首页 > 最新文献

Nature Cell Biology最新文献

英文 中文
Caspase-2 is a condensate-mediated deubiquitinase in protein quality control Caspase-2是蛋白质质量控制中由凝结物介导的去泛素酶
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-10-31 DOI: 10.1038/s41556-024-01522-8
Yingwei Ge, Lijie Zhou, Yesheng Fu, Lijuan He, Yi Chen, Dingchang Li, Yuping Xie, Jun Yang, Haitao Wu, Hongmiao Dai, Zhiqiang Peng, Yong Zhang, Shaoqiong Yi, Bo Wu, Xin Zhang, Yangjun Zhang, Wantao Ying, Chun-Ping Cui, Cui Hua Liu, Lingqiang Zhang
Protein ubiquitination plays a critical role in protein quality control in response to cellular stress. The excessive accumulation of ubiquitinated conjugates can be detrimental to cells and is recognized as a hallmark of multiple neurodegenerative diseases. However, an in-depth understanding of how the excessive ubiquitin chains are removed to maintain ubiquitin homeostasis post stress remains largely unclear. Here we found that caspase-2 (CASP2) accumulates in a ubiquitin and proteasome-positive biomolecular condensate, which we named ubstressome, following stress and functions as a deubiquitinase to remove overloaded ubiquitin chains on proteins prone to misfolding. Mechanistically, CASP2 binds to the poly-ubiquitinated conjugates through its allosteric ubiquitin-interacting motif-like region and decreases overloaded ubiquitin chains in a protease-dependent manner to promote substrate degradation. CASP2 deficiency in mice results in excessive accumulation of poly-ubiquitinated TAR DNA-binding protein 43, leading to motor defects. Our findings uncover a stress-evoked deubiquitinating activity of CASP2 in the maintenance of cellular ubiquitin homeostasis, which differs from the well-known roles of caspase in apoptosis and inflammation. These data also reveal unrecognized protein quality control functions of condensates in the removal of stress-induced ubiquitin chains. Ge, Zhou, Fu et al. find caspase-2 accumulates in biomolecular condensates with ubiquitin and proteasomal components and functions as a deubiquitinase following stress. Caspase-2-deficient mice accumulate poly-ubiquitinated TDP-43 and show motor defects.
蛋白质泛素化在应对细胞压力的蛋白质质量控制中发挥着关键作用。泛素化共轭物的过度积累会对细胞造成危害,被认为是多种神经退行性疾病的标志。然而,深入了解应激后如何清除过量泛素链以维持泛素平衡在很大程度上仍不清楚。在这里,我们发现在应激后,caspase-2(CASP2)会在泛素和蛋白酶体阳性的生物分子凝聚物(我们将其命名为ubstressome)中聚集,并发挥去泛素酶的功能,清除易发生错误折叠的蛋白质上过量的泛素链。从机理上讲,CASP2通过其异位泛素相互作用基序样区域与多泛素化共轭物结合,并以蛋白酶依赖的方式减少过载的泛素链,从而促进底物降解。小鼠缺乏 CASP2 会导致多泛素化的 TAR DNA 结合蛋白 43 过度积累,从而导致运动缺陷。我们的发现揭示了 CASP2 在维持细胞泛素平衡中的应激诱发的去泛素活性,这与众所周知的 caspase 在细胞凋亡和炎症中的作用不同。这些数据还揭示了冷凝物在清除应激诱导的泛素链过程中尚未被认识到的蛋白质质量控制功能。
{"title":"Caspase-2 is a condensate-mediated deubiquitinase in protein quality control","authors":"Yingwei Ge, Lijie Zhou, Yesheng Fu, Lijuan He, Yi Chen, Dingchang Li, Yuping Xie, Jun Yang, Haitao Wu, Hongmiao Dai, Zhiqiang Peng, Yong Zhang, Shaoqiong Yi, Bo Wu, Xin Zhang, Yangjun Zhang, Wantao Ying, Chun-Ping Cui, Cui Hua Liu, Lingqiang Zhang","doi":"10.1038/s41556-024-01522-8","DOIUrl":"10.1038/s41556-024-01522-8","url":null,"abstract":"Protein ubiquitination plays a critical role in protein quality control in response to cellular stress. The excessive accumulation of ubiquitinated conjugates can be detrimental to cells and is recognized as a hallmark of multiple neurodegenerative diseases. However, an in-depth understanding of how the excessive ubiquitin chains are removed to maintain ubiquitin homeostasis post stress remains largely unclear. Here we found that caspase-2 (CASP2) accumulates in a ubiquitin and proteasome-positive biomolecular condensate, which we named ubstressome, following stress and functions as a deubiquitinase to remove overloaded ubiquitin chains on proteins prone to misfolding. Mechanistically, CASP2 binds to the poly-ubiquitinated conjugates through its allosteric ubiquitin-interacting motif-like region and decreases overloaded ubiquitin chains in a protease-dependent manner to promote substrate degradation. CASP2 deficiency in mice results in excessive accumulation of poly-ubiquitinated