首页 > 最新文献

Molecular Cell最新文献

英文 中文
Targeting APT2 improves MAVS palmitoylation and antiviral innate immunity 靶向 APT2 可改善 MAVS 棕榈酰化和抗病毒先天免疫力
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-09 DOI: 10.1016/j.molcel.2024.08.014
Lang Bu, Huan Wang, Shuishen Zhang, Yi Zhang, Miaowen Liu, Zhengkun Zhang, Xueji Wu, Qiwei Jiang, Lei Wang, Wei Xie, Miao He, Zhengran Zhou, Chao Cheng, Jianping Guo

Innate immunity serves as the primary defense against viral and microbial infections in humans. The precise influence of cellular metabolites, especially fatty acids, on antiviral innate immunity remains largely elusive. Here, through screening a metabolite library, palmitic acid (PA) has been identified as a key modulator of antiviral infections in human cells. Mechanistically, PA induces mitochondrial antiviral signaling protein (MAVS) palmitoylation, aggregation, and subsequent activation, thereby enhancing the innate immune response. The palmitoyl-transferase ZDHHC24 catalyzes MAVS palmitoylation, thereby boosting the TBK1-IRF3-interferon (IFN) pathway, particularly under conditions of PA stimulation or high-fat-diet-fed mouse models, leading to antiviral immune responses. Additionally, APT2 de-palmitoylates MAVS, thus inhibiting antiviral signaling, suggesting that its inhibitors, such as ML349, effectively reverse MAVS activation in response to antiviral infections. These findings underscore the critical role of PA in regulating antiviral innate immunity through MAVS palmitoylation and provide strategies for enhancing PA intake or targeting APT2 for combating viral infections.

先天免疫是人类抵御病毒和微生物感染的主要防御手段。细胞代谢物(尤其是脂肪酸)对抗病毒先天免疫的确切影响在很大程度上仍然难以捉摸。在这里,通过筛选代谢物库,发现棕榈酸(PA)是人类细胞抗病毒感染的关键调节剂。从机理上讲,棕榈酸能诱导线粒体抗病毒信号蛋白(MAVS)棕榈酰化、聚集和随后的活化,从而增强先天性免疫反应。棕榈酰转移酶 ZDHHC24 可催化 MAVS 的棕榈酰化,从而促进 TBK1-IRF3- 干扰素(IFN)通路,尤其是在 PA 刺激或高脂饮食小鼠模型条件下,从而导致抗病毒免疫反应。此外,APT2 可使 MAVS 去棕榈酰化,从而抑制抗病毒信号传导,这表明其抑制剂(如 ML349)可有效逆转 MAVS 在抗病毒感染中的激活。这些发现强调了 PA 在通过 MAVS 棕榈酰化调节抗病毒先天性免疫中的关键作用,并为提高 PA 摄入量或靶向 APT2 抗病毒感染提供了策略。
{"title":"Targeting APT2 improves MAVS palmitoylation and antiviral innate immunity","authors":"Lang Bu, Huan Wang, Shuishen Zhang, Yi Zhang, Miaowen Liu, Zhengkun Zhang, Xueji Wu, Qiwei Jiang, Lei Wang, Wei Xie, Miao He, Zhengran Zhou, Chao Cheng, Jianping Guo","doi":"10.1016/j.molcel.2024.08.014","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.08.014","url":null,"abstract":"<p>Innate immunity serves as the primary defense against viral and microbial infections in humans. The precise influence of cellular metabolites, especially fatty acids, on antiviral innate immunity remains largely elusive. Here, through screening a metabolite library, palmitic acid (PA) has been identified as a key modulator of antiviral infections in human cells. Mechanistically, PA induces mitochondrial antiviral signaling protein (MAVS) palmitoylation, aggregation, and subsequent activation, thereby enhancing the innate immune response. The palmitoyl-transferase ZDHHC24 catalyzes MAVS palmitoylation, thereby boosting the TBK1-IRF3-interferon (IFN) pathway, particularly under conditions of PA stimulation or high-fat-diet-fed mouse models, leading to antiviral immune responses. Additionally, APT2 de-palmitoylates MAVS, thus inhibiting antiviral signaling, suggesting that its inhibitors, such as ML349, effectively reverse MAVS activation in response to antiviral infections. These findings underscore the critical role of PA in regulating antiviral innate immunity through MAVS palmitoylation and provide strategies for enhancing PA intake or targeting APT2 for combating viral infections.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"4 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterochromatin: Hiding from the remodeling machines 异染色质:躲避重塑机器的攻击
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-05 DOI: 10.1016/j.molcel.2024.08.012
Craig L. Peterson

