Pub Date : 2025-01-07DOI: 10.1038/s41556-024-01571-z
Meng-Chieh Hsu, Hiroki Kinefuchi, Linlin Lei, Reika Kikuchi, Koji Yamano, Richard J. Youle
Mitochondrial protein import through the outer and inner membranes is key to mitochondrial biogenesis. Recent studies have explored how cells respond when import is impaired by a variety of different insults. Here, we developed a mammalian import blocking system using dihydrofolate reductase fused to the N terminus of the inner membrane protein MIC60. While stabilization of the dihydrofolate reductase domain by methotrexate inhibited endogenous mitochondrial protein import, it neither activated the transcription factor ATF4, nor was affected by ATAD1 expression or by VCP/p97 inhibition. On the other hand, notably, plugging the channel of translocase of the outer membrane) induced YME1L1, an ATP-dependent protease, to eliminate translocase of the inner membrane (TIM23) channel components TIMM17A and TIMM23. The data suggest that unoccupied TIM23 complexes expose a C-terminal degron on TIMM17A to YME1L1 for degradation. Import plugging caused a cell growth defect and loss of YME1L1 exacerbated the growth inhibition, showing the protective effect of YME1L1 activity. YME1L1 seems to play a crucial role in mitochondrial quality control to counteract precursor stalling in the translocase of the outer membrane complex and unoccupied TIM23 channels.
{"title":"Mitochondrial YME1L1 governs unoccupied protein translocase channels","authors":"Meng-Chieh Hsu, Hiroki Kinefuchi, Linlin Lei, Reika Kikuchi, Koji Yamano, Richard J. Youle","doi":"10.1038/s41556-024-01571-z","DOIUrl":"https://doi.org/10.1038/s41556-024-01571-z","url":null,"abstract":"<p>Mitochondrial protein import through the outer and inner membranes is key to mitochondrial biogenesis. Recent studies have explored how cells respond when import is impaired by a variety of different insults. Here, we developed a mammalian import blocking system using dihydrofolate reductase fused to the N terminus of the inner membrane protein MIC60. While stabilization of the dihydrofolate reductase domain by methotrexate inhibited endogenous mitochondrial protein import, it neither activated the transcription factor ATF4, nor was affected by ATAD1 expression or by VCP/p97 inhibition. On the other hand, notably, plugging the channel of translocase of the outer membrane) induced YME1L1, an ATP-dependent protease, to eliminate translocase of the inner membrane (TIM23) channel components TIMM17A and TIMM23. The data suggest that unoccupied TIM23 complexes expose a C-terminal degron on TIMM17A to YME1L1 for degradation. Import plugging caused a cell growth defect and loss of YME1L1 exacerbated the growth inhibition, showing the protective effect of YME1L1 activity. YME1L1 seems to play a crucial role in mitochondrial quality control to counteract precursor stalling in the translocase of the outer membrane complex and unoccupied TIM23 channels.</p>","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"30 1","pages":""},"PeriodicalIF":21.3,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-07DOI: 10.1038/s41556-024-01572-y
Mariya Licheva, Jeremy Pflaum, Riccardo Babic, Hector Mancilla, Jana Elsässer, Emily Boyle, David M. Hollenstein, Jorge Jimenez-Niebla, Jonas Pleyer, Mio Heinrich, Franz-Georg Wieland, Joachim Brenneisen, Christopher Eickhorst, Johann Brenner, Shan Jiang, Markus Hartl, Sonja Welsch, Carola Hunte, Jens Timmer, Florian Wilfling, Claudine Kraft
Autophagy is a key cellular quality control mechanism. Nutrient stress triggers bulk autophagy, which nonselectively degrades cytoplasmic material upon formation and liquid–liquid phase separation of the autophagy-related gene 1 (Atg1) complex. In contrast, selective autophagy eliminates protein aggregates, damaged organelles and other cargoes that are targeted by an autophagy receptor. Phase separation of cargo has been observed, but its regulation and impact on selective autophagy are poorly understood. Here, we find that key autophagy biogenesis factors phase separate into initiation hubs at cargo surfaces in yeast, subsequently maturing into sites that drive phagophore nucleation. This phase separation is dependent on multivalent, low-affinity interactions between autophagy receptors and cargo, creating a dynamic cargo surface. Notably, high-affinity interactions between autophagy receptors and cargo complexes block initiation hub formation and autophagy progression. Using these principles, we converted the mammalian reovirus nonstructural protein µNS, which accumulates as particles in the yeast cytoplasm that are not degraded, into a neo-cargo that is degraded by selective autophagy. We show that initiation hubs also form on the surface of different cargoes in human cells and are key to establish the connection to the endoplasmic reticulum, where the phagophore assembly site is formed to initiate phagophore biogenesis. Overall, our findings suggest that regulated phase separation underscores the initiation of both bulk and selective autophagy in evolutionarily diverse organisms.