TAR DNA-binding protein 43, leading to motor defects. Our findings uncover a stress-evoked deubiquitinating activity of CASP2 in the maintenance of cellular ubiquitin homeostasis, which differs from the well-known roles of caspase in apoptosis and inflammation. These data also reveal unrecognized protein quality control functions of condensates in the removal of stress-induced ubiquitin chains. Ge, Zhou, Fu et al. find caspase-2 accumulates in biomolecular condensates with ubiquitin and proteasomal components and functions as a deubiquitinase following stress. Caspase-2-deficient mice accumulate poly-ubiquitinated TDP-43 and show motor defects.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 11","pages":"1943-1957"},"PeriodicalIF":17.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41556-024-01522-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ex vivo imaging reveals the spatiotemporal control of ovulation 体外成像揭示排卵的时空控制
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-10-16 DOI: 10.1038/s41556-024-01524-6
Christopher Thomas, Tabea Lilian Marx, Sarah Mae Penir, Melina Schuh
During ovulation, an egg is released from an ovarian follicle, ready for fertilization. Ovulation occurs inside the body, impeding direct studies of its progression. Therefore, the exact mechanisms that control ovulation have remained unclear. Here we devised live imaging methods to study the entire process of ovulation in isolated mouse ovarian follicles. We show that ovulation proceeds through three distinct phases, follicle expansion (I), contraction (II) and rupture (III), culminating in the release of the egg. Follicle expansion is driven by hyaluronic acid secretion and an osmotic gradient-directed fluid influx into the follicle. Then, smooth muscle cells in the outer follicle drive follicle contraction. Follicle rupture begins with stigma formation, followed by the exit of follicular fluid and cumulus cells and the rapid release of the egg. These results establish a mechanistic framework for ovulation, a process of fundamental importance for reproduction. Thomas, Marx et al. devise a live imaging approach to spatiotemporally dissect mouse ovulation ex vivo.
排卵时,卵子从卵泡中排出,准备受精。排卵发生在体内,阻碍了对其进展的直接研究。因此,控制排卵的确切机制仍不清楚。在这里,我们设计了活体成像方法来研究离体小鼠卵泡排卵的整个过程。我们发现排卵过程经历了三个不同的阶段:卵泡扩张(I)、收缩(II)和破裂(III),最终卵子排出。卵泡扩张是由透明质酸分泌和渗透梯度引导的液体流入卵泡驱动的。然后,卵泡外层的平滑肌细胞驱动卵泡收缩。卵泡破裂始于柱头形成,随后卵泡液和积液细胞流出,卵子迅速排出。这些结果为排卵这一对生殖至关重要的过程建立了一个机制框架。
{"title":"Ex vivo imaging reveals the spatiotemporal control of ovulation","authors":"Christopher Thomas, Tabea Lilian Marx, Sarah Mae Penir, Melina Schuh","doi":"10.1038/s41556-024-01524-6","DOIUrl":"10.1038/s41556-024-01524-6","url":null,"abstract":"During ovulation, an egg is released from an ovarian follicle, ready for fertilization. Ovulation occurs inside the body, impeding direct studies of its progression. Therefore, the exact mechanisms that control ovulation have remained unclear. Here we devised live imaging methods to study the entire process of ovulation in isolated mouse ovarian follicles. We show that ovulation proceeds through three distinct phases, follicle expansion (I), contraction (II) and rupture (III), culminating in the release of the egg. Follicle expansion is driven by hyaluronic acid secretion and an osmotic gradient-directed fluid influx into the follicle. Then, smooth muscle cells in the outer follicle drive follicle contraction. Follicle rupture begins with stigma formation, followed by the exit of follicular fluid and cumulus cells and the rapid release of the egg. These results establish a mechanistic framework for ovulation, a process of fundamental importance for reproduction. Thomas, Marx et al. devise a live imaging approach to spatiotemporally dissect mouse ovulation ex vivo.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 11","pages":"1997-2008"},"PeriodicalIF":17.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41556-024-01524-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Waste management and cell death in T cells T 细胞中的废物管理和细胞死亡
