mortality in mice. Altogether, our findings provide valuable insights into the regulation of NLRP3 membrane trafficking and inflammasome activation, governed by palmitoylation and phosphorylation events.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142023119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-16DOI: 10.1016/j.molcel.2024.07.025
Nuclear localization of the metabolic enzyme PKM2 is widely observed in various cancer types. We identify nuclear PKM2 as a non-canonical RNA-binding protein (RBP) that specifically interacts with folded RNA G-quadruplex (rG4) structures in precursor mRNAs (pre-mRNAs). PKM2 occupancy at rG4s prevents the binding of repressive RBPs, such as HNRNPF, and promotes the expression of rG4-containing pre-mRNAs (the “rG4ome”). We observe an upregulation of the rG4ome during epithelial-to-mesenchymal transition and a negative correlation of rG4 abundance with patient survival in different cancer types. By preventing the nuclear accumulation of PKM2, we could repress the rG4ome in triple-negative breast cancer cells and reduce migration and invasion of cancer cells in vitro and in xenograft mouse models. Our data suggest that the balance of folded and unfolded rG4s controlled by RBPs impacts gene expression during tumor progression.
{"title":"Nuclear PKM2 binds pre-mRNA at folded G-quadruplexes and reveals their gene regulatory role","authors":"","doi":"10.1016/j.molcel.2024.07.025","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.07.025","url":null,"abstract":"<p>Nuclear localization of the metabolic enzyme PKM2 is widely observed in various cancer types. We identify nuclear PKM2 as a non-canonical RNA-binding protein (RBP) that specifically interacts with folded RNA G-quadruplex (rG4) structures in precursor mRNAs (pre-mRNAs). PKM2 occupancy at rG4s prevents the binding of repressive RBPs, such as HNRNPF, and promotes the expression of rG4-containing pre-mRNAs (the “rG4ome”). We observe an upregulation of the rG4ome during epithelial-to-mesenchymal transition and a negative correlation of rG4 abundance with patient survival in different cancer types. By preventing the nuclear accumulation of PKM2, we could repress the rG4ome in triple-negative breast cancer cells and reduce migration and invasion of cancer cells <em>in vitro</em> and in xenograft mouse models. Our data suggest that the balance of folded and unfolded rG4s controlled by RBPs impacts gene expression during tumor progression.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141991946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-16DOI: 10.1016/j.molcel.2024.07.022
The individualization of chromosomes during early mitosis and their clustering upon exit from cell division are two key transitions that ensure efficient segregation of eukaryotic chromosomes. Both processes are regulated by the surfactant-like protein Ki-67, but how Ki-67 achieves these diametric functions has remained unknown. Here, we report that Ki-67 radically switches from a chromosome repellent to a chromosome attractant during anaphase in human cells. We show that Ki-67 dephosphorylation during mitotic exit and the simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface. Experiments and coarse-grained simulations support a model in which the coalescence of chromosome surfaces, driven by co-condensation of Ki-67 and RNA, promotes clustering of chromosomes. Our study reveals how the switch of Ki-67 from a surfactant to a liquid-like condensed phase can generate mechanical forces during genome segregation that are required for re-establishing nuclear-cytoplasmic compartmentalization after mitosis.
{"title":"A liquid-like coat mediates chromosome clustering during mitotic exit","authors":"","doi":"10.1016/j.molcel.2024.07.022","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.07.022","url":null,"abstract":"<p>The individualization of chromosomes during early mitosis and their clustering upon exit from cell division are two key transitions that ensure efficient segregation of eukaryotic chromosomes. Both processes are regulated by the surfactant-like protein Ki-67, but how Ki-67 achieves these diametric functions has remained unknown. Here, we report that Ki-67 radically switches from a chromosome repellent to a chromosome attractant during anaphase in human cells. We show that Ki-67 dephosphorylation during mitotic exit and the simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface. Experiments and coarse-grained simulations support a model in which the coalescence of chromosome surfaces, driven by co-condensation of Ki-67 and RNA, promotes clustering of chromosomes. Our study reveals how the switch of Ki-67 from a surfactant to a liquid-like condensed phase can generate mechanical forces during genome segregation that are required for re-establishing nuclear-cytoplasmic compartmentalization after mitosis.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141991949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}