{"title":"Phase separation of initiation hubs on cargo is a trigger switch for selective autophagy","authors":"Mariya Licheva, Jeremy Pflaum, Riccardo Babic, Hector Mancilla, Jana Elsässer, Emily Boyle, David M. Hollenstein, Jorge Jimenez-Niebla, Jonas Pleyer, Mio Heinrich, Franz-Georg Wieland, Joachim Brenneisen, Christopher Eickhorst, Johann Brenner, Shan Jiang, Markus Hartl, Sonja Welsch, Carola Hunte, Jens Timmer, Florian Wilfling, Claudine Kraft","doi":"10.1038/s41556-024-01572-y","DOIUrl":"https://doi.org/10.1038/s41556-024-01572-y","url":null,"abstract":"<p>Autophagy is a key cellular quality control mechanism. Nutrient stress triggers bulk autophagy, which nonselectively degrades cytoplasmic material upon formation and liquid–liquid phase separation of the autophagy-related gene 1 (<i>Atg1</i>) complex. In contrast, selective autophagy eliminates protein aggregates, damaged organelles and other cargoes that are targeted by an autophagy receptor. Phase separation of cargo has been observed, but its regulation and impact on selective autophagy are poorly understood. Here, we find that key autophagy biogenesis factors phase separate into initiation hubs at cargo surfaces in yeast, subsequently maturing into sites that drive phagophore nucleation. This phase separation is dependent on multivalent, low-affinity interactions between autophagy receptors and cargo, creating a dynamic cargo surface. Notably, high-affinity interactions between autophagy receptors and cargo complexes block initiation hub formation and autophagy progression. Using these principles, we converted the mammalian reovirus nonstructural protein µNS, which accumulates as particles in the yeast cytoplasm that are not degraded, into a neo-cargo that is degraded by selective autophagy. We show that initiation hubs also form on the surface of different cargoes in human cells and are key to establish the connection to the endoplasmic reticulum, where the phagophore assembly site is formed to initiate phagophore biogenesis. Overall, our findings suggest that regulated phase separation underscores the initiation of both bulk and selective autophagy in evolutionarily diverse organisms.</p>","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"48 1","pages":""},"PeriodicalIF":21.3,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-06DOI: 10.1038/s41556-024-01574-w
Anupama Hemalatha, Zongyu Li, David G. Gonzalez, Catherine Matte-Martone, Karen Tai, Elizabeth Lathrop, Daniel Gil, Smirthy Ganesan, Lauren E. Gonzalez, Melissa Skala, Rachel J. Perry, Valentina Greco
Skin epithelial stem cells correct aberrancies induced by oncogenic mutations. Oncogenes invoke different strategies of epithelial tolerance; while wild-type cells outcompete β-catenin-gain-of-function (βcatGOF) cells, HrasG12V cells outcompete wild-type cells. Here we ask how metabolic states change as wild-type stem cells interface with mutant cells and drive different cell-competition outcomes. By tracking the endogenous redox ratio (NAD(P)H/FAD) with single-cell resolution in the same mouse over time, we discover that βcatGOF and HrasG12V mutations, when interfaced with wild-type epidermal stem cells, lead to a rapid drop in redox ratios, indicating more oxidized cellular redox. However, the resultant redox differential persists through time in βcatGOF, whereas it is flattened rapidly in the HrasG12Vmodel. Using 13C liquid chromatography–tandem mass spectrometry, we find that the βcatGOF and HrasG12V mutant epidermis increase the fractional contribution of glucose through the oxidative tricarboxylic acid cycle. Treatment with metformin, a modifier of cytosolic redox, inhibits downstream mutant phenotypes and reverses cell-competition outcomes of both mutant models.
{"title":"Metabolic rewiring in skin epidermis drives tolerance to oncogenic mutations","authors":"Anupama Hemalatha, Zongyu Li, David G. Gonzalez, Catherine Matte-Martone, Karen Tai, Elizabeth Lathrop, Daniel Gil, Smirthy Ganesan, Lauren E. Gonzalez, Melissa Skala, Rachel J. Perry, Valentina Greco","doi":"10.1038/s41556-024-01574-w","DOIUrl":"https://doi.org/10.1038/s41556-024-01574-w","url":null,"abstract":"<p>Skin epithelial stem cells correct aberrancies induced by oncogenic mutations. Oncogenes invoke different strategies of epithelial tolerance; while wild-type cells outcompete β-catenin-gain-of-function (βcatGOF) cells, Hras<sup>G12V</sup> cells outcompete wild-type cells. Here we ask how metabolic states change as wild-type stem cells interface with mutant cells and drive different cell-competition outcomes. By tracking the endogenous redox ratio (NAD(P)H/FAD) with single-cell resolution in the same mouse over time, we discover that βcatGOF and Hras<sup>G12V</sup> mutations, when interfaced with wild-type epidermal stem cells, lead to a rapid drop in redox ratios, indicating more oxidized cellular redox. However, the resultant redox differential persists through time in βcatGOF, whereas it is flattened rapidly in the Hras<sup>G12V</sup>model. Using <sup>13</sup>C liquid chromatography–tandem mass spectrometry, we find that the βcatGOF and Hras<sup>G12V</sup> mutant epidermis increase the fractional contribution of glucose through the oxidative tricarboxylic acid cycle. Treatment with metformin, a modifier of cytosolic redox, inhibits downstream mutant phenotypes and reverses cell-competition outcomes of both mutant models.</p>","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"5 1","pages":""},"PeriodicalIF":21.3,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.1038/s41556-024-01555-z
Pedro Latorre-Muro, Tevis Vitale, Matthew Ravichandran, Katherine Zhang, Jonathan M. Palozzi, Christopher F. Bennett, Arantza Lamas-Paz, Jee Hyung Sohn, Thomas D. Jackson, Mark Jedrychowski, Steven P. Gygi, Shingo Kajimura, Anna Schmoker, Hyesung Jeon, Michael J. Eck, Pere Puigserver
Outer mitochondrial membrane (OMM) proteins communicate with the cytosol and other organelles, including the endoplasmic reticulum. This communication is important in thermogenic adipocytes to increase the energy expenditure that controls body temperature and weight. However, the regulatory mechanisms of OMM protein insertion are poorly understood. Here the stress-induced cytosolic chaperone PPID (peptidyl–prolyl isomerase D/cyclophilin 40/Cyp40) drives OMM insertion of the mitochondrial import receptor TOM70 that regulates body temperature and weight in obese mice, and respiratory/thermogenic function in brown adipocytes. PPID PPIase activity and C-terminal tetratricopeptide repeats, which show specificity towards TOM70 core and C-tail domains, facilitate OMM insertion. Our results provide an unprecedented role for endoplasmic-reticulum-stress-activated chaperones in controlling energy metabolism through a selective OMM protein insertion mechanism with implications in adaptation to cold temperatures and high-calorie diets.