In this issue of Molecular Cell, Sahu et al.1 find that shielding heterochromatin from SWI/SNF chromatin remodelers is essential to maintain and epigenetically propagate pre-existing heterochromatin domains, whereas SWI/SNF action protects facultative heterochromatic regions from premature silencing.

在本期的《分子细胞》(Molecular Cell)杂志上,Sahu 等人1 发现,保护异染色质不受 SWI/SNF 染色质重塑者的影响,对于维持和表观遗传学上传播先前存在的异染色质结构域至关重要,而 SWI/SNF 的作用则能保护变性异染色质区域免于过早沉默。
{"title":"Heterochromatin: Hiding from the remodeling machines","authors":"Craig L. Peterson","doi":"10.1016/j.molcel.2024.08.012","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.08.012","url":null,"abstract":"<p>In this issue of <em>Molecular Cell</em>, Sahu et al.<span><span><sup>1</sup></span></span> find that shielding heterochromatin from SWI/SNF chromatin remodelers is essential to maintain and epigenetically propagate pre-existing heterochromatin domains, whereas SWI/SNF action protects facultative heterochromatic regions from premature silencing.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"7 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-CRISPRs deconstruct bacterial defense 抗CRISPR解构细菌防御系统
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-05 DOI: 10.1016/j.molcel.2024.08.008
Nils Birkholz, Peter C. Fineran

Deploying anti-CRISPR proteins is a potent strategy used by phages to inhibit bacterial CRISPR-Cas defense. In a new Nature paper, Trost et al.1 discover and characterize an exciting anti-CRISPR mechanism with possible implications beyond this microscopic arms race.

部署抗 CRISPR 蛋白是噬菌体用来抑制细菌 CRISPR-Cas 防御的一种有效策略。在新发表的《自然》(Nature)论文中,特罗斯特等人1 发现并描述了一种令人兴奋的反CRISPR机制,其影响可能超出这场微观军备竞赛。
{"title":"Anti-CRISPRs deconstruct bacterial defense","authors":"Nils Birkholz, Peter C. Fineran","doi":"10.1016/j.molcel.2024.08.008","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.08.008","url":null,"abstract":"<p>Deploying anti-CRISPR proteins is a potent strategy used by phages to inhibit bacterial CRISPR-Cas defense. In a new <em>Nature</em> paper, Trost et al.<span><span><sup>1</sup></span></span> discover and characterize an exciting anti-CRISPR mechanism with possible implications beyond this microscopic arms race.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"101 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNA polymerases reshape chromatin architecture and couple transcription on individual fibers. RNA 聚合酶重塑染色质结构,并将转录耦合到单个纤维上。
IF 14.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-05 Epub Date: 2024-08-26 DOI: 10.1016/j.molcel.2024.08.013
Thomas W Tullius, R Stefan Isaac, Danilo Dubocanin, Jane Ranchalis, L Stirling Churchman, Andrew B Stergachis

RNA polymerases must initiate and pause within a complex chromatin environment, surrounded by nucleosomes and other transcriptional machinery. This environment creates a spatial arrangement along individual chromatin fibers ripe for both competition and coordination, yet these relationships remain largely unknown owing to the inherent limitations of traditional structural and sequencing methodologies. To address this, we employed long-read chromatin fiber sequencing (Fiber-seq) in Drosophila to visualize RNA polymerase (Pol) within its native chromatin context with single-molecule precision along up to 30 kb fibers. We demonstrate that Fiber-seq enables the identification of individual Pol II, nucleosome, and transcription factor footprints, revealing Pol II pausing-driven destabilization of downstream nucleosomes. Furthermore, we demonstrate pervasive direct distance-dependent transcriptional coupling between nearby Pol II genes, Pol III genes, and transcribed enhancers, modulated by local chromatin architecture. Overall, transcription initiation reshapes surrounding nucleosome architecture and couples nearby transcriptional machinery along individual chromatin fibers.

