首页 > 最新文献

Nature Cell Biology最新文献

英文 中文
The enhancer module of Integrator controls cell identity and early neural fate commitment Integrator的增强子模块控制细胞特性和早期神经命运承诺
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-26 DOI: 10.1038/s41556-024-01556-y
Yingjie Zhang, Connor M. Hill, Kelsey A. Leach, Luca Grillini, Sandra Deliard, Sarah R. Offley, Martina Gatto, Francis Picone, Avery Zucco, Alessandro Gardini
Lineage-specific transcription factors operate as master orchestrators of developmental processes by activating select cis-regulatory enhancers and proximal promoters. Direct DNA binding of transcription factors ultimately drives context-specific recruitment of the basal transcriptional machinery that comprises RNA polymerase II (RNAPII) and a host of polymerase-associated multiprotein complexes, including the metazoan-specific Integrator complex. Integrator is primarily known to modulate RNAPII processivity and to surveil RNA integrity across coding genes. Here we describe an enhancer module of Integrator that directs cell fate specification by promoting epigenetic changes and transcription factor binding at neural enhancers. Depletion of Integrator’s INTS10 subunit upends neural traits and derails cells towards mesenchymal identity. Commissioning of neural enhancers relies on Integrator’s enhancer module, which stabilizes SOX2 binding at chromatin upon exit from pluripotency. We propose that Integrator is a functional bridge between enhancers and promoters and a main driver of early development, providing new insight into a growing family of neurodevelopmental syndromes. Zhang et al. report that INST10, part of the Integrator enhancer module, promotes epigenetic changes and transcription factor binding at enhancers that drive neural cell fate commitment by stabilizing SOX2 binding at chromatin upon pluripotency exit.
品系特异性转录因子通过激活选定的顺式调节增强子和近端启动子,成为发育过程的主协调者。转录因子与 DNA 的直接结合最终会驱动基础转录机制的特异性招募,基础转录机制包括 RNA 聚合酶 II(RNAPII)和大量与聚合酶相关的多蛋白复合物,其中包括类囊动物特有的 Integrator 复合物。据了解,Integrator 主要负责调节 RNAPII 的过程活性,并监控整个编码基因中 RNA 的完整性。在这里,我们描述了Integrator的一个增强子模块,它通过促进神经增强子的表观遗传变化和转录因子结合来指导细胞命运的规范化。缺失Integrator的INTS10亚基会破坏神经特征,并使细胞向间充质身份脱轨。神经增强子的调试依赖于Integrator的增强子模块,它能在细胞脱离多能性后稳定SOX2与染色质的结合。我们认为,Integrator 是增强子和启动子之间的功能性桥梁,也是早期发育的主要驱动力,它为日益增多的神经发育综合征家族提供了新的见解。
{"title":"The enhancer module of Integrator controls cell identity and early neural fate commitment","authors":"Yingjie Zhang, Connor M. Hill, Kelsey A. Leach, Luca Grillini, Sandra Deliard, Sarah R. Offley, Martina Gatto, Francis Picone, Avery Zucco, Alessandro Gardini","doi":"10.1038/s41556-024-01556-y","DOIUrl":"10.1038/s41556-024-01556-y","url":null,"abstract":"Lineage-specific transcription factors operate as master orchestrators of developmental processes by activating select cis-regulatory enhancers and proximal promoters. Direct DNA binding of transcription factors ultimately drives context-specific recruitment of the basal transcriptional machinery that comprises RNA polymerase II (RNAPII) and a host of polymerase-associated multiprotein complexes, including the metazoan-specific Integrator complex. Integrator is primarily known to modulate RNAPII processivity and to surveil RNA integrity across coding genes. Here we describe an enhancer module of Integrator that directs cell fate specification by promoting epigenetic changes and transcription factor binding at neural enhancers. Depletion of Integrator’s INTS10 subunit upends neural traits and derails cells towards mesenchymal identity. Commissioning of neural enhancers relies on Integrator’s enhancer module, which stabilizes SOX2 binding at chromatin upon exit from pluripotency. We propose that Integrator is a functional bridge between enhancers and promoters and a main driver of early development, providing new insight into a growing family of neurodevelopmental syndromes. Zhang et al. report that INST10, part of the Integrator enhancer module, promotes epigenetic changes and transcription factor binding at enhancers that drive neural cell fate commitment by stabilizing SOX2 binding at chromatin upon pluripotency exit.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"27 1","pages":"103-117"},"PeriodicalIF":17.3,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142713099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FMRP gains mitochondrial fission control FMRP 获得线粒体裂变控制权
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-15 DOI: 10.1038/s41556-024-01567-9
Carissa L. Sirois, Soraya O. Sandoval, Xinyu Zhao
Mitochondrial fission and fusion are crucial for neurons. The RNA-binding protein FMRP regulates mitochondrial dynamics, including fusion and trafficking in neurons. A study now identifies a mechanism by which FMRP regulates mitochondrial fission.
