首页 > 最新文献

Nature Cell Biology最新文献

英文 中文
MISO regulates mitochondrial dynamics and mtDNA homeostasis by establishing membrane subdomains MISO通过建立膜亚域调节线粒体动力学和mtDNA稳态
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-12-15 DOI: 10.1038/s41556-025-01829-0
Yue Zhang, Yuchen Xia, Xinhui Wang, Yueqin Xia, Shang Wu, Jianshuang Li, Xuan Guo, Qinghua Zhou, Li He
Mitochondrial dynamics and mtDNA homeostasis have been linked to specialized mitochondrial subdomains known as small MTFP1-enriched mitochondria (SMEM), though the underlying molecular mechanisms remain unclear. Here we identified MISO (mitochondrial inner membrane subdomain organizer), a conserved protein that regulates both mitochondrial dynamics and SMEM formation in Drosophila and mammalian cells. MISO inhibits fusion by recruiting MTFP1 and promotes fission through FIS1–DRP1. Furthermore, MISO drives SMEM biogenesis and facilitates their peripheral fission that promotes lysosomal degradation of mtDNA. Genetic ablation of MISO abolishes SMEM generation, confirming that MISO is both necessary and sufficient for SMEM formation. Inner mitochondrial membrane stresses, including mtDNA damages, OXPHOS dysfunction and cristae disruption, stabilize the otherwise short-lived MISO protein, thereby triggering SMEM assembly. This process depends on the C-terminal domain of MISO, likely mediated by oligomerization. Together, our findings reveal a molecular pathway through which inner mitochondrial membrane stresses modulate mitochondrial dynamics and mtDNA homeostasis via MISO-orchestrated SMEM organization. Zhang et al. characterize the mitochondrial inner membrane subdomain organizer (MISO) protein, which responds to inner mitochondrial membrane stress by inducing membrane subdomains promoting homeostatic fission and mtDNA degradation.
线粒体动力学和mtDNA稳态与称为小mtfp1富集线粒体(SMEM)的特殊线粒体亚域有关,尽管其潜在的分子机制尚不清楚。在这里,我们鉴定了MISO(线粒体内膜亚结构域组织者),这是一种在果蝇和哺乳动物细胞中调节线粒体动力学和SMEM形成的保守蛋白。MISO通过募集MTFP1抑制融合,并通过FIS1-DRP1促进裂变。此外,MISO驱动SMEM生物发生并促进其外周裂变,从而促进mtDNA的溶酶体降解。MISO的基因消融消除了SMEM的产生,证实了MISO对于SMEM的形成既是必要的也是充分的。线粒体内膜应激,包括mtDNA损伤、OXPHOS功能障碍和嵴破坏,稳定了原本寿命很短的MISO蛋白,从而触发SMEM组装。这一过程取决于MISO的c端结构域,可能由寡聚化介导。总之,我们的研究结果揭示了线粒体膜内应激通过miso介导的SMEM组织调节线粒体动力学和mtDNA稳态的分子途径。
{"title":"MISO regulates mitochondrial dynamics and mtDNA homeostasis by establishing membrane subdomains","authors":"Yue Zhang, Yuchen Xia, Xinhui Wang, Yueqin Xia, Shang Wu, Jianshuang Li, Xuan Guo, Qinghua Zhou, Li He","doi":"10.1038/s41556-025-01829-0","DOIUrl":"10.1038/s41556-025-01829-0","url":null,"abstract":"Mitochondrial dynamics and mtDNA homeostasis have been linked to specialized mitochondrial subdomains known as small MTFP1-enriched mitochondria (SMEM), though the underlying molecular mechanisms remain unclear. Here we identified MISO (mitochondrial inner membrane subdomain organizer), a conserved protein that regulates both mitochondrial dynamics and SMEM formation in Drosophila and mammalian cells. MISO inhibits fusion by recruiting MTFP1 and promotes fission through FIS1–DRP1. Furthermore, MISO drives SMEM biogenesis and facilitates their peripheral fission that promotes lysosomal degradation of mtDNA. Genetic ablation of MISO abolishes SMEM generation, confirming that MISO is both necessary and sufficient for SMEM formation. Inner mitochondrial membrane stresses, including mtDNA damages, OXPHOS dysfunction and cristae disruption, stabilize the otherwise short-lived MISO protein, thereby triggering SMEM assembly. This process depends on the C-terminal domain of MISO, likely mediated by oligomerization. Together, our findings reveal a molecular pathway through which inner mitochondrial membrane stresses modulate mitochondrial dynamics and mtDNA homeostasis via MISO-orchestrated SMEM organization. Zhang et al. characterize the mitochondrial inner membrane subdomain organizer (MISO) protein, which responds to inner mitochondrial membrane stress by inducing membrane subdomains promoting homeostatic fission and mtDNA degradation.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"28 2","pages":"255-267"},"PeriodicalIF":19.1,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145759495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Keratin intermediate filaments mechanically position melanin pigments for genome photoprotection 角蛋白中间丝机械定位黑色素色素基因组光保护