RNA 聚合酶必须在复杂的染色质环境中启动和暂停,周围环绕着核糖体和其他转录机制。这种环境形成了沿染色质纤维的空间排列,竞争和协调的条件已经成熟,但由于传统结构和测序方法的固有局限性,这些关系在很大程度上仍不为人所知。为了解决这个问题,我们在果蝇中采用了长线程染色质纤维测序(Fiber-seq)技术,以单分子精度沿长达30 kb的纤维观察RNA聚合酶(Pol)在其原生染色质环境中的情况。我们证明了纤维-质谱能够识别单个 Pol II、核小体和转录因子的足迹,揭示了 Pol II 暂停驱动的下游核小体失稳。此外,我们还证明了附近的 Pol II 基因、Pol III 基因和转录增强子之间普遍存在直接的距离依赖性转录耦合,并受局部染色质结构的调节。总之,转录起始重塑了周围的核小体结构,并使附近的转录机制沿着单个染色质纤维耦合。
{"title":"RNA polymerases reshape chromatin architecture and couple transcription on individual fibers.","authors":"Thomas W Tullius, R Stefan Isaac, Danilo Dubocanin, Jane Ranchalis, L Stirling Churchman, Andrew B Stergachis","doi":"10.1016/j.molcel.2024.08.013","DOIUrl":"10.1016/j.molcel.2024.08.013","url":null,"abstract":"<p><p>RNA polymerases must initiate and pause within a complex chromatin environment, surrounded by nucleosomes and other transcriptional machinery. This environment creates a spatial arrangement along individual chromatin fibers ripe for both competition and coordination, yet these relationships remain largely unknown owing to the inherent limitations of traditional structural and sequencing methodologies. To address this, we employed long-read chromatin fiber sequencing (Fiber-seq) in Drosophila to visualize RNA polymerase (Pol) within its native chromatin context with single-molecule precision along up to 30 kb fibers. We demonstrate that Fiber-seq enables the identification of individual Pol II, nucleosome, and transcription factor footprints, revealing Pol II pausing-driven destabilization of downstream nucleosomes. Furthermore, we demonstrate pervasive direct distance-dependent transcriptional coupling between nearby Pol II genes, Pol III genes, and transcribed enhancers, modulated by local chromatin architecture. Overall, transcription initiation reshapes surrounding nucleosome architecture and couples nearby transcriptional machinery along individual chromatin fibers.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":" ","pages":"3209-3222.e5"},"PeriodicalIF":14.5,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500009/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proteasomes safeguard the plant stress granule homeostasis 蛋白酶体保障植物应激颗粒的平衡
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-05 DOI: 10.1016/j.molcel.2024.08.011
Qi Chen, Xiaoxin Chen, Peiguo Yang

In this issue of Molecular Cell, Xie et al.1 revealed that the proteasome is a constitutive component of plant stress granules (SGs), and that enhanced proteolytic activity is essential for efficient SG disassembly and plant survival during the stress response.

