首页 > 最新文献

Nature Cell Biology最新文献

英文 中文
Metabolic borders shape immune resistance. 代谢边界形成免疫抵抗。
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2026-01-23 DOI: 10.1038/s41556-025-01858-9
Ali Can Savas, Sergei I Grivennikov
{"title":"Metabolic borders shape immune resistance.","authors":"Ali Can Savas, Sergei I Grivennikov","doi":"10.1038/s41556-025-01858-9","DOIUrl":"https://doi.org/10.1038/s41556-025-01858-9","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":" ","pages":""},"PeriodicalIF":19.1,"publicationDate":"2026-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146041423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial quality control relies on MISO. 线粒体质量控制依赖于MISO。
IF 21.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2026-01-23 DOI: 10.1038/s41556-025-01866-9
Flavia Fontanesi
{"title":"Mitochondrial quality control relies on MISO.","authors":"Flavia Fontanesi","doi":"10.1038/s41556-025-01866-9","DOIUrl":"https://doi.org/10.1038/s41556-025-01866-9","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"273 1","pages":""},"PeriodicalIF":21.3,"publicationDate":"2026-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146033863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA nanodevices detect an acidic nanolayer on the lysosomal surface DNA纳米装置检测溶酶体表面的酸性纳米层
IF 21.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2026-01-21 DOI: 10.1038/s41556-025-01855-y
Yutong Zhang, Meiqin Hu, Yaping Meng, Xin Wang, Fangqian Huang, Ping Li, Yuting Zhuo, Danzhen Chen, Zhimin Wang, Qiang Zhang, Hui Wu, Yao He, Yulin Du, Haoxing Xu, Liping Qiu, Weihong Tan
Lysosomes maintain a highly acidic lumen to regulate H+-dependent hydrolase-mediated degradation, but how protons are ‘leaked’ out to regulate organellar functions through cytosolic effectors remains unknown. Here we developed DNA nanodevices on the cytosolic leaflet of lysosomal membranes to monitor juxta-organellar pH in cells. Unexpectedly, we revealed a radiating acidic layer (up to 21 nm in thickness) on the outer surface of all lysosomes, typically 0.2–0.7 pH units more acidic than the neutral cytosol. This acidic nanolayer is established and maintained primarily by TMEM175, a lysosomal H+ efflux channel associated with Parkinson’s disease. Activation of TMEM175 causes opposite pH changes on both sides of lysosomes; however, it is the juxta-lysosomal, not the luminal, acidity that determines lysosome positioning in cells with dynein adaptor RILP acting as a juxta-lysosomal pH sensor. Hence, through inside-out proton conduits, lysosomes create a steady acidic surrounding that acts as a nano-interface for cytosolic machineries to regulate organellar activities.
溶酶体维持高酸性的管腔来调节H+依赖的水解酶介导的降解,但质子如何通过细胞质效应物“泄露”出来调节细胞器功能仍然未知。在这里,我们在溶酶体膜的细胞质小叶上开发了DNA纳米装置来监测细胞中近细胞器的pH值。出乎意料的是,我们发现所有溶酶体的外表面都有一层辐射酸性层(厚度达21纳米),通常比中性细胞质酸性高0.2-0.7 pH单位。这种酸性纳米层主要由TMEM175建立和维持,TMEM175是一种与帕金森病相关的溶酶体H+外排通道。TMEM175的激活在溶酶体两侧引起相反的pH变化;然而,决定溶酶体在细胞中定位的是近溶酶体,而不是腔内酸度,动力蛋白适配器RILP作为近溶酶体pH传感器。因此,通过由内到外的质子导管,溶酶体创造了一个稳定的酸性环境,作为细胞质机械调节细胞器活动的纳米界面。
{"title":"DNA nanodevices detect an acidic nanolayer on the lysosomal surface","authors":"Yutong Zhang, Meiqin Hu, Yaping Meng, Xin Wang, Fangqian Huang, Ping Li, Yuting Zhuo, Danzhen Chen, Zhimin Wang, Qiang Zhang, Hui Wu, Yao He, Yulin Du, Haoxing Xu, Liping Qiu, Weihong Tan","doi":"10.1038/s41556-025-01855-y","DOIUrl":"https://doi.org/10.1038/s41556-025-01855-y","url":null,"abstract":"Lysosomes maintain a highly acidic lumen to regulate H+-dependent hydrolase-mediated degradation, but how protons are ‘leaked’ out to regulate organellar functions through cytosolic effectors remains unknown. Here we developed DNA nanodevices on the cytosolic leaflet of lysosomal membranes to monitor juxta-organellar pH in cells. Unexpectedly, we revealed a radiating acidic layer (up to 21 nm in thickness) on the outer surface