{"title":"Chaperone-mediated insertion of mitochondrial import receptor TOM70 protects against diet-induced obesity","authors":"Pedro Latorre-Muro, Tevis Vitale, Matthew Ravichandran, Katherine Zhang, Jonathan M. Palozzi, Christopher F. Bennett, Arantza Lamas-Paz, Jee Hyung Sohn, Thomas D. Jackson, Mark Jedrychowski, Steven P. Gygi, Shingo Kajimura, Anna Schmoker, Hyesung Jeon, Michael J. Eck, Pere Puigserver","doi":"10.1038/s41556-024-01555-z","DOIUrl":"https://doi.org/10.1038/s41556-024-01555-z","url":null,"abstract":"<p>Outer mitochondrial membrane (OMM) proteins communicate with the cytosol and other organelles, including the endoplasmic reticulum. This communication is important in thermogenic adipocytes to increase the energy expenditure that controls body temperature and weight. However, the regulatory mechanisms of OMM protein insertion are poorly understood. Here the stress-induced cytosolic chaperone PPID (peptidyl–prolyl isomerase D/cyclophilin 40/Cyp40) drives OMM insertion of the mitochondrial import receptor TOM70 that regulates body temperature and weight in obese mice, and respiratory/thermogenic function in brown adipocytes. PPID PPIase activity and C-terminal tetratricopeptide repeats, which show specificity towards TOM70 core and C-tail domains, facilitate OMM insertion. Our results provide an unprecedented role for endoplasmic-reticulum-stress-activated chaperones in controlling energy metabolism through a selective OMM protein insertion mechanism with implications in adaptation to cold temperatures and high-calorie diets.</p>","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"24 1","pages":""},"PeriodicalIF":21.3,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142916956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.1038/s41556-024-01564-y
Huadong Zhu, Reut Bruck-Haimson, Adam Zaretsky, Irit Cohen, Roni Falk, Hanna Achache, Yonatan B. Tzur, Ehud Cohen
The protein homeostasis (proteostasis) network encompasses a myriad of mechanisms that maintain the integrity of the proteome by controlling various biological functions, including protein folding and degradation. Alas, ageing-associated decline in the efficiency of this network enables protein aggregation and consequently the development of late-onset neurodegenerative disorders, such as Alzheimer’s disease. Accordingly, the maintenance of proteostasis through late stages of life bears the promise to delay the emergence of these devastating diseases. Yet the identification of proteostasis regulators is needed to assess the feasibility of this approach. Here we report that knocking down the activity of the nucleolar FIB-1–NOL-56 complex protects model nematodes from proteotoxicity of the Alzheimer’s disease-causing amyloid-β peptide and of abnormally long poly-glutamine stretches. This mechanism promotes proteostasis across tissues by modulating the activity of TGFβ signalling and by enhancing proteasome activity. Our findings point at research avenues towards the development of proteostasis-promoting therapies for neurodegenerative maladies.