线粒体的分裂和融合对神经元至关重要。RNA 结合蛋白 FMRP 可调节线粒体的动力学,包括神经元中的融合和贩运。现在,一项研究确定了FMRP调节线粒体裂变的机制。
{"title":"FMRP gains mitochondrial fission control","authors":"Carissa L. Sirois, Soraya O. Sandoval, Xinyu Zhao","doi":"10.1038/s41556-024-01567-9","DOIUrl":"10.1038/s41556-024-01567-9","url":null,"abstract":"Mitochondrial fission and fusion are crucial for neurons. The RNA-binding protein FMRP regulates mitochondrial dynamics, including fusion and trafficking in neurons. A study now identifies a mechanism by which FMRP regulates mitochondrial fission.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 12","pages":"2014-2015"},"PeriodicalIF":17.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FMRP regulates MFF translation to locally direct mitochondrial fission in neurons FMRP 调控 MFF 翻译,局部引导神经元线粒体分裂
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-15 DOI: 10.1038/s41556-024-01544-2
Adam R. Fenton, Ruchao Peng, Charles Bond, Siewert Hugelier, Melike Lakadamyali, Yi-Wei Chang, Erika L. F. Holzbaur, Thomas A. Jongens
Fragile X messenger ribonucleoprotein (FMRP) is a critical regulator of translation, whose dysfunction causes fragile X syndrome. FMRP dysfunction disrupts mitochondrial health in neurons, but it is unclear how FMRP supports mitochondrial homoeostasis. Here we demonstrate that FMRP granules are recruited to the mitochondrial midzone, where they mark mitochondrial fission sites in axons and dendrites. Endolysosomal vesicles contribute to FMRP granule positioning around mitochondria and facilitate FMRP-associated fission via Rab7 GTP hydrolysis. Cryo-electron tomography and real-time translation imaging reveal that mitochondria-associated FMRP granules are ribosome-rich structures that serve as sites of local protein synthesis. Specifically, FMRP promotes local translation of mitochondrial fission factor (MFF), selectively enabling replicative fission at the mitochondrial midzone. Disrupting FMRP function dysregulates mitochondria-associated MFF translation and perturbs fission dynamics, resulting in increased peripheral fission and an irregular distribution of mitochondrial nucleoids. Thus, FMRP regulates local translation of MFF in neurons, enabling precise control of mitochondrial fission. Fenton et al. show that FMRP granules dock at the mitochondrial midzone in a Rab7-dependent manner in axons and dendrites, where they promote local MFF synthesis and fission at the mitochondrial midzone.