of all lysosomes, typically 0.2–0.7 pH units more acidic than the neutral cytosol. This acidic nanolayer is established and maintained primarily by TMEM175, a lysosomal H+ efflux channel associated with Parkinson’s disease. Activation of TMEM175 causes opposite pH changes on both sides of lysosomes; however, it is the juxta-lysosomal, not the luminal, acidity that determines lysosome positioning in cells with dynein adaptor RILP acting as a juxta-lysosomal pH sensor. Hence, through inside-out proton conduits, lysosomes create a steady acidic surrounding that acts as a nano-interface for cytosolic machineries to regulate organellar activities.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"62 1","pages":""},"PeriodicalIF":21.3,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146005981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Publisher Correction: SLC2A1+ tumour-associated macrophages spatially control CD8+ T cell function and drive resistance to immunotherapy in non-small-cell lung cancer. 发布者更正:SLC2A1+肿瘤相关巨噬细胞在非小细胞肺癌中空间控制CD8+ T细胞功能并驱动免疫治疗耐药性。
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2026-01-19 DOI: 10.1038/s41556-026-01874-3
Lei Wang, Han Chu, Degao Chen, Yuxuan Wei, Jia Jia, Liqi Li, Linfeng He, Lina Peng, Fangfang Liu, Shanshan Huang, Zheng Jin, Dong Zhou, WenFeng Fang, Tao Jiang, Shouxia Xu, Xiaofang Ding, Haoyang Cai, Xindong Liu, Qingzhu Jia, Bo Zhu, Qian Chu
{"title":"Publisher Correction: SLC2A1<sup>+</sup> tumour-associated macrophages spatially control CD8<sup>+</sup> T cell function and drive resistance to immunotherapy in non-small-cell lung cancer.","authors":"Lei Wang, Han Chu, Degao Chen, Yuxuan Wei, Jia Jia, Liqi Li, Linfeng He, Lina Peng, Fangfang Liu, Shanshan Huang, Zheng Jin, Dong Zhou, WenFeng Fang, Tao Jiang, Shouxia Xu, Xiaofang Ding, Haoyang Cai, Xindong Liu, Qingzhu Jia, Bo Zhu, Qian Chu","doi":"10.1038/s41556-026-01874-3","DOIUrl":"10.1038/s41556-026-01874-3","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":" ","pages":""},"PeriodicalIF":19.1,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146003769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GPX4 mutation in neurodegeneration GPX4在神经变性中的突变
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2026-01-15 DOI: 10.1038/s41556-025-01862-z
Zhe Wang
{"title":"GPX4 mutation in neurodegeneration","authors":"Zhe Wang","doi":"10.1038/s41556-025-01862-z","DOIUrl":"10.1038/s41556-025-01862-z","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"28 1","pages":"1-1"},"PeriodicalIF":19.1,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145970252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitoxyperilysis as a distinct cell death type 丝裂细胞坏死是一种独特的细胞死亡类型
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2026-01-15 DOI: 10.1038/s41556-025-01861-0
Melina Casadio
{"title":"Mitoxyperilysis as a distinct cell death type","authors":"Melina Casadio","doi":"10.1038/s41556-025-01861-0","DOIUrl":"10.1038/s41556-025-01861-0","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"28 1","pages":"1-1"},"PeriodicalIF":19.1,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145970253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clocking intestinal absorption 肠道吸收计时
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2026-01-15 DOI: 10.1038/s41556-025-01865-w
Angela R. Parrish
{"title":"Clocking intestinal absorption","authors":"Angela R. Parrish","doi":"10.1038/s41556-025-01865-w","DOIUrl":"10.1038/s41556-025-01865-w","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"28 1","pages":"1-1"},"PeriodicalIF":19.1,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145970254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing monkey blastoids 进化中的猴胚
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2026-01-15 DOI: 10.1038/s41556-025-01857-w
Stylianos Lefkopoulos