{"title":"A nucleolar mechanism suppresses organismal proteostasis by modulating TGFβ/ERK signalling","authors":"Huadong Zhu, Reut Bruck-Haimson, Adam Zaretsky, Irit Cohen, Roni Falk, Hanna Achache, Yonatan B. Tzur, Ehud Cohen","doi":"10.1038/s41556-024-01564-y","DOIUrl":"https://doi.org/10.1038/s41556-024-01564-y","url":null,"abstract":"<p>The protein homeostasis (proteostasis) network encompasses a myriad of mechanisms that maintain the integrity of the proteome by controlling various biological functions, including protein folding and degradation. Alas, ageing-associated decline in the efficiency of this network enables protein aggregation and consequently the development of late-onset neurodegenerative disorders, such as Alzheimer’s disease. Accordingly, the maintenance of proteostasis through late stages of life bears the promise to delay the emergence of these devastating diseases. Yet the identification of proteostasis regulators is needed to assess the feasibility of this approach. Here we report that knocking down the activity of the nucleolar FIB-1–NOL-56 complex protects model nematodes from proteotoxicity of the Alzheimer’s disease-causing amyloid-β peptide and of abnormally long poly-glutamine stretches. This mechanism promotes proteostasis across tissues by modulating the activity of TGFβ signalling and by enhancing proteasome activity. Our findings point at research avenues towards the development of proteostasis-promoting therapies for neurodegenerative maladies.</p>","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"17 1","pages":""},"PeriodicalIF":21.3,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142916957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.1038/s41556-024-01569-7
Hiro Takakuwa, Tetsuro Hirose
Nuclear speckles are dynamic structures enriched in RNA and RNA regulators, with varying compositions. A study now reports two distinct signatures of nuclear speckles that are linked to the prognosis of clear cell renal cell carcinoma. The signatures influence the expression of genes regulated by the transcription factor HIF2α.
{"title":"Speckle signatures dictate cancer prognosis","authors":"Hiro Takakuwa, Tetsuro Hirose","doi":"10.1038/s41556-024-01569-7","DOIUrl":"https://doi.org/10.1038/s41556-024-01569-7","url":null,"abstract":"Nuclear speckles are dynamic structures enriched in RNA and RNA regulators, with varying compositions. A study now reports two distinct signatures of nuclear speckles that are linked to the prognosis of clear cell renal cell carcinoma. The signatures influence the expression of genes regulated by the transcription factor HIF2α.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"181 1","pages":""},"PeriodicalIF":21.3,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142917015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-02DOI: 10.1038/s41556-024-01570-0
Katherine A. Alexander, Ruofan Yu, Nicolas Skuli, Nathan J. Coffey, Son Nguyen, Christine L. Faunce, Hua Huang, Ian P. Dardani, Austin L. Good, Joan Lim, Catherine Y. Li, Nicholas Biddle, Eric F. Joyce, Arjun Raj, Daniel Lee, Brian Keith, M. Celeste Simon, Shelley L. Berger
Nuclear speckles are dynamic nuclear bodies characterized by high concentrations of factors involved in RNA production. Although the contents of speckles suggest multifaceted roles in gene regulation, their biological functions are unclear. Here we investigate speckle variation in human cancer, finding two main signatures. One speckle signature was similar to healthy adjacent tissues, whereas the other was dissimilar, and considered an aberrant cancer speckle state. Aberrant speckles show altered positioning within the nucleus, higher levels of the TREX RNA export complex and correlate with poorer patient outcomes in clear cell renal cell carcinoma (ccRCC), a cancer typified by hyperactivation of the HIF-2α transcription factor. We demonstrate that HIF-2α promotes physical association of certain target genes with speckles depending on HIF-2α protein speckle-targeting motifs, defined in this study. We identify homologous speckle-targeting motifs within many transcription factors, suggesting that DNA-speckle targeting may be a general gene regulatory mechanism. Integrating functional, genomic and imaging studies, we show that HIF-2α gene regulatory programs are impacted by speckle state and by abrogation of HIF-2α-driven speckle targeting. These findings suggest that, in ccRCC, a key biological function of nuclear speckles is to modulate expression of select HIF-2α-regulated target genes that, in turn, influence patient outcomes. Beyond ccRCC, tumour speckle states broadly correlate with altered functional pathways and expression of speckle-associated gene neighbourhoods, exposing a general link between nuclear speckles and gene expression dysregulation in human cancer.