脆性 X 信使核糖核蛋白(FMRP)是翻译的关键调节因子,其功能障碍会导致脆性 X 综合征。FMRP功能障碍会破坏神经元线粒体的健康,但目前还不清楚FMRP如何支持线粒体的平衡。在这里,我们证明了 FMRP 颗粒被招募到线粒体中区,并在那里标记轴突和树突中的线粒体裂变位点。溶酶体内囊泡有助于FMRP颗粒在线粒体周围的定位,并通过Rab7 GTP水解促进FMRP相关裂变。低温电子断层扫描和实时翻译成像显示,线粒体相关的FMRP颗粒是富含核糖体的结构,是局部蛋白质合成的场所。具体来说,FMRP 促进线粒体裂变因子(MFF)的局部翻译,有选择性地促成线粒体中区的复制裂变。干扰 FMRP 的功能会使线粒体相关 MFF 翻译失调并扰乱裂变动力学,导致外围裂变增加和线粒体核仁分布不规则。因此,FMRP 可调节神经元中 MFF 的局部翻译,从而实现对线粒体裂变的精确控制。
{"title":"FMRP regulates MFF translation to locally direct mitochondrial fission in neurons","authors":"Adam R. Fenton, Ruchao Peng, Charles Bond, Siewert Hugelier, Melike Lakadamyali, Yi-Wei Chang, Erika L. F. Holzbaur, Thomas A. Jongens","doi":"10.1038/s41556-024-01544-2","DOIUrl":"10.1038/s41556-024-01544-2","url":null,"abstract":"Fragile X messenger ribonucleoprotein (FMRP) is a critical regulator of translation, whose dysfunction causes fragile X syndrome. FMRP dysfunction disrupts mitochondrial health in neurons, but it is unclear how FMRP supports mitochondrial homoeostasis. Here we demonstrate that FMRP granules are recruited to the mitochondrial midzone, where they mark mitochondrial fission sites in axons and dendrites. Endolysosomal vesicles contribute to FMRP granule positioning around mitochondria and facilitate FMRP-associated fission via Rab7 GTP hydrolysis. Cryo-electron tomography and real-time translation imaging reveal that mitochondria-associated FMRP granules are ribosome-rich structures that serve as sites of local protein synthesis. Specifically, FMRP promotes local translation of mitochondrial fission factor (MFF), selectively enabling replicative fission at the mitochondrial midzone. Disrupting FMRP function dysregulates mitochondria-associated MFF translation and perturbs fission dynamics, resulting in increased peripheral fission and an irregular distribution of mitochondrial nucleoids. Thus, FMRP regulates local translation of MFF in neurons, enabling precise control of mitochondrial fission. Fenton et al. show that FMRP granules dock at the mitochondrial midzone in a Rab7-dependent manner in axons and dendrites, where they promote local MFF synthesis and fission at the mitochondrial midzone.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 12","pages":"2061-2074"},"PeriodicalIF":17.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41556-024-01544-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromatin remodelling in damaged intestinal crypts orchestrates redundant TGFβ and Hippo signalling to drive regeneration 受损肠隐窝中的染色质重塑可协调冗余的 TGFβ 和 Hippo 信号,从而推动肠道再生
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-15 DOI: 10.1038/s41556-024-01550-4
Mardi Fink, Kizito Njah, Shyam J. Patel, David P. Cook, Vanessa Man, Francesco Ruso, Arsheen Rajan, Masahiro Narimatsu, Andreea Obersterescu, Melanie J. Pye, Daniel Trcka, Kin Chan, Arshad Ayyaz, Jeffrey L. Wrana
Cell state dynamics underlying successful tissue regeneration are undercharacterized. In the intestine, damage prompts epithelial reprogramming into revival stem cells (revSCs) that reconstitute Lgr5+ intestinal stem cells (ISCs). Here single-nuclear multi-omics of mouse crypts regenerating from irradiation shows revSC chromatin accessibility overlaps with ISCs and differentiated lineages. While revSC genes themselves are accessible throughout homeostatic epithelia, damage-induced remodelling of chromatin in the crypt converges on Hippo and the transforming growth factor-beta (TGFβ) signalling pathway, which we show is transiently activated and directly induces functional revSCs. Combinatorial gene expression analysis further suggests multiple sources of revSCs, and we demonstrate TGFβ can reprogramme enterocytes, goblet and paneth cells into revSCs and show individual revSCs form organoids. Despite this, loss of TGFβ signalling yields mild regenerative defects, whereas interference in both Hippo and TGFβ leads to profound defects and death. Intestinal regeneration is thus poised for activation by a compensatory system of crypt-localized, transient morphogen cues that support epithelial reprogramming and robust intestinal repair. Using deep single-nucleus multi-omics profiling, Fink et al. report transition states between crypt epithelial cells and a revival stem cell lineage. They find that the TGFβ and Hippo signalling pathways cooperatively drive intestinal regeneration.