{"title":"Advancing monkey blastoids","authors":"Stylianos Lefkopoulos","doi":"10.1038/s41556-025-01857-w","DOIUrl":"10.1038/s41556-025-01857-w","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"28 1","pages":"1-1"},"PeriodicalIF":19.1,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145970255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Programmed mitophagy at the oocyte-to-zygote transition promotes lineage endurance. 在卵母细胞到受精卵的转变过程中,程序化的有丝自噬促进了谱系的持久性。
IF 21.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2026-01-12 DOI: 10.1038/s41556-025-01854-z
Siddharthan B Thendral,Sasha Bacot,Ian T Ryde,Katherine S Morton,Qiuyi Chi,Isabel W Kenny-Ganzert,Joel N Meyer,David R Sherwood
The quality of mitochondria inherited from the oocyte determines embryonic viability, lifelong metabolic health of the progeny and lineage endurance. High levels of endogenous reactive oxygen species and exogenous toxicants pose threats to mitochondrial DNA (mtDNA) in fully developed oocytes. Deleterious mtDNA is commonly detected in mature oocytes, but is absent in embryos, suggesting the existence of a cryptic purifying selection mechanism. Here, we discover that in Caenorhabditis elegans, the onset of oocyte-to-zygote transition developmentally triggers a rapid mitophagy event. We show that mitophagy at oocyte-to-zygote transition (MOZT) requires mitochondrial fragmentation, the macroautophagy pathway and the mitophagy receptor FUNDC1, but not the prevalent mitophagy factors PINK1 and BNIP3. MOZT reduces the transmission of deleterious mtDNA and as a result, protects embryonic survival. Impaired MOZT drives the increased accumulation of mtDNA mutations across generations, leading to the extinction of descendant populations. Thus, MOZT represents a strategy that preserves mitochondrial health during the mother-to-offspring transmission and safeguards lineage continuity.
从卵母细胞遗传的线粒体的质量决定了胚胎的生存能力、后代的终生代谢健康和谱系的持久性。高水平的内源性活性氧和外源性毒物对完全发育的卵母细胞的线粒体DNA (mtDNA)构成威胁。有害的mtDNA通常在成熟卵母细胞中检测到,但在胚胎中不存在,这表明存在一种隐式纯化选择机制。在这里,我们发现在秀丽隐杆线虫中,卵细胞向受精卵转变的开始在发育中触发了一个快速的有丝分裂事件。我们发现卵母细胞到受精卵的线粒体自噬(MOZT)需要线粒体断裂、巨噬途径和线粒体自噬受体FUNDC1,但不需要流行的线粒体自噬因子PINK1和BNIP3。MOZT减少了有害mtDNA的传播,从而保护了胚胎的存活。受损的MOZT驱动mtDNA突变在代际间的积累增加,导致后代种群的灭绝。因此,MOZT代表了一种在母婴传播过程中保持线粒体健康和保障谱系连续性的策略。
{"title":"Programmed mitophagy at the oocyte-to-zygote transition promotes lineage endurance.","authors":"Siddharthan B Thendral,Sasha Bacot,Ian T Ryde,Katherine S Morton,Qiuyi Chi,Isabel W Kenny-Ganzert,Joel N Meyer,David R Sherwood","doi":"10.1038/s41556-025-01854-z","DOIUrl":"https://doi.org/10.1038/s41556-025-01854-z","url":null,"abstract":"The quality of mitochondria inherited from the oocyte determines embryonic viability, lifelong metabolic health of the progeny and lineage endurance. High levels of endogenous reactive oxygen species and exogenous toxicants pose threats to mitochondrial DNA (mtDNA) in fully developed oocytes. Deleterious mtDNA is commonly detected in mature oocytes, but is absent in embryos, suggesting the existence of a cryptic purifying selection mechanism. Here, we discover that in Caenorhabditis elegans, the onset of oocyte-to-zygote transition developmentally triggers a rapid mitophagy event. We show that mitophagy at oocyte-to-zygote transition (MOZT) requires mitochondrial fragmentation, the macroautophagy pathway and the mitophagy receptor FUNDC1, but not the prevalent mitophagy factors PINK1 and BNIP3. MOZT reduces the transmission of deleterious mtDNA and as a result, protects embryonic survival. Impaired MOZT drives the increased accumulation of mtDNA mutations across generations, leading to the extinction of descendant populations. Thus, MOZT represents a strategy that preserves mitochondrial health during the mother-to-offspring transmission and safeguards lineage continuity.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"28 1","pages":""},"PeriodicalIF":21.3,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145955978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RPA exhaustion activates SLFN11 to eliminate cells with heightened replication stress. RPA耗竭激活SLFN11以消除复制应激升高的细胞。