在本期的《分子细胞》(Molecular Cell)杂志上,Xie 等人1揭示了蛋白酶体是植物胁迫颗粒(SGs)的组成成分,在胁迫响应期间,蛋白酶体活性的增强对 SG 的有效解体和植物的存活至关重要。
{"title":"Proteasomes safeguard the plant stress granule homeostasis","authors":"Qi Chen, Xiaoxin Chen, Peiguo Yang","doi":"10.1016/j.molcel.2024.08.011","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.08.011","url":null,"abstract":"<p>In this issue of <em>Molecular Cell</em>, Xie et al.<span><span><sup>1</sup></span></span> revealed that the proteasome is a constitutive component of plant stress granules (SGs), and that enhanced proteolytic activity is essential for efficient SG disassembly and plant survival during the stress response.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"10 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms controlling replication fork stalling and collapse at topoisomerase 1 cleavage complexes 控制拓扑异构酶 1 分裂复合物复制叉停滞和崩溃的机制
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-04 DOI: 10.1016/j.molcel.2024.08.004
Rose Westhorpe, Johann J. Roske, Joseph T.P. Yeeles

Topoisomerase 1 cleavage complexes (Top1-ccs) comprise a DNA-protein crosslink and a single-stranded DNA break that can significantly impact the DNA replication machinery (replisome). Consequently, inhibitors that trap Top1-ccs are used extensively in research and clinical settings to generate DNA replication stress, yet how the replisome responds upon collision with a Top1-cc remains obscure. By reconstituting collisions between budding yeast replisomes, assembled from purified proteins, and site-specific Top1-ccs, we have uncovered mechanisms underlying replication fork stalling and collapse. We find that stalled replication forks are surprisingly stable and that their stability is influenced by the template strand that Top1 is crosslinked to, the fork protection complex proteins Tof1-Csm3 (human TIMELESS-TIPIN), and the convergence of replication forks. Moreover, nascent-strand mapping and cryoelectron microscopy (cryo-EM) of stalled forks establishes replisome remodeling as a key factor in the initial response to Top1-ccs. These findings have important implications for the use of Top1 inhibitors in research and in the clinic.

拓扑异构酶 1 分裂复合物(Top1-ccs)由 DNA 蛋白交联和单链 DNA 断裂组成,可对 DNA 复制机制(复制体)产生重大影响。因此,捕获 Top1-ccs 的抑制剂被广泛用于研究和临床环境中,以产生 DNA 复制压力,但复制体在与 Top1-cc 碰撞时如何反应仍不清楚。通过重构由纯化蛋白组装而成的芽殖酵母复制体与特定位点的 Top1-cc 之间的碰撞,我们发现了复制叉停滞和崩溃的内在机制。我们发现,停滞的复制叉出奇地稳定,而且其稳定性受到 Top1 交联的模板链、叉保护复合体蛋白 Tof1-Csm3(人类 TIMELESS-TIPIN)以及复制叉汇聚的影响。此外,停滞叉的新生链图谱和低温电子显微镜(cryo-EM)证实,复制体重塑是对 Top1-ccs 最初反应的关键因素。这些发现对 Top1 抑制剂在研究和临床中的应用具有重要意义。
{"title":"Mechanisms controlling replication fork stalling and collapse at topoisomerase 1 cleavage complexes","authors":"Rose Westhorpe, Johann J. Roske, Joseph T.P. Yeeles","doi":"10.1016/j.molcel.2024.08.004","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.08.004","url":null,"abstract":"<p>Topoisomerase 1 cleavage complexes (Top1-ccs) comprise a DNA-protein crosslink and a single-stranded DNA break that can significantly impact the DNA replication machinery (replisome). Consequently, inhibitors that trap Top1-ccs are used extensively in research and clinical settings to generate DNA replication stress, yet how the replisome responds upon collision with a Top1-cc remains obscure. By reconstituting collisions between budding yeast replisomes, assembled from purified proteins, and site-specific Top1-ccs, we have uncovered mechanisms underlying replication fork stalling and collapse. We find that stalled replication forks are surprisingly stable and that their stability is influenced by the template strand that Top1 is crosslinked to, the fork protection complex proteins Tof1-Csm3 (human TIMELESS-TIPIN), and the convergence of replication forks. Moreover, nascent-strand mapping and cryoelectron microscopy (cryo-EM) of stalled forks establishes replisome remodeling as a key factor in the initial response to Top1-ccs. These findings have important implications for the use of Top1 inhibitors in research and in the clinic.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"8 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The high-light-sensitivity mechanism and optogenetic properties of the bacteriorhodopsin-like channelrhodopsin GtCCR4 类细菌视紫红质通道视紫红质 GtCCR4 的高光敏机制和光遗传特性
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-03 DOI: 10.1016/j.molcel.2024.08.016
Tatsuki Tanaka, Shoko Hososhima, Yo Yamashita, Teppei Sugimoto, Toshiki Nakamura, Shunta Shigemura, Wataru Iida, Fumiya K. Sano, Kazumasa Oda, Takayuki Uchihashi, Kota Katayama, Yuji Furutani, Satoshi P. Tsunoda, Wataru Shihoya, Hideki Kandori, Osamu Nureki