成功组织再生的细胞状态动力学特征尚不明确。在肠道中,损伤会促使上皮细胞重编程为复兴干细胞(revSCs),重建Lgr5+肠干细胞(ISCs)。这里对辐照后再生的小鼠隐窝进行的单核多组学研究显示,revSC染色质可及性与ISC和分化系重叠。虽然revSC基因本身在整个平衡上皮细胞中都可获得,但损伤诱导的隐窝染色质重塑汇聚于Hippo和转化生长因子-β(TGFβ)信号通路,我们发现TGFβ信号通路被短暂激活并直接诱导功能性revSC。组合基因表达分析进一步表明了revSCs的多种来源,我们还证明了TGFβ可将肠细胞、鹅口疮细胞和paneth细胞重编程为revSCs,并显示单个revSCs可形成器官组织。尽管如此,TGFβ 信号的缺失会导致轻微的再生缺陷,而干扰 Hippo 和 TGFβ 则会导致严重的缺陷和死亡。因此,肠道再生已准备就绪,可通过隐窝定位的瞬时形态发生器的补偿系统激活,从而支持上皮重编程和强大的肠道修复。
{"title":"Chromatin remodelling in damaged intestinal crypts orchestrates redundant TGFβ and Hippo signalling to drive regeneration","authors":"Mardi Fink, Kizito Njah, Shyam J. Patel, David P. Cook, Vanessa Man, Francesco Ruso, Arsheen Rajan, Masahiro Narimatsu, Andreea Obersterescu, Melanie J. Pye, Daniel Trcka, Kin Chan, Arshad Ayyaz, Jeffrey L. Wrana","doi":"10.1038/s41556-024-01550-4","DOIUrl":"10.1038/s41556-024-01550-4","url":null,"abstract":"Cell state dynamics underlying successful tissue regeneration are undercharacterized. In the intestine, damage prompts epithelial reprogramming into revival stem cells (revSCs) that reconstitute Lgr5+ intestinal stem cells (ISCs). Here single-nuclear multi-omics of mouse crypts regenerating from irradiation shows revSC chromatin accessibility overlaps with ISCs and differentiated lineages. While revSC genes themselves are accessible throughout homeostatic epithelia, damage-induced remodelling of chromatin in the crypt converges on Hippo and the transforming growth factor-beta (TGFβ) signalling pathway, which we show is transiently activated and directly induces functional revSCs. Combinatorial gene expression analysis further suggests multiple sources of revSCs, and we demonstrate TGFβ can reprogramme enterocytes, goblet and paneth cells into revSCs and show individual revSCs form organoids. Despite this, loss of TGFβ signalling yields mild regenerative defects, whereas interference in both Hippo and TGFβ leads to profound defects and death. Intestinal regeneration is thus poised for activation by a compensatory system of crypt-localized, transient morphogen cues that support epithelial reprogramming and robust intestinal repair. Using deep single-nucleus multi-omics profiling, Fink et al. report transition states between crypt epithelial cells and a revival stem cell lineage. They find that the TGFβ and Hippo signalling pathways cooperatively drive intestinal regeneration.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 12","pages":"2084-2098"},"PeriodicalIF":17.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A systemic effect for liver senescence 肝脏衰老的系统效应
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-13 DOI: 10.1038/s41556-024-01520-w
Kuo Du, David Scott Umbaugh, Rajesh Kumar Dutta, Anna Mae Diehl
A study shows that senescence induced in the liver can spread systemically to precipitate multi-organ dysfunction. The work identifies TGFβ signalling as a key mediator of this transmission, suggesting therapeutic avenues to prevent multi-organ failure in severe liver diseases.