{"title":"Nuclear speckles regulate functional programs in cancer","authors":"Katherine A. Alexander, Ruofan Yu, Nicolas Skuli, Nathan J. Coffey, Son Nguyen, Christine L. Faunce, Hua Huang, Ian P. Dardani, Austin L. Good, Joan Lim, Catherine Y. Li, Nicholas Biddle, Eric F. Joyce, Arjun Raj, Daniel Lee, Brian Keith, M. Celeste Simon, Shelley L. Berger","doi":"10.1038/s41556-024-01570-0","DOIUrl":"https://doi.org/10.1038/s41556-024-01570-0","url":null,"abstract":"<p>Nuclear speckles are dynamic nuclear bodies characterized by high concentrations of factors involved in RNA production. Although the contents of speckles suggest multifaceted roles in gene regulation, their biological functions are unclear. Here we investigate speckle variation in human cancer, finding two main signatures. One speckle signature was similar to healthy adjacent tissues, whereas the other was dissimilar, and considered an aberrant cancer speckle state. Aberrant speckles show altered positioning within the nucleus, higher levels of the TREX RNA export complex and correlate with poorer patient outcomes in clear cell renal cell carcinoma (ccRCC), a cancer typified by hyperactivation of the HIF-2α transcription factor. We demonstrate that HIF-2α promotes physical association of certain target genes with speckles depending on HIF-2α protein speckle-targeting motifs, defined in this study. We identify homologous speckle-targeting motifs within many transcription factors, suggesting that DNA-speckle targeting may be a general gene regulatory mechanism. Integrating functional, genomic and imaging studies, we show that HIF-2α gene regulatory programs are impacted by speckle state and by abrogation of HIF-2α-driven speckle targeting. These findings suggest that, in ccRCC, a key biological function of nuclear speckles is to modulate expression of select HIF-2α-regulated target genes that, in turn, influence patient outcomes. Beyond ccRCC, tumour speckle states broadly correlate with altered functional pathways and expression of speckle-associated gene neighbourhoods, exposing a general link between nuclear speckles and gene expression dysregulation in human cancer.</p>","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"68 1","pages":""},"PeriodicalIF":21.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142911691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-02DOI: 10.1038/s41556-024-01554-0
Chengjie Zhou, Meng Wang, Chunxia Zhang, Yi Zhang
The establishment of naive pluripotency is a continuous process starting with the generation of inner cell mass (ICM) that then differentiates into epiblast (EPI). Recent studies have revealed key transcription factors (TFs) for ICM formation, but which TFs initiate EPI specification remains unknown. Here, using a targeted rapid protein degradation system, we show that GABPA is not only a regulator of major ZGA, but also a master EPI specifier required for naive pluripotency establishment by regulating 47% of EPI genes during E3.5 to E4.5 transition. Chromatin binding dynamics analysis suggests that GABPA controls EPI formation at least partly by binding to the ICM gene promoters occupied by the pluripotency regulators TFAP2C and SOX2 at E3.5 to establish naive pluripotency at E4.5. Our study not only uncovers GABPA as a master pluripotency regulator, but also supports the notion that mammalian pluripotency establishment requires a dynamic and stepwise multi-TF regulatory network.