Channelrhodopsins are microbial light-gated ion channels that can control the firing of neurons in response to light. Among several cation channelrhodopsins identified in Guillardia theta (GtCCRs), GtCCR4 has higher light sensitivity than typical channelrhodopsins. Furthermore, GtCCR4 shows superior properties as an optogenetic tool, such as minimal desensitization. Our structural analyses of GtCCR2 and GtCCR4 revealed that GtCCR4 has an outwardly bent transmembrane helix, resembling the conformation of activated G-protein-coupled receptors. Spectroscopic and electrophysiological comparisons suggested that this helix bend in GtCCR4 omits channel recovery time and contributes to high light sensitivity. An electrophysiological comparison of GtCCR4 and the well-characterized optogenetic tool ChRmine demonstrated that GtCCR4 has superior current continuity and action-potential spike generation with less invasiveness in neurons. We also identified highly active mutants of GtCCR4. These results shed light on the diverse structures and dynamics of microbial rhodopsins and demonstrate the strong optogenetic potential of GtCCR4.

通道闪烁蛋白是微生物的光门控离子通道,可以控制神经元对光的反应而发射。在Guillardia theta(GtCCRs)中发现的几种阳离子通道闪烁蛋白中,GtCCR4比典型的通道闪烁蛋白具有更高的光敏感性。此外,作为光遗传工具,GtCCR4 还显示出卓越的特性,如最小脱敏。我们对 GtCCR2 和 GtCCR4 的结构分析表明,GtCCR4 有一个向外弯曲的跨膜螺旋,类似于激活的 G 蛋白偶联受体的构象。光谱学和电生理学比较表明,GtCCR4 的这种螺旋弯曲省略了通道恢复时间,有助于提高光敏感性。对 GtCCR4 和特性良好的光遗传工具 ChRmine 的电生理学比较表明,GtCCR4 具有更优越的电流连续性和动作电位尖峰产生能力,对神经元的侵袭性更小。我们还发现了 GtCCR4 的高活性突变体。这些结果揭示了微生物视紫红质的不同结构和动力学,并证明了 GtCCR4 强大的光遗传潜力。
{"title":"The high-light-sensitivity mechanism and optogenetic properties of the bacteriorhodopsin-like channelrhodopsin GtCCR4","authors":"Tatsuki Tanaka, Shoko Hososhima, Yo Yamashita, Teppei Sugimoto, Toshiki Nakamura, Shunta Shigemura, Wataru Iida, Fumiya K. Sano, Kazumasa Oda, Takayuki Uchihashi, Kota Katayama, Yuji Furutani, Satoshi P. Tsunoda, Wataru Shihoya, Hideki Kandori, Osamu Nureki","doi":"10.1016/j.molcel.2024.08.016","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.08.016","url":null,"abstract":"<p>Channelrhodopsins are microbial light-gated ion channels that can control the firing of neurons in response to light. Among several cation channelrhodopsins identified in <em>Guillardia theta</em> (GtCCRs), GtCCR4 has higher light sensitivity than typical channelrhodopsins. Furthermore, GtCCR4 shows superior properties as an optogenetic tool, such as minimal desensitization. Our structural analyses of GtCCR2 and GtCCR4 revealed that GtCCR4 has an outwardly bent transmembrane helix, resembling the conformation of activated G-protein-coupled receptors. Spectroscopic and electrophysiological comparisons suggested that this helix bend in GtCCR4 omits channel recovery time and contributes to high light sensitivity. An electrophysiological comparison of GtCCR4 and the well-characterized optogenetic tool ChRmine demonstrated that GtCCR4 has superior current continuity and action-potential spike generation with less invasiveness in neurons. We also identified highly active mutants of GtCCR4. These results shed light on the diverse structures and dynamics of microbial rhodopsins and demonstrate the strong optogenetic potential of GtCCR4.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"26 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disorder-mediated interactions target proteins to specific condensates 无序介导的相互作用将蛋白质锁定在特定凝聚物上
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-03 DOI: 10.1016/j.molcel.2024.08.017
Nancy De La Cruz, Prashant Pradhan, Reshma T. Veettil, Brooke A. Conti, Mariano Oppikofer, Benjamin R. Sabari