一项研究表明,肝脏诱发的衰老可向全身扩散,导致多器官功能障碍。研究发现,TGFβ信号是这种传播的关键介质,这为预防严重肝病的多器官功能衰竭提供了治疗途径。
{"title":"A systemic effect for liver senescence","authors":"Kuo Du, David Scott Umbaugh, Rajesh Kumar Dutta, Anna Mae Diehl","doi":"10.1038/s41556-024-01520-w","DOIUrl":"10.1038/s41556-024-01520-w","url":null,"abstract":"A study shows that senescence induced in the liver can spread systemically to precipitate multi-organ dysfunction. The work identifies TGFβ signalling as a key mediator of this transmission, suggesting therapeutic avenues to prevent multi-organ failure in severe liver diseases.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 12","pages":"2016-2017"},"PeriodicalIF":17.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hepatocellular senescence induces multi-organ senescence and dysfunction via TGFβ 肝细胞衰老通过 TGFβ诱导多器官衰老和功能障碍
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-13 DOI: 10.1038/s41556-024-01543-3
Christos Kiourtis, Maria Terradas-Terradas, Lucy M. Gee, Stephanie May, Anastasia Georgakopoulou, Amy L. Collins, Eoin D. O’Sullivan, David P. Baird, Mohsin Hassan, Robin Shaw, Ee Hong Tan, Miryam Müller, Cornelius Engelmann, Fausto Andreola, Ya-Ching Hsieh, Lee H. Reed, Lee A. Borthwick, Colin Nixon, William Clark, Peter S. Hanson, David Sumpton, Gillian Mackay, Toshiyasu Suzuki, Arafath K. Najumudeen, Gareth J. Inman, Andrew Campbell, Simon T. Barry, Alberto Quaglia, Christopher M. Morris, Fiona E. N. LeBeau, Owen J. Sansom, Kristina Kirschner, Rajiv Jalan, Fiona Oakley, Thomas G. Bird
Cellular senescence is not only associated with ageing but also impacts physiological and pathological processes, such as embryonic development and wound healing. Factors secreted by senescent cells affect their microenvironment and can induce spreading of senescence locally. Acute severe liver disease is associated with hepatocyte senescence and frequently progresses to multi-organ failure. Why the latter occurs is poorly understood. Here we demonstrate senescence development in extrahepatic organs and associated organ dysfunction in response to liver senescence using liver injury models and genetic models of hepatocyte-specific senescence. In patients with severe acute liver failure, we show that the extent of hepatocellular senescence predicts disease outcome, the need for liver transplantation and the occurrence of extrahepatic organ failure. We identify the TGFβ pathway as a critical mediator of systemic spread of senescence and demonstrate that TGFβ inhibition in vivo blocks senescence transmission to other organs, preventing liver senescence induced renal dysfunction. Our results highlight the systemic consequences of organ-specific senescence, which, independent of ageing, contributes to multi-organ dysfunction. Kiourtis et al. show that liver senescence triggers senescence and dysfunction in other organs through TGFβ secretion from the liver.
细胞衰老不仅与衰老有关,还会影响胚胎发育和伤口愈合等生理和病理过程。衰老细胞分泌的因子会影响其微环境,并可诱导衰老在局部扩散。急性重症肝病与肝细胞衰老有关,并经常发展为多器官衰竭。人们对后者发生的原因知之甚少。在这里,我们利用肝损伤模型和肝细胞特异性衰老遗传模型证明了衰老在肝外器官的发展以及与肝衰老相关的器官功能障碍。在严重急性肝衰竭患者中,我们发现肝细胞衰老的程度可预测疾病的结局、肝移植的需要以及肝外器官衰竭的发生。我们发现 TGFβ 通路是衰老向全身扩散的关键介质,并证明在体内抑制 TGFβ 可阻断衰老向其他器官的传播,防止肝衰老诱发肾功能障碍。我们的研究结果突显了器官特异性衰老的系统性后果,衰老与老化无关,会导致多器官功能障碍。
{"title":"Hepatocellular senescence induces multi-organ senescence and dysfunction via TGFβ","authors":"Christos Kiourtis, Maria Terradas-Terradas, Lucy M. Gee, Stephanie May, Anastasia Georgakopoulou, Amy L. Collins, Eoin D. O’Sullivan, David P. Baird, Mohsin Hassan, Robin Shaw, Ee Hong Tan, Miryam Müller, Cornelius Engelmann, Fausto Andreola, Ya-Ching Hsieh, Lee H. Reed, Lee A. Borthwick, Colin Nixon, William Clark, Peter S. Hanson, David Sumpton, Gillian Mackay, Toshiyasu Suzuki, Arafath K. Najumudeen, Gareth J. Inman, Andrew Campbell, Simon T. Barry, Alberto Quaglia, Christopher M. Morris, Fiona E. N. LeBeau, Owen J. Sansom, Kristina Kirschner, Rajiv Jalan, Fiona Oakley, Thomas G. Bird","doi":"10.1038/s41556-024-01543-3","DOIUrl":"10.1038/s41556-024-01543-3","url":null,"abstract":"Cellular senescence is not only associated with ageing but also impacts physiological and pathological processes, such as embryonic development and wound healing. Factors secreted by senescent cells affect their microenvironment and can induce spreading of senescence locally. Acute severe liver disease is associated with hepatocyte senescence and frequently progresses to multi-organ failure. Why the latter occurs is poorly understood. Here we demonstrate senescence development in extrahepatic organs and associated organ dysfunction in response to liver senescence using liver injury models and genetic models of hepatocyte-specific senescence. In patients with severe acute liver failure, we show that the extent of hepatocellular senescence predicts disease outcome, the need for liver transplantation and the occurrence of extrahepatic organ failure. We identify the TGFβ pathway as a critical mediator of systemic spread of senescence and demonstrate that TGFβ inhibition in vivo blocks senescence transmission to other organs, preventing liver senescence induced renal dysfunction. Our results highlight the systemic consequences of organ-specific senescence, which, independent of ageing, contributes to multi-organ dysfunction. Kiourtis et al. show that liver senescence triggers senescence and dysfunction in other organs through TGFβ secretion from the liver.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 12","pages":"2075-2083"},"PeriodicalIF":17.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41556-024-01543-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipid droplet messengers 脂滴信使
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-11 DOI: 10.1038/s41556-024-01563-z
Melina Casadio
{"title":"Lipid droplet messengers","authors":"Melina Casadio","doi":"10.1038/s41556-024-01563-z","DOIUrl":"10.1038/s41556-024-01563-z","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 11","pages":"1825-1825"},"PeriodicalIF":17.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyclic mRNA localization in P-bodies 环状 mRNA 在 P 体内的定位
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-11 DOI: 10.1038/s41556-024-01561-1
Sabrya Carim
{"title":"Cyclic mRNA localization in P-bodies","authors":"Sabrya Carim","doi":"10.1038/s41556-024-01561-1","DOIUrl":"10.1038/s41556-024-01561-1","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 11","pages":"1825-1825"},"PeriodicalIF":17.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
To eat or not to eat 吃还是不吃
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-11 DOI: 10.1038/s41556-024-01560-2
Stylianos Lefkopoulos
{"title":"To eat or not to eat","authors":"Stylianos Lefkopoulos","doi":"10.1038/s41556-024-01560-2","DOIUrl":"10.1038/s41556-024-01560-2","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 11","pages":"1825-1825"},"PeriodicalIF":17.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Specialized post-arterial capillaries facilitate adult bone remodelling 特化的动脉后毛细血管有助于成人骨骼的重塑
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-11 DOI: 10.1038/s41556-024-01545-1
Vishal Mohanakrishnan, Kishor K. Sivaraj, Hyun-Woo Jeong, Esther Bovay, Backialakshmi Dharmalingam, M. Gabriele Bixel, Van Vuong Dinh, Milena Petkova, Isidora Paredes Ugarte, Yi-Tong Kuo, Malarvizhi Gurusamy, Brian Raftrey, Nelson Tsz Long Chu, Soumyashree Das, Pamela E. Rios Coronado, Martin Stehling, Lars Sävendahl, Andrei S. Chagin, Taija Mäkinen, Kristy Red-Horse, Ralf H. Adams
The vasculature of the skeletal system is crucial for bone formation, homoeostasis and fracture repair, yet the diversity and specialization of bone-associated vessels remain poorly understood. Here we identify a specialized type of post-arterial capillary, termed type R, involved in bone remodelling. Type R capillaries emerge during adolescence around trabecular bone, possess a distinct morphology and molecular profile, and are associated with osteoprogenitors and bone-resorbing osteoclasts. Endothelial cell-specific overexpression of the transcription factor DACH1 in postnatal mice induces a strong increase in arteries and type R capillaries, leading to local metabolic changes and enabling trabecular bone formation in normally highly hypoxic areas of the diaphysis. Indicating potential clinical relevance of type R capillaries, these vessels respond to anti-osteoporosis treatments and emerge during ageing inside porous structures that are known to weaken compact bone. Our work outlines fundamental principles of vessel specialization in the developing, adult and ageing skeletal system. Mohanakrishnan et al. identify a distinct subset of post-arterial capillaries, termed type R. They show that type R capillaries contribute to trabecular bone formation in the diaphysis and respond to anti-osteoporosis treatments.