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-12-15 DOI: 10.1038/s41556-025-01817-4
Silvia Benito-Martínez, Laura Salavessa, Anne-Sophie Macé, Myckaëla Rouabah, Nathan Lardier, Vincent Fraisier, Julia Sirés-Campos, Riddhi Atul Jani, Maryse Romao, Vanessa Roca, Charlène Gayrard, Marion Plessis, Ilse Hurbain, Cécile Nait-Meddour, Sandrine Etienne-Manneville, Etienne Morel, Michele Boniotto, Jean-Baptiste Manneville, Françoise Bernerd, Christine Duval, Graça Raposo, Cédric Delevoye
Melanin pigments block genotoxic agents by positioning on the sun-exposed side of the nucleus in human skin keratinocytes. How this positioning is regulated and its role in genome photoprotection remain unknown. Here, by developing a model of human keratinocytes internalizing extracellular melanin into pigment organelles, we show that keratin 5 and keratin 14 intermediate filaments and microtubules control the three-dimensional perinuclear position of pigments, shielding DNA from photodamage. Imaging and microrheology in a human-disease-related model identify structural keratin cages surrounding pigment organelles to stiffen their microenvironment and maintain their three-dimensional position. Optimum supranuclear spatialization of pigment organelles is required for DNA photoprotection and relies on intermediate filaments and microtubules bridged by plectin cytolinkers. Thus, the mechanically driven proximity of pigment organelles to the nucleus is a key photoprotective parameter. Uncovering how human skin counteracts solar radiation by positioning the melanin microparasol next to the genome anticipates that dynamic spatialization of organelles is a physiological response to ultraviolet stress. Benito-Martínez, Salavessa and colleagues show that keratin intermediate filaments and microtubules control the three-dimensional perinuclear position of melanin-containing organelles, shielding the DNA from photodamage.
在人类皮肤角质形成细胞中,黑色素色素通过定位于细胞核暴露在阳光下的一侧来阻断遗传毒性物质。这个定位是如何调控的,以及它在基因组光保护中的作用仍然未知。在这里,通过建立人类角质形成细胞将细胞外黑色素内化到色素细胞器的模型,我们发现角蛋白5和角蛋白14中间丝和微管控制色素的三维核周位置,保护DNA免受光损伤。人类疾病相关模型中的成像和微流变学鉴定了围绕色素细胞器的结构角蛋白笼,以硬化其微环境并保持其三维位置。色素细胞器的最佳核上空间化是DNA光保护所必需的,并依赖于由plectin细胞连接物桥接的中间细丝和微管。因此,机械驱动的色素细胞器接近细胞核是一个关键的光保护参数。通过将黑色素微遮阳伞定位在基因组旁,揭示人类皮肤如何抵消太阳辐射,这预示着细胞器的动态空间化是对紫外线胁迫的生理反应。
{"title":"Keratin intermediate filaments mechanically position melanin pigments for genome photoprotection","authors":"Silvia Benito-Martínez, Laura Salavessa, Anne-Sophie Macé, Myckaëla Rouabah, Nathan Lardier, Vincent Fraisier, Julia Sirés-Campos, Riddhi Atul Jani, Maryse Romao, Vanessa Roca, Charlène Gayrard, Marion Plessis, Ilse Hurbain, Cécile Nait-Meddour, Sandrine Etienne-Manneville, Etienne Morel, Michele Boniotto, Jean-Baptiste Manneville, Françoise Bernerd, Christine Duval, Graça Raposo, Cédric Delevoye","doi":"10.1038/s41556-025-01817-4","DOIUrl":"10.1038/s41556-025-01817-4","url":null,"abstract":"Melanin pigments block genotoxic agents by positioning on the sun-exposed side of the nucleus in human skin keratinocytes. How this positioning is regulated and its role in genome photoprotection remain unknown. Here, by developing a model of human keratinocytes internalizing extracellular melanin into pigment organelles, we show that keratin 5 and keratin 14 intermediate filaments and microtubules control the three-dimensional perinuclear position of pigments, shielding DNA from photodamage. Imaging and microrheology in a human-disease-related model identify structural keratin cages surrounding pigment organelles to stiffen