IF 21.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2026-01-09 DOI: 10.1038/s41556-025-01852-1
Tyler H Stanage,Shudong Li,Sandra Segura-Bayona,Aurora I Idilli,Rhona Millar,Graeme Hewitt,Simon J Boulton
SLFN11 is epigenetically silenced and confers chemoresistance in half of all cancers. In response to replication stress, SLFN11 triggers translation shutdown and p53-independent apoptosis, but how DNA damage activates SLFN11 remains unclear. Here through CRISPR-based screens we implicate SLFN11 as the critical determinant of cisplatin sensitivity in cells lacking primase-polymerase (PrimPol)-mediated repriming. SLFN11 and the downstream integrated stress response uniquely promote cisplatin-driven apoptosis in PrimPol-deficient cells. We demonstrate that replication protein A (RPA) exhaustion and single-stranded DNA exposure trigger SLFN11 activation and cell death when PrimPol is inactivated. We further identify the USP1-WDR48 deubiquitinase complex as a positive modulator of SLFN11 activation in PrimPol-deficient cells, revealing an addiction to the Fanconi anaemia pathway to resolve cisplatin lesions. Finally, we demonstrate that rapid RPA exhaustion on chemical inhibition of DNA polymerase α activates SLFN11-dependent cell death. Together, our results implicate RPA exhaustion as a general mechanism to activate SLFN11 in response to heightened replication stress.
SLFN11在表观遗传上沉默,并在一半的癌症中产生化学耐药。SLFN11在复制应激时触发翻译关闭和p53非依赖性细胞凋亡,但DNA损伤如何激活SLFN11仍不清楚。在这里,通过基于crispr的筛选,我们暗示SLFN11是缺乏引物聚合酶(PrimPol)介导的重聚合的细胞中顺铂敏感性的关键决定因素。SLFN11和下游综合应激反应独特地促进顺铂驱动的primpol缺陷细胞凋亡。我们证明,当PrimPol失活时,复制蛋白A (RPA)耗竭和单链DNA暴露可触发SLFN11激活和细胞死亡。我们进一步发现USP1-WDR48去泛素酶复合物是primpol缺陷细胞中SLFN11激活的正调节因子,揭示了对范可尼贫血途径的依赖性,以解决顺铂病变。最后,我们证明了快速的RPA耗尽对DNA聚合酶α的化学抑制可激活slfn11依赖性细胞死亡。总之,我们的研究结果表明RPA耗竭是激活SLFN11以应对高度复制应激的一般机制。
{"title":"RPA exhaustion activates SLFN11 to eliminate cells with heightened replication stress.","authors":"Tyler H Stanage,Shudong Li,Sandra Segura-Bayona,Aurora I Idilli,Rhona Millar,Graeme Hewitt,Simon J Boulton","doi":"10.1038/s41556-025-01852-1","DOIUrl":"https://doi.org/10.1038/s41556-025-01852-1","url":null,"abstract":"SLFN11 is epigenetically silenced and confers chemoresistance in half of all cancers. In response to replication stress, SLFN11 triggers translation shutdown and p53-independent apoptosis, but how DNA damage activates SLFN11 remains unclear. Here through CRISPR-based screens we implicate SLFN11 as the critical determinant of cisplatin sensitivity in cells lacking primase-polymerase (PrimPol)-mediated repriming. SLFN11 and the downstream integrated stress response uniquely promote cisplatin-driven apoptosis in PrimPol-deficient cells. We demonstrate that replication protein A (RPA) exhaustion and single-stranded DNA exposure trigger SLFN11 activation and cell death when PrimPol is inactivated. We further identify the USP1-WDR48 deubiquitinase complex as a positive modulator of SLFN11 activation in PrimPol-deficient cells, revealing an addiction to the Fanconi anaemia pathway to resolve cisplatin lesions. Finally, we demonstrate that rapid RPA exhaustion on chemical inhibition of DNA polymerase α activates SLFN11-dependent cell death. Together, our results implicate RPA exhaustion as a general mechanism to activate SLFN11 in response to heightened replication stress.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"244 1","pages":""},"PeriodicalIF":21.3,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145937789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Cell Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1