{"title":"The transcription factor GABPA is a master regulator of naive pluripotency","authors":"Chengjie Zhou, Meng Wang, Chunxia Zhang, Yi Zhang","doi":"10.1038/s41556-024-01554-0","DOIUrl":"https://doi.org/10.1038/s41556-024-01554-0","url":null,"abstract":"<p>The establishment of naive pluripotency is a continuous process starting with the generation of inner cell mass (ICM) that then differentiates into epiblast (EPI). Recent studies have revealed key transcription factors (TFs) for ICM formation, but which TFs initiate EPI specification remains unknown. Here, using a targeted rapid protein degradation system, we show that GABPA is not only a regulator of major ZGA, but also a master EPI specifier required for naive pluripotency establishment by regulating 47% of EPI genes during E3.5 to E4.5 transition. Chromatin binding dynamics analysis suggests that GABPA controls EPI formation at least partly by binding to the ICM gene promoters occupied by the pluripotency regulators TFAP2C and SOX2 at E3.5 to establish naive pluripotency at E4.5. Our study not only uncovers GABPA as a master pluripotency regulator, but also supports the notion that mammalian pluripotency establishment requires a dynamic and stepwise multi-TF regulatory network.</p>","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"3 1","pages":""},"PeriodicalIF":21.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142911692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Glucose metabolism has been studied extensively, but the role of glucose-derived excretory glycerol remains unclear. Here we show that hypoxia induces NADH accumulation to promote glycerol excretion and this pathway consumes NADH continuously, thus attenuating its accumulation and reductive stress. Aldolase B accounts for glycerol biosynthesis by forming a complex with glycerol 3-phosphate dehydrogenases GPD1 and GPD1L. Blocking GPD1, GPD1L or glycerol 3-phosphate phosphatase exacerbates reductive stress and suppresses cell proliferation under hypoxia and tumour growth in vivo. Overexpression of these enzymes increases glycerol excretion but still reduces cell viability under hypoxia and tumour proliferation due to energy stress. AMPK inactivates aldolase B to mitigate glycerol synthesis that dissipates ATP, alleviating NADH accumulation-induced energy crisis. Therefore, glycerol biosynthesis/excretion regulates the trade-off between reductive stress and energy stress. Moreover, this mode of regulation seems to be prevalent in reductive stress-driven transformations, enhancing our understanding of the metabolic complexity and guiding tumour treatment.
{"title":"AMPK-regulated glycerol excretion maintains metabolic crosstalk between reductive and energetic stress","authors":"Xuewei Zhai, Ronghui Yang, Qiaoyun Chu, Zihao Guo, Pengjiao Hou, Xuexue Li, Changsen Bai, Ziwen Lu, Luxin Qiao, Yanxia Fu, Jing Niu, Binghui Li","doi":"10.1038/s41556-024-01549-x","DOIUrl":"https://doi.org/10.1038/s41556-024-01549-x","url":null,"abstract":"<p>Glucose metabolism has been studied extensively, but the role of glucose-derived excretory glycerol remains unclear. Here we show that hypoxia induces NADH accumulation to promote glycerol excretion and this pathway consumes NADH continuously, thus attenuating its accumulation and reductive stress. Aldolase B accounts for glycerol biosynthesis by forming a complex with glycerol 3-phosphate dehydrogenases GPD1 and GPD1L. Blocking GPD1, GPD1L or glycerol 3-phosphate phosphatase exacerbates reductive stress and suppresses cell proliferation under hypoxia and tumour growth in vivo. Overexpression of these enzymes increases glycerol excretion but still reduces cell viability under hypoxia and tumour proliferation due to energy stress. AMPK inactivates aldolase B to mitigate glycerol synthesis that dissipates ATP, alleviating NADH accumulation-induced energy crisis. Therefore, glycerol biosynthesis/excretion regulates the trade-off between reductive stress and energy stress. Moreover, this mode of regulation seems to be prevalent in reductive stress-driven transformations, enhancing our understanding of the metabolic complexity and guiding tumour treatment.</p>","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"10 1","pages":""},"PeriodicalIF":21.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142911644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-30DOI: 10.1038/s41556-024-01558-w