their microenvironment and maintain their three-dimensional position. Optimum supranuclear spatialization of pigment organelles is required for DNA photoprotection and relies on intermediate filaments and microtubules bridged by plectin cytolinkers. Thus, the mechanically driven proximity of pigment organelles to the nucleus is a key photoprotective parameter. Uncovering how human skin counteracts solar radiation by positioning the melanin microparasol next to the genome anticipates that dynamic spatialization of organelles is a physiological response to ultraviolet stress. Benito-Martínez, Salavessa and colleagues show that keratin intermediate filaments and microtubules control the three-dimensional perinuclear position of melanin-containing organelles, shielding the DNA from photodamage.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"28 1","pages":"98-112"},"PeriodicalIF":19.1,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145759497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vivo models bring FSP1 inhibitors to life 体内模型将FSP1抑制剂带入生活。
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-12-12 DOI: 10.1038/s41556-025-01849-w
Cynthia A. Harris, James A. Olzmann
FSP1 is a key suppressor of lipid peroxidation and ferroptosis, yet it is largely dispensable in standard cell culture models. Two new studies now show that FSP1 becomes essential for tumour growth in vivo, establishing it as a context-specific cancer vulnerability and highlighting the therapeutic potential of FSP1 inhibition.
FSP1是脂质过氧化和铁凋亡的关键抑制因子,但在标准细胞培养模型中,它在很大程度上是可缺性的。两项新的研究表明,FSP1对体内肿瘤生长至关重要,确定了它是一种特定于环境的癌症易感性,并强调了FSP1抑制的治疗潜力。
{"title":"In vivo models bring FSP1 inhibitors to life","authors":"Cynthia A. Harris, James A. Olzmann","doi":"10.1038/s41556-025-01849-w","DOIUrl":"10.1038/s41556-025-01849-w","url":null,"abstract":"FSP1 is a key suppressor of lipid peroxidation and ferroptosis, yet it is largely dispensable in standard cell culture models. Two new studies now show that FSP1 becomes essential for tumour growth in vivo, establishing it as a context-specific cancer vulnerability and highlighting the therapeutic potential of FSP1 inhibition.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"28 1","pages":"6-7"},"PeriodicalIF":19.1,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145732596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Target cell cortical tension regulates macrophage trogocytosis 靶细胞皮层张力调节巨噬细胞吞噬。
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-12-12 DOI: 10.1038/s41556-025-01807-6
Caitlin E. Cornell, Aymeric Chorlay, Deepak Krishnamurthy, Nicholas R. Martin, Lucia Baldauf, Daniel A. Fletcher
Macrophages are known to engulf small membrane fragments, or trogocytose, target cells and pathogens, rather than fully phagocytose them. However, little is known about what causes macrophages to choose trogocytosis versus phagocytosis. Here we report that cortical tension of target cells is a key regulator of macrophage trogocytosis. At low tension, macrophages will preferentially trogocytose antibody-opsonized cells, while at high tension, they tend towards phagocytosis. Using model vesicles, we demonstrate that macrophages will rapidly switch from trogocytosis to phagocytosis when membrane tension is increased. Stiffening the cortex of target cells also biases macrophages to phagocytose them, a trend that can be countered by increasing antibody surface density and is captured in a mechanical model of trogocytosis. This work suggests that the target cell, rather than the macrophage, determines whether phagocytosis or trogocytosis occurs, and that macrophages do not require a distinct molecular pathway for trogocytosis. Cornell et al. show that target cells with low cortical tension induce macrophages to preferentially trogocytose, or engulf in small fragments, whereas target cells with high cortical tension tend towards phagocytosis.