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-10-16 DOI: 10.1038/s41556-024-01538-0
Douglas R. Green
After being activated, T lymphocytes must consume fuel for energy and biomaterials to sustain rapid proliferation and differentiation. As a consequence, waste is generated that must be managed. A new study now explores how activated CD8+ effector T cells handle ammonia, and how this impacts the survival and function of these cells.
T 淋巴细胞被激活后,必须消耗燃料作为能量和生物材料,以维持快速增殖和分化。因此,产生的废物必须加以管理。现在,一项新研究探讨了活化的 CD8+ 效应 T 细胞如何处理氨,以及这对这些细胞的存活和功能有何影响。
{"title":"Waste management and cell death in T cells","authors":"Douglas R. Green","doi":"10.1038/s41556-024-01538-0","DOIUrl":"10.1038/s41556-024-01538-0","url":null,"abstract":"After being activated, T lymphocytes must consume fuel for energy and biomaterials to sustain rapid proliferation and differentiation. As a consequence, waste is generated that must be managed. A new study now explores how activated CD8+ effector T cells handle ammonia, and how this impacts the survival and function of these cells.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 11","pages":"1826-1827"},"PeriodicalIF":17.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Now it’s getting bloody in cardiac organoids 现在,它在心脏器官组织中变得鲜血淋漓
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-10-16 DOI: 10.1038/s41556-024-01528-2
Thomas Brand
Modelling definitive haematopoiesis in organoids has been challenging. A study now develops blood-generating heart-forming organoids that display heart muscle, vascular endothelium formation and definitive haematopoiesis. This organoid represents an in vitro model of human embryonic circulatory system development.
在器官组织中模拟确定性造血一直是一项挑战。现在,一项研究开发出了可生成血液的心脏形成类器官,这种类器官可显示心肌、血管内皮形成和最终造血。这种类器官是人类胚胎循环系统发育的体外模型。
{"title":"Now it’s getting bloody in cardiac organoids","authors":"Thomas Brand","doi":"10.1038/s41556-024-01528-2","DOIUrl":"10.1038/s41556-024-01528-2","url":null,"abstract":"Modelling definitive haematopoiesis in organoids has been challenging. A study now develops blood-generating heart-forming organoids that display heart muscle, vascular endothelium formation and definitive haematopoiesis. This organoid represents an in vitro model of human embryonic circulatory system development.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 11","pages":"1830-1831"},"PeriodicalIF":17.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visualizing RNA polymerase dynamics RNA 聚合酶动态可视化
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-10-11 DOI: 10.1038/s41556-024-01534-4
Sabrya Carim
{"title":"Visualizing RNA polymerase dynamics","authors":"Sabrya Carim","doi":"10.1038/s41556-024-01534-4","DOIUrl":"10.1038/s41556-024-01534-4","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 10","pages":"1629-1629"},"PeriodicalIF":17.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142405148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Helping cancer switch sides 帮助癌症患者换位思考
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-10-11 DOI: 10.1038/s41556-024-01536-2
Stylianos Lefkopoulos
{"title":"Helping cancer switch sides","authors":"Stylianos Lefkopoulos","doi":"10.1038/s41556-024-01536-2","DOIUrl":"10.1038/s41556-024-01536-2","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 10","pages":"1629-1629"},"PeriodicalIF":17.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142405139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diet and longevity 饮食与长寿
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-10-11 DOI: 10.1038/s41556-024-01535-3
Melina Casadio
{"title":"Diet and longevity","authors":"Melina Casadio","doi":"10.1038/s41556-024-01535-3","DOIUrl":"10.1038/s41556-024-01535-3","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 10","pages":"1629-1629"},"PeriodicalIF":17.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142405140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of TFEB lactylation TFEB 乳化作用
