首页 > 最新文献

Nature Methods最新文献

英文 中文
Measuring multiple intracellular biochemical properties of proteins with next-generation sequencing 利用新一代测序技术测量蛋白质的多种细胞内生化特性。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-21 DOI: 10.1038/s41592-024-02461-w
We developed LABEL-seq, a platform that enables measurement of protein properties and functions at scale by leveraging the intracellular self-assembly of an RNA-binding domain (RBD) and protein-encoding RNA barcode. Enrichment of RBD–protein fusions, followed by high-throughput sequencing of the co-enriched barcodes, enables the profiling of protein abundance, activity, interactions and druggability at scale.
我们开发了 LABEL-seq,这是一个利用 RNA 结合域(RBD)和蛋白质编码 RNA 条形码的细胞内自组装来大规模测量蛋白质特性和功能的平台。通过富集 RBD 蛋白融合体,然后对共同富集的条形码进行高通量测序,就能大规模分析蛋白质的丰度、活性、相互作用和可药性。
{"title":"Measuring multiple intracellular biochemical properties of proteins with next-generation sequencing","authors":"","doi":"10.1038/s41592-024-02461-w","DOIUrl":"10.1038/s41592-024-02461-w","url":null,"abstract":"We developed LABEL-seq, a platform that enables measurement of protein properties and functions at scale by leveraging the intracellular self-assembly of an RNA-binding domain (RBD) and protein-encoding RNA barcode. Enrichment of RBD–protein fusions, followed by high-throughput sequencing of the co-enriched barcodes, enables the profiling of protein abundance, activity, interactions and druggability at scale.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"21 11","pages":"1988-1989"},"PeriodicalIF":36.1,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DiffModeler: large macromolecular structure modeling for cryo-EM maps using a diffusion model. DiffModeler:利用扩散模型为低温电子显微镜图建立大分子结构模型。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-21 DOI: 10.1038/s41592-024-02479-0
Xiao Wang, Han Zhu, Genki Terashi, Manav Taluja, Daisuke Kihara

Cryogenic electron microscopy (cryo-EM) has now been widely used for determining multichain protein complexes. However, modeling a large complex structure, such as those with more than ten chains, is challenging, particularly when the map resolution decreases. Here we present DiffModeler, a fully automated method for modeling large protein complex structures. DiffModeler employs a diffusion model for backbone tracing and integrates AlphaFold2-predicted single-chain structures for structure fitting. DiffModeler showed an average template modeling score of 0.88 and 0.91 for two datasets of cryo-EM maps of 0-5 Å resolution and 0.92 for intermediate resolution maps (5-10 Å), substantially outperforming existing methodologies. Further benchmarking at low resolutions (10-20 Å) confirms its versatility, demonstrating plausible performance.

低温电子显微镜(cryo-EM)目前已被广泛用于确定多链蛋白质复合物。然而,对大型复合物结构建模(如那些有十多条链的复合物)是一项挑战,尤其是当图谱分辨率降低时。在此,我们介绍一种全自动的大型蛋白质复合体结构建模方法 DiffModeler。DiffModeler 采用扩散模型进行骨架追踪,并整合 AlphaFold2 预测的单链结构进行结构拟合。DiffModeler 对两个 0-5 Å 分辨率的低温电子显微镜图数据集的平均模板建模得分分别为 0.88 和 0.91,对中等分辨率图(5-10 Å)的平均模板建模得分为 0.92,大大优于现有方法。在低分辨率(10-20 Å)下的进一步基准测试证实了该方法的多功能性,并展示了合理的性能。
{"title":"DiffModeler: large macromolecular structure modeling for cryo-EM maps using a diffusion model.","authors":"Xiao Wang, Han Zhu, Genki Terashi, Manav Taluja, Daisuke Kihara","doi":"10.1038/s41592-024-02479-0","DOIUrl":"10.1038/s41592-024-02479-0","url":null,"abstract":"<p><p>Cryogenic electron microscopy (cryo-EM) has now been widely used for determining multichain protein complexes. However, modeling a large complex structure, such as those with more than ten chains, is challenging, particularly when the map resolution decreases. Here we present DiffModeler, a fully automated method for modeling large protein complex structures. DiffModeler employs a diffusion model for backbone tracing and integrates AlphaFold2-predicted single-chain structures for structure fitting. DiffModeler showed an average template modeling score of 0.88 and 0.91 for two datasets of cryo-EM maps of 0-5 Å resolution and 0.92 for intermediate resolution maps (5-10 Å), substantially outperforming existing methodologies. Further benchmarking at low resolutions (10-20 Å) confirms its versatility, demonstrating plausible performance.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constructing and personalizing population pangenome graphs 构建和个性化人口泛基因组图谱。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-21 DOI: 10.1038/s41592-024-02402-7
Rayan Chikhi, Yoann Dufresne, Paul Medvedev
Pangenome graphs signify a new frontier in genome representation. Recent advances in constructing and personalizing them mark progress in this area.