已知巨噬细胞吞噬小的膜片段,或噬细胞,靶细胞和病原体,而不是完全吞噬它们。然而,究竟是什么原因导致巨噬细胞选择吞噬还是吞噬,我们知之甚少。在这里,我们报道靶细胞的皮质张力是巨噬细胞巨噬症的关键调节因子。在低张力下,巨噬细胞会优先吞噬抗体调理的细胞,而在高张力下,它们倾向于吞噬。利用模型囊泡,我们证明当膜张力增加时,巨噬细胞会迅速从吞噬状态转变为吞噬状态。硬化靶细胞的皮层也会使巨噬细胞倾向于吞噬它们,这种趋势可以通过增加抗体表面密度来抵消,并在细胞吞噬的机械模型中被捕获。这项研究表明,是靶细胞而不是巨噬细胞决定了吞噬还是吞噬的发生,并且巨噬细胞不需要独特的分子途径来进行吞噬。
{"title":"Target cell cortical tension regulates macrophage trogocytosis","authors":"Caitlin E. Cornell, Aymeric Chorlay, Deepak Krishnamurthy, Nicholas R. Martin, Lucia Baldauf, Daniel A. Fletcher","doi":"10.1038/s41556-025-01807-6","DOIUrl":"10.1038/s41556-025-01807-6","url":null,"abstract":"Macrophages are known to engulf small membrane fragments, or trogocytose, target cells and pathogens, rather than fully phagocytose them. However, little is known about what causes macrophages to choose trogocytosis versus phagocytosis. Here we report that cortical tension of target cells is a key regulator of macrophage trogocytosis. At low tension, macrophages will preferentially trogocytose antibody-opsonized cells, while at high tension, they tend towards phagocytosis. Using model vesicles, we demonstrate that macrophages will rapidly switch from trogocytosis to phagocytosis when membrane tension is increased. Stiffening the cortex of target cells also biases macrophages to phagocytose them, a trend that can be countered by increasing antibody surface density and is captured in a mechanical model of trogocytosis. This work suggests that the target cell, rather than the macrophage, determines whether phagocytosis or trogocytosis occurs, and that macrophages do not require a distinct molecular pathway for trogocytosis. Cornell et al. show that target cells with low cortical tension induce macrophages to preferentially trogocytose, or engulf in small fragments, whereas target cells with high cortical tension tend towards phagocytosis.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"27 12","pages":"2078-2088"},"PeriodicalIF":19.1,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41556-025-01807-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145743221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical switch from nibbling to engulfment 从啃咬到吞噬的机械开关。
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-12-12 DOI: 10.1038/s41556-025-01818-3
Chaoyang Wu, Zheng Liu
Macrophages can either engulf targets whole (phagocytosis) or nibble them in small fragments (trogocytosis). Work now shows that this decision is controlled by cortical tension in the targets: low tension favours trogocytosis, whereas higher tension favours phagocytosis. These findings offer a new mechanical lens on immune recognition.