Wei-Ting Lu, Lykourgos-Panagiotis Zalmas, Chris Bailey, James R. M. Black, Carlos Martinez-Ruiz, Oriol Pich, Francisco Gimeno-Valiente, Ieva Usaite, Alastair Magness, Kerstin Thol, Thomas A. Webber, Ming Jiang, Rebecca E. Saunders, Yun-Hsin Liu, Dhruva Biswas, Esther O. Ige, Birgit Aerne, Eva Grönroos, Subramanian Venkatesan, Georgia Stavrou, Takahiro Karasaki, Maise Al Bakir, Matthew Renshaw, Hang Xu, Deborah Schneider-Luftman, Natasha Sharma, Laura Tovini, Mariam Jamal-Hanjani, Sarah E. McClelland, Kevin Litchfield, Nicolai J. Birkbak, Michael Howell, Nicolas Tapon, Kasper Fugger, Nicholas McGranahan, Jiri Bartek, Nnennaya Kanu, Charles Swanton
Chromosomal instability (CIN) is common in solid tumours and fuels evolutionary adaptation and poor prognosis by increasing intratumour heterogeneity. Systematic characterization of driver events in the TRACERx non-small-cell lung cancer (NSCLC) cohort identified that genetic alterations in six genes, including FAT1, result in homologous recombination (HR) repair deficiencies and CIN. Using orthogonal genetic and experimental approaches, we demonstrate that FAT1 alterations are positively selected before genome doubling and associated with HR deficiency. FAT1 ablation causes persistent replication stress, an elevated mitotic failure rate, nuclear deformation and elevated structural CIN, including chromosome translocations and radial chromosomes. FAT1 loss contributes to whole-genome doubling (a form of numerical CIN) through the dysregulation of YAP1. Co-depletion of YAP1 partially rescues numerical CIN caused by FAT1 loss but does not relieve HR deficiencies, nor structural CIN. Importantly, overexpression of constitutively active YAP15SA is sufficient to induce numerical CIN. Taken together, we show that FAT1 loss in NSCLC attenuates HR and exacerbates CIN through two distinct downstream mechanisms, leading to increased tumour heterogeneity.
{"title":"TRACERx analysis identifies a role for FAT1 in regulating chromosomal instability and whole-genome doubling via Hippo signalling","authors":"Wei-Ting Lu, Lykourgos-Panagiotis Zalmas, Chris Bailey, James R. M. Black, Carlos Martinez-Ruiz, Oriol Pich, Francisco Gimeno-Valiente, Ieva Usaite, Alastair Magness, Kerstin Thol, Thomas A. Webber, Ming Jiang, Rebecca E. Saunders, Yun-Hsin Liu, Dhruva Biswas, Esther O. Ige, Birgit Aerne, Eva Grönroos, Subramanian Venkatesan, Georgia Stavrou, Takahiro Karasaki, Maise Al Bakir, Matthew Renshaw, Hang Xu, Deborah Schneider-Luftman, Natasha Sharma, Laura Tovini, Mariam Jamal-Hanjani, Sarah E. McClelland, Kevin Litchfield, Nicolai J. Birkbak, Michael Howell, Nicolas Tapon, Kasper Fugger, Nicholas McGranahan, Jiri Bartek, Nnennaya Kanu, Charles Swanton","doi":"10.1038/s41556-024-01558-w","DOIUrl":"https://doi.org/10.1038/s41556-024-01558-w","url":null,"abstract":"<p>Chromosomal instability (CIN) is common in solid tumours and fuels evolutionary adaptation and poor prognosis by increasing intratumour heterogeneity. Systematic characterization of driver events in the TRACERx non-small-cell lung cancer (NSCLC) cohort identified that genetic alterations in six genes, including <i>FAT1</i>, result in homologous recombination (HR) repair deficiencies and CIN. Using orthogonal genetic and experimental approaches, we demonstrate that <i>FAT1</i> alterations are positively selected before genome doubling and associated with HR deficiency. <i>FAT1</i> ablation causes persistent replication stress, an elevated mitotic failure rate, nuclear deformation and elevated structural CIN, including chromosome translocations and radial chromosomes. <i>FAT1</i> loss contributes to whole-genome doubling (a form of numerical CIN) through the dysregulation of YAP1. Co-depletion of <i>YAP1</i> partially rescues numerical CIN caused by <i>FAT1</i> loss but does not relieve HR deficiencies, nor structural CIN. Importantly, overexpression of constitutively active YAP1<sup>5SA</sup> is sufficient to induce numerical CIN. Taken together, we show that <i>FAT1</i> loss in NSCLC attenuates HR and exacerbates CIN through two distinct downstream mechanisms, leading to increased tumour heterogeneity.</p>","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"3 1","pages":""},"PeriodicalIF":21.3,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142904746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}