庞基因组图谱标志着基因组表示的一个新领域。最近在构建和个性化方面取得的进展标志着这一领域的进步。
{"title":"Constructing and personalizing population pangenome graphs","authors":"Rayan Chikhi,&nbsp;Yoann Dufresne,&nbsp;Paul Medvedev","doi":"10.1038/s41592-024-02402-7","DOIUrl":"10.1038/s41592-024-02402-7","url":null,"abstract":"Pangenome graphs signify a new frontier in genome representation. Recent advances in constructing and personalizing them mark progress in this area.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"21 11","pages":"1980-1981"},"PeriodicalIF":36.1,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplexed profiling of intracellular protein abundance, activity, interactions and druggability with LABEL-seq 利用 LABEL-seq 对细胞内蛋白质的丰度、活性、相互作用和可药性进行多重分析。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-21 DOI: 10.1038/s41592-024-02456-7
Jessica J. Simon, Douglas M. Fowler, Dustin J. Maly
Here we describe labeling with barcodes and enrichment for biochemical analysis by sequencing (LABEL-seq), an assay for massively parallel profiling of pooled protein variants in human cells. By leveraging the intracellular self-assembly of an RNA-binding domain (RBD) with a stable, variant-encoding RNA barcode, LABEL-seq facilitates the direct measurement of protein properties and functions using simple affinity enrichments of RBD protein fusions, followed by high-throughput sequencing of co-enriched barcodes. Measurement of ~20,000 variant effects for ~1,600 BRaf variants revealed that variation at positions frequently mutated in cancer minimally impacted intracellular abundance but could dramatically alter activity, protein–protein interactions and druggability. Integrative analysis identified networks of positions with similar biochemical roles and enabled modeling of variant effects on cell proliferation and small molecule-promoted degradation. Thus, LABEL-seq enables direct measurement of multiple biochemical properties in a native cellular context, providing insights into protein function, disease mechanisms and druggability. Labeling with barcodes and enrichment for biochemical analysis by sequencing (LABEL-seq) enables massively parallel profiling of thousands of pooled protein variants in cells, yielding insight into protein function, interactions and druggability.
在这里,我们介绍了用条形码标记和富集测序进行生化分析(LABEL-seq),这是一种大规模并行分析人体细胞中集合蛋白质变体的方法。通过利用 RNA 结合域(RBD)与稳定的变体编码 RNA 条形码在细胞内的自组装,LABEL-seq 利用 RBD 蛋白融合体的简单亲和富集,然后对共同富集的条形码进行高通量测序,促进了蛋白质特性和功能的直接测量。对约 1,600 个 BRaf 变体的约 20,000 种变异效应进行测量后发现,癌症中经常发生变异的位置的变异对细胞内丰度的影响微乎其微,但却能显著改变活性、蛋白质间相互作用和可药性。综合分析确定了具有类似生化作用的位置网络,并建立了变体对细胞增殖和小分子促进降解的影响模型。因此,LABEL-seq 能够在原生细胞环境中直接测量多种生化特性,从而深入了解蛋白质功能、疾病机制和可药性。
{"title":"Multiplexed profiling of intracellular protein abundance, activity, interactions and druggability with LABEL-seq","authors":"Jessica J. Simon,&nbsp;Douglas M. Fowler,&nbsp;Dustin J. Maly","doi":"10.1038/s41592-024-02456-7","DOIUrl":"10.1038/s41592-024-02456-7","url":null,"abstract":"Here we describe labeling with barcodes and enrichment for biochemical analysis by sequencing (LABEL-seq), an assay for massively parallel profiling of pooled protein variants in human cells. By leveraging the intracellular self-assembly of an RNA-binding domain (RBD) with a stable, variant-encoding RNA barcode, LABEL-seq facilitates the direct measurement of protein properties and functions using simple affinity enrichments of RBD protein fusions, followed by high-throughput sequencing of co-enriched barcodes. Measurement of ~20,000 variant effects for ~1,600 BRaf variants revealed that variation at positions frequently mutated in cancer minimally impacted intracellular abundance but could dramatically alter activity, protein–protein interactions and druggability. Integrative analysis identified networks of positions with similar biochemical roles and enabled modeling of variant effects on cell proliferation and small molecule-promoted degradation. Thus, LABEL-seq enables direct measurement of multiple biochemical properties in a native cellular context, providing insights into protein function, disease mechanisms and druggability. Labeling with barcodes and enrichment for biochemical analysis by sequencing (LABEL-seq) enables massively parallel profiling of thousands of pooled protein variants in cells, yielding insight into protein function, interactions and druggability.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"21 11","pages":"2094-2106"},"PeriodicalIF":36.1,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Building pangenome graphs 构建泛基因组图谱