巨噬细胞既可以吞噬整个目标(吞噬作用),也可以将目标咬成小块(吞噬作用)。现在的研究表明,这一决定是由靶细胞的皮层张力控制的:低张力有利于吞噬作用,而高张力有利于吞噬作用。这些发现为免疫识别提供了一种新的机械视角。
{"title":"Mechanical switch from nibbling to engulfment","authors":"Chaoyang Wu, Zheng Liu","doi":"10.1038/s41556-025-01818-3","DOIUrl":"10.1038/s41556-025-01818-3","url":null,"abstract":"Macrophages can either engulf targets whole (phagocytosis) or nibble them in small fragments (trogocytosis). Work now shows that this decision is controlled by cortical tension in the targets: low tension favours trogocytosis, whereas higher tension favours phagocytosis. These findings offer a new mechanical lens on immune recognition.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"27 12","pages":"2043-2045"},"PeriodicalIF":19.1,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145732595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sperm miRNAs exercise benefits 精子mirna有益于锻炼。
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-12-10 DOI: 10.1038/s41556-025-01846-z
Angela R. Parrish
{"title":"Sperm miRNAs exercise benefits","authors":"Angela R. Parrish","doi":"10.1038/s41556-025-01846-z","DOIUrl":"10.1038/s41556-025-01846-z","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"27 12","pages":"2040-2040"},"PeriodicalIF":19.1,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145723497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zippering against the beat 对着节拍拉拉链。
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-12-10 DOI: 10.1038/s41556-025-01847-y
Daryl J. V. David
{"title":"Zippering against the beat","authors":"Daryl J. V. David","doi":"10.1038/s41556-025-01847-y","DOIUrl":"10.1038/s41556-025-01847-y","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"27 12","pages":"2040-2040"},"PeriodicalIF":19.1,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145723786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lineage-determining transcription factors EBF1 and TCF1 shape chromatin fibre folding 决定谱系的转录因子EBF1和TCF1塑造染色质纤维折叠。
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-12-10 DOI: 10.1038/s41556-025-01843-2
Our study showed that lineage-determining transcription factors, such as EBF1 in B cell lymphoma and TCF1 in T cell leukaemia, shape 3D genome architecture by constraining cohesin movement. Cohesin in turn positions enhancers at the spatial centres of oncogenic loci and enables multi-enhancer regulation of key oncogenes. Together, these findings identify a unifying mechanism that links transcription factor activity, chromatin topology and oncogene control.
我们的研究表明,谱系决定转录因子,如B细胞淋巴瘤中的EBF1和T细胞白血病中的TCF1,通过限制内聚蛋白运动来塑造3D基因组结构。粘合蛋白反过来将增强子定位在致癌位点的空间中心,并使多增强子调控关键癌基因成为可能。总之,这些发现确定了连接转录因子活性、染色质拓扑结构和癌基因控制的统一机制。
{"title":"Lineage-determining transcription factors EBF1 and TCF1 shape chromatin fibre folding","authors":"","doi":"10.1038/s41556-025-01843-2","DOIUrl":"10.1038/s41556-025-01843-2","url":null,"abstract":"Our study showed that lineage-determining transcription factors, such as EBF1 in B cell lymphoma and TCF1 in T cell leukaemia, shape 3D genome architecture by constraining cohesin movement. Cohesin in turn positions enhancers at the spatial centres of oncogenic loci and enables multi-enhancer regulation of key oncogenes. Together, these findings identify a unifying mechanism that links transcription factor activity, chromatin topology and oncogene control.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"28 1","pages":"11-12"},"PeriodicalIF":19.1,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145718003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing gene loss after gene editing 评估基因编辑后的基因损失。
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-12-10 DOI: 10.1038/s41556-025-01845-0
Sabrya Carim
{"title":"Assessing gene loss after gene editing","authors":"Sabrya Carim","doi":"10.1038/s41556-025-01845-0","DOIUrl":"10.1038/s41556-025-01845-0","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"27 12","pages":"2040-2040"},"PeriodicalIF":19.1,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145717921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endoplasmic reticulum disruption stimulates nuclear membrane mechanotransduction 内质网破坏刺激核膜机械转导
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-12-09 DOI: 10.1038/s41556-025-01820-9
Zhouyang Shen, Zaza Gelashvili, Philipp Niethammer
Cytosolic phospholipase A2 (cPLA2) controls some of the most powerful inflammatory lipids in vertebrates by releasing their metabolic precursor, arachidonic acid, from the inner nuclear membrane (INM). Ca2+ and INM tension (TINM) are thought to govern the interactions and activity of cPLA2 at the INM. However, as compensatory membrane flow from the contiguous endoplasmic reticulum (ER) may prevent TINM, the conditions permitting nuclear membrane mechanotransduction by cPLA2 or other mediators remain unclear. To test whether the ER buffers TINM, we created the genetically encoded, Ca²⁺-insensitive TINM biosensor amphipathic lipid-packing domain inside the nucleus (ALPIN). Confocal time-lapse imaging of ALPIN– or cPLA2–INM interactions, along with ER morphology, nuclear shape/volume and cell lysis revealed a link between TINM and disrupted ER–nuclear membrane contiguity in osmotically or ferroptotically stressed mammalian cells and at zebrafish wound margins in vivo. By combining ALPIN imaging with Ca2+-induced ER disruption, we reveal the causality of this correlation, which suggests that compensatory membrane flow from the ER buffers TINM without preventing it. Besides consolidating the biomechanical basis of cPLA2 activation by nuclear deformation, our results identify cell stress- and cell death-induced ER disruption as an additional nuclear membrane mechanotransduction trigger. Shen, Gelashvili and Niethammer developed an inner nuclear membrane tension sensor and demonstrated that ER–nuclear membrane contiguity acts as a mechanical buffer.