Selective compartmentalization of cellular contents is fundamental to the regulation of biochemistry. Although membrane-bound organelles control composition by using a semi-permeable barrier, biomolecular condensates rely on interactions among constituents to determine composition. Condensates are formed by dynamic multivalent interactions, often involving intrinsically disordered regions (IDRs) of proteins, yet whether distinct compositions can arise from these dynamic interactions is not known. Here, by comparative analysis of proteins differentially partitioned by two different condensates, we find that distinct compositions arise through specific IDR-mediated interactions. The IDRs of differentially partitioned proteins are necessary and sufficient for selective partitioning. Distinct sequence features are required for IDRs to partition, and swapping these sequence features changes the specificity of partitioning. Swapping whole IDRs retargets proteins and their biochemical activity to different condensates. Our results demonstrate that IDR-mediated interactions can target proteins to specific condensates, enabling the spatial regulation of biochemistry within the cell.

细胞内容物的选择性分隔是调节生物化学的基础。虽然膜结合细胞器利用半透屏障控制成分,但生物分子凝聚体则依靠成分之间的相互作用来决定成分。凝结物是由动态多价相互作用形成的,通常涉及蛋白质的固有无序区(IDR),但这些动态相互作用是否会产生不同的成分尚不清楚。在这里,我们通过对两种不同凝聚物中不同分区的蛋白质进行比较分析,发现不同的组成是通过特定的 IDR 介导的相互作用产生的。不同分区蛋白质的 IDR 是选择性分区的必要条件和充分条件。IDR需要不同的序列特征才能分区,而交换这些序列特征会改变分区的特异性。交换整个 IDR 可将蛋白质及其生化活性重新定向到不同的凝聚物中。我们的研究结果表明,IDR 介导的相互作用可将蛋白质定向到特定的凝聚体,从而实现细胞内生化的空间调控。
{"title":"Disorder-mediated interactions target proteins to specific condensates","authors":"Nancy De La Cruz, Prashant Pradhan, Reshma T. Veettil, Brooke A. Conti, Mariano Oppikofer, Benjamin R. Sabari","doi":"10.1016/j.molcel.2024.08.017","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.08.017","url":null,"abstract":"<p>Selective compartmentalization of cellular contents is fundamental to the regulation of biochemistry. Although membrane-bound organelles control composition by using a semi-permeable barrier, biomolecular condensates rely on interactions among constituents to determine composition. Condensates are formed by dynamic multivalent interactions, often involving intrinsically disordered regions (IDRs) of proteins, yet whether distinct compositions can arise from these dynamic interactions is not known. Here, by comparative analysis of proteins differentially partitioned by two different condensates, we find that distinct compositions arise through specific IDR-mediated interactions. The IDRs of differentially partitioned proteins are necessary and sufficient for selective partitioning. Distinct sequence features are required for IDRs to partition, and swapping these sequence features changes the specificity of partitioning. Swapping whole IDRs retargets proteins and their biochemical activity to different condensates. Our results demonstrate that IDR-mediated interactions can target proteins to specific condensates, enabling the spatial regulation of biochemistry within the cell.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"66 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PICKLE-mediated nucleosome condensing drives H3K27me3 spreading for the inheritance of Polycomb memory during differentiation PICKLE介导的核小体缩聚驱动H3K27me3扩散,从而在分化过程中继承多角体记忆
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-03 DOI: 10.1016/j.molcel.2024.08.018
Zhenwei Liang, Tao Zhu, Yaoguang Yu, Caihong Wu, Yisui Huang, Yuanhao Hao, Xin Song, Wei Fu, Liangbing Yuan, Yuhai Cui, Shangzhi Huang, Chenlong Li