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-10-11 DOI: 10.1038/s41556-024-01533-5
Petra Gross
{"title":"Role of TFEB lactylation","authors":"Petra Gross","doi":"10.1038/s41556-024-01533-5","DOIUrl":"10.1038/s41556-024-01533-5","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 10","pages":"1629-1629"},"PeriodicalIF":17.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142405138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retinoid-enhanced human gastruloids 维甲酸增强型人类胃泌素
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-10-10 DOI: 10.1038/s41556-024-01517-5
Alexandra Schauer, Jesse V. Veenvliet
Hidden by the womb, early human development remains cloaked in mystery. To unveil developmental processes in health and disease, pluripotent stem cells can be coaxed into structures recapitulating aspects of the embryo. A study now establishes an advanced stem-cell-based model of the human embryonic trunk.
人类的早期发育被子宫所掩盖,至今仍是个谜。为了揭示健康和疾病的发育过程,可以将多能干细胞诱导成重现胚胎各方面的结构。现在,一项研究建立了基于干细胞的人类胚胎躯干先进模型。
{"title":"Retinoid-enhanced human gastruloids","authors":"Alexandra Schauer, Jesse V. Veenvliet","doi":"10.1038/s41556-024-01517-5","DOIUrl":"10.1038/s41556-024-01517-5","url":null,"abstract":"Hidden by the womb, early human development remains cloaked in mystery. To unveil developmental processes in health and disease, pluripotent stem cells can be coaxed into structures recapitulating aspects of the embryo. A study now establishes an advanced stem-cell-based model of the human embryonic trunk.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 10","pages":"1634-1636"},"PeriodicalIF":17.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial and functional separation of mTORC1 signalling in response to different amino acid sources mTORC1 信号对不同氨基酸源的响应在空间和功能上的分离
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-10-09 DOI: 10.1038/s41556-024-01523-7
Stephanie A. Fernandes, Danai-Dimitra Angelidaki, Julian Nüchel, Jiyoung Pan, Peter Gollwitzer, Yoav Elkis, Filippo Artoni, Sabine Wilhelm, Marija Kovacevic-Sarmiento, Constantinos Demetriades
Amino acid (AA) availability is a robust determinant of cell growth through controlling mechanistic/mammalian target of rapamycin complex 1 (mTORC1) activity. According to the predominant model in the field, AA sufficiency drives the recruitment and activation of mTORC1 on the lysosomal surface by the heterodimeric Rag GTPases, from where it coordinates the majority of cellular processes. Importantly, however, the teleonomy of the proposed lysosomal regulation of mTORC1 and where mTORC1 acts on its effector proteins remain enigmatic. Here, by using multiple pharmacological and genetic means to perturb the lysosomal AA-sensing and protein recycling machineries, we describe the spatial separation of mTORC1 regulation and downstream functions in mammalian cells, with lysosomal and non-lysosomal mTORC1 phosphorylating distinct substrates in response to different AA sources. Moreover, we reveal that a fraction of mTOR localizes at lysosomes owing to basal lysosomal proteolysis that locally supplies new AAs, even in cells grown in the presence of extracellular nutrients, whereas cytoplasmic mTORC1 is regulated by exogenous AAs. Overall, our study substantially expands our knowledge about the topology of mTORC1 regulation by AAs and hints at the existence of distinct, Rag- and lysosome-independent mechanisms that control its activity at other subcellular locations. Given the importance of mTORC1 signalling and AA sensing for human ageing and disease, our findings will probably pave the way towards the identification of function-specific mTORC1 regulators and thus highlight more effective targets for drug discovery against conditions with dysregulated mTORC1 activity in the future. Fernandes, Angelidaki et al. provide evidence supporting the spatial separation of mTORC1 activation and signalling. Differentially localized mTORC1 complexes phosphorylate distinct substrates in response to different amino acid supplies.