胞质磷脂酶A2 (cPLA2)通过从内核膜(INM)释放代谢前体花生四烯酸来控制脊椎动物中一些最强大的炎性脂质。Ca2+和INM张力(TINM)被认为控制着cPLA2在INM上的相互作用和活性。然而,由于来自连续内质网(ER)的代偿性膜流可能阻止TINM,因此允许cPLA2或其他介质进行核膜机械转导的条件尚不清楚。为了测试ER是否缓冲了TINM,我们在细胞核内创建了基因编码的ca2 +不敏感的TINM生物传感器两亲脂质填充结构域(ALPIN)。ALPIN -或cPLA2-INM相互作用的共聚焦延时成像,以及内质网形态、核形状/体积和细胞裂解,揭示了在渗透或铁致应激的哺乳动物细胞和斑马鱼伤口边缘中,TINM与内质网核膜连续破坏之间的联系。通过将ALPIN成像与Ca2+诱导的内质网破坏相结合,我们揭示了这种相关性的因果关系,这表明内质网的代偿性膜流缓冲了TINM,而不是阻止它。除了巩固通过核变形激活cPLA2的生物力学基础外,我们的研究结果还确定了细胞应激和细胞死亡诱导的内质网破坏是一个额外的核膜机械转导触发因素。
{"title":"Endoplasmic reticulum disruption stimulates nuclear membrane mechanotransduction","authors":"Zhouyang Shen, Zaza Gelashvili, Philipp Niethammer","doi":"10.1038/s41556-025-01820-9","DOIUrl":"10.1038/s41556-025-01820-9","url":null,"abstract":"Cytosolic phospholipase A2 (cPLA2) controls some of the most powerful inflammatory lipids in vertebrates by releasing their metabolic precursor, arachidonic acid, from the inner nuclear membrane (INM). Ca2+ and INM tension (TINM) are thought to govern the interactions and activity of cPLA2 at the INM. However, as compensatory membrane flow from the contiguous endoplasmic reticulum (ER) may prevent TINM, the conditions permitting nuclear membrane mechanotransduction by cPLA2 or other mediators remain unclear. To test whether the ER buffers TINM, we created the genetically encoded, Ca²⁺-insensitive TINM biosensor amphipathic lipid-packing domain inside the nucleus (ALPIN). Confocal time-lapse imaging of ALPIN– or cPLA2–INM interactions, along with ER morphology, nuclear shape/volume and cell lysis revealed a link between TINM and disrupted ER–nuclear membrane contiguity in osmotically or ferroptotically stressed mammalian cells and at zebrafish wound margins in vivo. By combining ALPIN imaging with Ca2+-induced ER disruption, we reveal the causality of this correlation, which suggests that compensatory membrane flow from the ER buffers TINM without preventing it. Besides consolidating the biomechanical basis of cPLA2 activation by nuclear deformation, our results identify cell stress- and cell death-induced ER disruption as an additional nuclear membrane mechanotransduction trigger. Shen, Gelashvili and Niethammer developed an inner nuclear membrane tension sensor and demonstrated that ER–nuclear membrane contiguity acts as a mechanical buffer.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"28 1","pages":"125-134"},"PeriodicalIF":19.1,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41556-025-01820-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145705138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Cell Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1