Spreading of H3K27me3 is crucial for the maintenance of mitotically inheritable Polycomb-mediated chromatin silencing in animals and plants. However, how Polycomb repressive complex 2 (PRC2) accesses unmodified nucleosomes in spreading regions for spreading H3K27me3 remains unclear. Here, we show in Arabidopsis thaliana that the chromatin remodeler PICKLE (PKL) plays a specialized role in H3K27me3 spreading to safeguard cell identity during differentiation. PKL specifically localizes to H3K27me3 spreading regions but not to nucleation sites and physically associates with PRC2. Loss of PKL disrupts the occupancy of the PRC2 catalytic subunit CLF in spreading regions and leads to aberrant dedifferentiation. Nucleosome density increase endowed by the ATPase function of PKL ensures that unmodified nucleosomes are accessible to PRC2 catalytic activity for H3K27me3 spreading. Our findings demonstrate that PKL-dependent nucleosome compaction is critical for PRC2-mediated H3K27me3 read-and-write function in H3K27me3 spreading, thus revealing a mechanism by which repressive chromatin domains are established and propagated.

在动物和植物中,H3K27me3的扩散对于维持有丝分裂可遗传的多角体介导的染色质沉默至关重要。然而,Polycomb抑制复合体2(PRC2)如何在扩散区域获得未修饰的核小体以扩散H3K27me3仍不清楚。在这里,我们在拟南芥中发现,染色质重塑因子 PICKLE(PKL)在 H3K27me3 扩增过程中发挥着特殊作用,以保护分化过程中的细胞特性。PKL特异性地定位在H3K27me3扩散区域,而不是成核位点,并与PRC2发生物理结合。PKL的缺失会破坏PRC2催化亚基CLF在扩增区域的占据,并导致异常的去分化。PKL的ATP酶功能提高了核小体密度,确保了PRC2催化活性可以获得未修饰的核小体,以进行H3K27me3扩增。我们的研究结果表明,依赖于PKL的核小体压实对于PRC2在H3K27me3扩散过程中介导的H3K27me3读写功能至关重要,从而揭示了抑制性染色质域的建立和传播机制。
{"title":"PICKLE-mediated nucleosome condensing drives H3K27me3 spreading for the inheritance of Polycomb memory during differentiation","authors":"Zhenwei Liang, Tao Zhu, Yaoguang Yu, Caihong Wu, Yisui Huang, Yuanhao Hao, Xin Song, Wei Fu, Liangbing Yuan, Yuhai Cui, Shangzhi Huang, Chenlong Li","doi":"10.1016/j.molcel.2024.08.018","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.08.018","url":null,"abstract":"<p>Spreading of H3K27me3 is crucial for the maintenance of mitotically inheritable Polycomb-mediated chromatin silencing in animals and plants. However, how Polycomb repressive complex 2 (PRC2) accesses unmodified nucleosomes in spreading regions for spreading H3K27me3 remains unclear. Here, we show in <em>Arabidopsis thaliana</em> that the chromatin remodeler PICKLE (PKL) plays a specialized role in H3K27me3 spreading to safeguard cell identity during differentiation. PKL specifically localizes to H3K27me3 spreading regions but not to nucleation sites and physically associates with PRC2. Loss of PKL disrupts the occupancy of the PRC2 catalytic subunit CLF in spreading regions and leads to aberrant dedifferentiation. Nucleosome density increase endowed by the ATPase function of PKL ensures that unmodified nucleosomes are accessible to PRC2 catalytic activity for H3K27me3 spreading. Our findings demonstrate that PKL-dependent nucleosome compaction is critical for PRC2-mediated H3K27me3 read-and-write function in H3K27me3 spreading, thus revealing a mechanism by which repressive chromatin domains are established and propagated.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"51 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stabilization of the hexasome intermediate during histone exchange by yeast SWR1 complex 酵母 SWR1 复合物在组蛋白交换过程中稳定六聚体中间体
IF 16 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-02 DOI: 10.1016/j.molcel.2024.08.015
Adam S.B. Jalal, Paul Girvan, Eugene Y.D. Chua, Lexin Liu, Shijie Wang, Elizabeth A. McCormack, Michael T. Skehan, Carol L. Knight, David S. Rueda, Dale B. Wigley