骨骼系统的血管对骨的形成、平衡和骨折修复至关重要,但人们对骨相关血管的多样性和特化仍知之甚少。在这里,我们发现了一种参与骨重塑的特化后动脉毛细血管类型,称为 R 型。R 型毛细血管在青春期出现在骨小梁周围,具有独特的形态和分子特征,并与成骨细胞和骨吸收破骨细胞相关。在出生后的小鼠体内,内皮细胞特异性过量表达转录因子 DACH1 会诱导动脉和 R 型毛细血管的大量增加,从而导致局部新陈代谢发生变化,并使干骺端通常高度缺氧的区域形成骨小梁。这些血管对抗骨质疏松症治疗有反应,并在已知会削弱骨密度的多孔结构内老化过程中出现,这表明 R 型毛细血管具有潜在的临床意义。我们的工作概述了发育中、成年和老化骨骼系统中血管特化的基本原理。
{"title":"Specialized post-arterial capillaries facilitate adult bone remodelling","authors":"Vishal Mohanakrishnan, Kishor K. Sivaraj, Hyun-Woo Jeong, Esther Bovay, Backialakshmi Dharmalingam, M. Gabriele Bixel, Van Vuong Dinh, Milena Petkova, Isidora Paredes Ugarte, Yi-Tong Kuo, Malarvizhi Gurusamy, Brian Raftrey, Nelson Tsz Long Chu, Soumyashree Das, Pamela E. Rios Coronado, Martin Stehling, Lars Sävendahl, Andrei S. Chagin, Taija Mäkinen, Kristy Red-Horse, Ralf H. Adams","doi":"10.1038/s41556-024-01545-1","DOIUrl":"10.1038/s41556-024-01545-1","url":null,"abstract":"The vasculature of the skeletal system is crucial for bone formation, homoeostasis and fracture repair, yet the diversity and specialization of bone-associated vessels remain poorly understood. Here we identify a specialized type of post-arterial capillary, termed type R, involved in bone remodelling. Type R capillaries emerge during adolescence around trabecular bone, possess a distinct morphology and molecular profile, and are associated with osteoprogenitors and bone-resorbing osteoclasts. Endothelial cell-specific overexpression of the transcription factor DACH1 in postnatal mice induces a strong increase in arteries and type R capillaries, leading to local metabolic changes and enabling trabecular bone formation in normally highly hypoxic areas of the diaphysis. Indicating potential clinical relevance of type R capillaries, these vessels respond to anti-osteoporosis treatments and emerge during ageing inside porous structures that are known to weaken compact bone. Our work outlines fundamental principles of vessel specialization in the developing, adult and ageing skeletal system. Mohanakrishnan et al. identify a distinct subset of post-arterial capillaries, termed type R. They show that type R capillaries contribute to trabecular bone formation in the diaphysis and respond to anti-osteoporosis treatments.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 12","pages":"2020-2034"},"PeriodicalIF":17.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41556-024-01545-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Cell Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1