氨基酸(AA)的可用性通过控制雷帕霉素复合体 1(mTORC1)的机理/哺乳动物靶标活性而成为细胞生长的有力决定因素。根据该领域的主流模型,AA 的充足性会通过异源二聚体 Rag GTP 酶驱动 mTORC1 在溶酶体表面的招募和激活,并从那里协调大多数细胞过程。然而,重要的是,溶酶体对 mTORC1 的调控机制以及 mTORC1 在何处作用于其效应蛋白仍然是个谜。在这里,我们利用多种药理学和遗传学手段来扰乱溶酶体AA传感和蛋白质循环机制,描述了哺乳动物细胞中mTORC1调控和下游功能的空间分离,溶酶体和非溶酶体mTORC1在不同的AA来源下磷酸化不同的底物。此外,我们还发现,即使细胞在有细胞外营养物质存在的情况下生长,由于溶酶体的基础蛋白水解会在局部提供新的 AA,因此一部分 mTOR 会定位在溶酶体,而细胞质中的 mTORC1 则受外源 AA 的调控。总之,我们的研究大大拓宽了我们对mTORC1受AAs调控的拓扑结构的认识,并暗示了存在不同的、依赖于Rag和溶酶体的机制来控制其在其他亚细胞位置的活性。鉴于 mTORC1 信号传导和 AA 传感对人类衰老和疾病的重要性,我们的研究结果很可能会为鉴定功能特异性 mTORC1 调节因子铺平道路,从而为将来发现治疗 mTORC1 活性失调疾病的药物找到更有效的靶点。
{"title":"Spatial and functional separation of mTORC1 signalling in response to different amino acid sources","authors":"Stephanie A. Fernandes, Danai-Dimitra Angelidaki, Julian Nüchel, Jiyoung Pan, Peter Gollwitzer, Yoav Elkis, Filippo Artoni, Sabine Wilhelm, Marija Kovacevic-Sarmiento, Constantinos Demetriades","doi":"10.1038/s41556-024-01523-7","DOIUrl":"10.1038/s41556-024-01523-7","url":null,"abstract":"Amino acid (AA) availability is a robust determinant of cell growth through controlling mechanistic/mammalian target of rapamycin complex 1 (mTORC1) activity. According to the predominant model in the field, AA sufficiency drives the recruitment and activation of mTORC1 on the lysosomal surface by the heterodimeric Rag GTPases, from where it coordinates the majority of cellular processes. Importantly, however, the teleonomy of the proposed lysosomal regulation of mTORC1 and where mTORC1 acts on its effector proteins remain enigmatic. Here, by using multiple pharmacological and genetic means to perturb the lysosomal AA-sensing and protein recycling machineries, we describe the spatial separation of mTORC1 regulation and downstream functions in mammalian cells, with lysosomal and non-lysosomal mTORC1 phosphorylating distinct substrates in response to different AA sources. Moreover, we reveal that a fraction of mTOR localizes at lysosomes owing to basal lysosomal proteolysis that locally supplies new AAs, even in cells grown in the presence of extracellular nutrients, whereas cytoplasmic mTORC1 is regulated by exogenous AAs. Overall, our study substantially expands our knowledge about the topology of mTORC1 regulation by AAs and hints at the existence of distinct, Rag- and lysosome-independent mechanisms that control its activity at other subcellular locations. Given the importance of mTORC1 signalling and AA sensing for human ageing and disease, our findings will probably pave the way towards the identification of function-specific mTORC1 regulators and thus highlight more effective targets for drug discovery against conditions with dysregulated mTORC1 activity in the future. Fernandes, Angelidaki et al. provide evidence supporting the spatial separation of mTORC1 activation and signalling. Differentially localized mTORC1 complexes phosphorylate distinct substrates in response to different amino acid supplies.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 11","pages":"1918-1933"},"PeriodicalIF":17.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41556-024-01523-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Cell Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1