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-21 DOI: 10.1038/s41592-024-02430-3
Erik Garrison, Andrea Guarracino, Simon Heumos, Flavia Villani, Zhigui Bao, Lorenzo Tattini, Jörg Hagmann, Sebastian Vorbrugg, Santiago Marco-Sola, Christian Kubica, David G. Ashbrook, Kaisa Thorell, Rachel L. Rusholme-Pilcher, Gianni Liti, Emilio Rudbeck, Agnieszka A. Golicz, Sven Nahnsen, Zuyu Yang, Moses Njagi Mwaniki, Franklin L. Nobrega, Yi Wu, Hao Chen, Joep de Ligt, Peter H. Sudmant, Sanwen Huang, Detlef Weigel, Nicole Soranzo, Vincenza Colonna, Robert W. Williams, Pjotr Prins
Pangenome graphs can represent all variation between multiple reference genomes, but current approaches to build them exclude complex sequences or are based upon a single reference. In response, we developed the PanGenome Graph Builder, a pipeline for constructing pangenome graphs without bias or exclusion. The PanGenome Graph Builder uses all-to-all alignments to build a variation graph in which we can identify variation, measure conservation, detect recombination events and infer phylogenetic relationships. PGGB is a modular framework for efficiently building unbiased pangenome graphs, supporting diverse downstream analyses.
泛基因组图谱可以代表多个参考基因组之间的所有变异,但目前构建泛基因组图谱的方法排除了复杂序列,或者基于单一参考。为此,我们开发了泛基因组图谱生成器(PanGenome Graph Builder),这是一种构建泛基因组图谱的流水线,不会产生偏差或排斥。PanGenome Graph Builder 使用全对全比对来构建变异图,我们可以在其中识别变异、测量保护、检测重组事件并推断系统发育关系。
{"title":"Building pangenome graphs","authors":"Erik Garrison,&nbsp;Andrea Guarracino,&nbsp;Simon Heumos,&nbsp;Flavia Villani,&nbsp;Zhigui Bao,&nbsp;Lorenzo Tattini,&nbsp;Jörg Hagmann,&nbsp;Sebastian Vorbrugg,&nbsp;Santiago Marco-Sola,&nbsp;Christian Kubica,&nbsp;David G. Ashbrook,&nbsp;Kaisa Thorell,&nbsp;Rachel L. Rusholme-Pilcher,&nbsp;Gianni Liti,&nbsp;Emilio Rudbeck,&nbsp;Agnieszka A. Golicz,&nbsp;Sven Nahnsen,&nbsp;Zuyu Yang,&nbsp;Moses Njagi Mwaniki,&nbsp;Franklin L. Nobrega,&nbsp;Yi Wu,&nbsp;Hao Chen,&nbsp;Joep de Ligt,&nbsp;Peter H. Sudmant,&nbsp;Sanwen Huang,&nbsp;Detlef Weigel,&nbsp;Nicole Soranzo,&nbsp;Vincenza Colonna,&nbsp;Robert W. Williams,&nbsp;Pjotr Prins","doi":"10.1038/s41592-024-02430-3","DOIUrl":"10.1038/s41592-024-02430-3","url":null,"abstract":"Pangenome graphs can represent all variation between multiple reference genomes, but current approaches to build them exclude complex sequences or are based upon a single reference. In response, we developed the PanGenome Graph Builder, a pipeline for constructing pangenome graphs without bias or exclusion. The PanGenome Graph Builder uses all-to-all alignments to build a variation graph in which we can identify variation, measure conservation, detect recombination events and infer phylogenetic relationships. PGGB is a modular framework for efficiently building unbiased pangenome graphs, supporting diverse downstream analyses.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"21 11","pages":"2008-2012"},"PeriodicalIF":36.1,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-high-field MRI for fast imaging of the human brain at mesoscale resolution 超高场磁共振成像技术,用于以中尺度分辨率对人脑进行快速成像。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-17 DOI: 10.1038/s41592-024-02473-6
Very high-resolution images of the human brain obtained in vivo in a few minutes with MRI at an ultra-high magnetic field of 11.7 T reveal exquisite details. Biological and behavioral tests confirm the safety of the method, opening the door for human brain exploration at mesoscale resolution.