The yeast SWR1 complex catalyzes the exchange of histone H2A/H2B dimers in nucleosomes with Htz1/H2B dimers. We use cryoelectron microscopy to determine the structure of an enzyme-bound hexasome intermediate in the reaction pathway of histone exchange, in which an H2A/H2B dimer has been extracted from a nucleosome prior to the insertion of a dimer comprising Htz1/H2B. The structure reveals a key role for the Swc5 subunit in stabilizing the unwrapping of DNA from the histone core of the hexasome. By engineering a crosslink between an Htz1/H2B dimer and its chaperone protein Chz1, we show that this blocks histone exchange by SWR1 but allows the incoming chaperone-dimer complex to insert into the hexasome. We use this reagent to trap an SWR1/hexasome complex with an incoming Htz1/H2B dimer that shows how the reaction progresses to the next step. Taken together the structures reveal insights into the mechanism of histone exchange by SWR1 complex.

酵母 SWR1 复合物催化核小体中组蛋白 H2A/H2B 二聚体与 Htz1/H2B 二聚体的交换。我们利用冷冻电子显微镜确定了组蛋白交换反应途径中酶结合六聚体中间体的结构,在该中间体中,H2A/H2B二聚体在插入由Htz1/H2B组成的二聚体之前已从核小体中提取出来。该结构揭示了 Swc5 亚基在稳定 DNA 从六聚体的组蛋白核心解开方面的关键作用。通过在 Htz1/H2B 二聚体和它的伴侣蛋白 Chz1 之间建立交联,我们发现这阻止了 SWR1 的组蛋白交换,但允许进入的伴侣蛋白二聚体复合物插入六聚体。我们用这种试剂捕获了一个带有进入的 Htz1/H2B 二聚体的 SWR1/六聚体复合物,展示了反应如何进行到下一步。总之,这些结构揭示了 SWR1 复合物交换组蛋白的机制。
{"title":"Stabilization of the hexasome intermediate during histone exchange by yeast SWR1 complex","authors":"Adam S.B. Jalal, Paul Girvan, Eugene Y.D. Chua, Lexin Liu, Shijie Wang, Elizabeth A. McCormack, Michael T. Skehan, Carol L. Knight, David S. Rueda, Dale B. Wigley","doi":"10.1016/j.molcel.2024.08.015","DOIUrl":"https://doi.org/10.1016/j.molcel.2024.08.015","url":null,"abstract":"<p>The yeast SWR1 complex catalyzes the exchange of histone H2A/H2B dimers in nucleosomes with Htz1/H2B dimers. We use cryoelectron microscopy to determine the structure of an enzyme-bound hexasome intermediate in the reaction pathway of histone exchange, in which an H2A/H2B dimer has been extracted from a nucleosome prior to the insertion of a dimer comprising Htz1/H2B. The structure reveals a key role for the Swc5 subunit in stabilizing the unwrapping of DNA from the histone core of the hexasome. By engineering a crosslink between an Htz1/H2B dimer and its chaperone protein Chz1, we show that this blocks histone exchange by SWR1 but allows the incoming chaperone-dimer complex to insert into the hexasome. We use this reagent to trap an SWR1/hexasome complex with an incoming Htz1/H2B dimer that shows how the reaction progresses to the next step. Taken together the structures reveal insights into the mechanism of histone exchange by SWR1 complex.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"9 1","pages":""},"PeriodicalIF":16.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Cell
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1