在 11.7 T 的超高磁场下,通过核磁共振成像技术在几分钟内获得的人体大脑超高分辨率图像揭示了精致的细节。生物和行为测试证实了这种方法的安全性,为以中尺度分辨率探索人脑打开了大门。
{"title":"Ultra-high-field MRI for fast imaging of the human brain at mesoscale resolution","authors":"","doi":"10.1038/s41592-024-02473-6","DOIUrl":"10.1038/s41592-024-02473-6","url":null,"abstract":"Very high-resolution images of the human brain obtained in vivo in a few minutes with MRI at an ultra-high magnetic field of 11.7 T reveal exquisite details. Biological and behavioral tests confirm the safety of the method, opening the door for human brain exploration at mesoscale resolution.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"21 11","pages":"1982-1983"},"PeriodicalIF":36.1,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vivo imaging of the human brain with the Iseult 11.7-T MRI scanner 使用 Iseult 11.7-T 核磁共振成像扫描仪对人脑进行活体成像。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-17 DOI: 10.1038/s41592-024-02472-7
Nicolas Boulant, Franck Mauconduit, Vincent Gras, Alexis Amadon, Caroline Le Ster, Michel Luong, Aurélien Massire, Christophe Pallier, Laure Sabatier, Michel Bottlaender, Alexandre Vignaud, Denis Le Bihan
The understanding of the human brain is one of the main scientific challenges of the twenty-first century. In the early 2000s, the French Atomic Energy Commission launched a program to conceive and build a human magnetic resonance imaging scanner operating at 11.7 T. We have now acquired human brain images in vivo at such a magnetic field. We deployed parallel transmission tools to mitigate the radiofrequency field inhomogeneity problem and tame the specific absorption rate. The safety of human imaging at such high field strength was demonstrated using physiological, vestibular, behavioral and genotoxicity measurements on the imaged volunteers. Our technology yields T2 and T2*-weighted images reaching mesoscale resolutions within short acquisition times and with a high signal and contrast-to-noise ratio. In a technological tour de force, a whole-body 11.7-T MRI scanner has been developed. Here images of the human brain are presented while safety for the imaged human volunteers has been ascertained.
了解人类大脑是二十一世纪的主要科学挑战之一。本世纪初,法国原子能委员会启动了一项计划,构想并建造一台在 11.7 T 下工作的人体磁共振成像扫描仪。现在,我们已经在这样的磁场下获取了活体人脑图像。我们采用并行传输工具来缓解射频场不均匀性问题,并控制比吸收率。通过对成像志愿者进行生理、前庭、行为和遗传毒性测量,证明了在如此高的磁场强度下进行人体成像的安全性。我们的技术能在较短的采集时间内获得达到中尺度分辨率的 T2 和 T2* 加权图像,并具有较高的信号和对比度-噪声比。
{"title":"In vivo imaging of the human brain with the Iseult 11.7-T MRI scanner","authors":"Nicolas Boulant,&nbsp;Franck Mauconduit,&nbsp;Vincent Gras,&nbsp;Alexis Amadon,&nbsp;Caroline Le Ster,&nbsp;Michel Luong,&nbsp;Aurélien Massire,&nbsp;Christophe Pallier,&nbsp;Laure Sabatier,&nbsp;Michel Bottlaender,&nbsp;Alexandre Vignaud,&nbsp;Denis Le Bihan","doi":"10.1038/s41592-024-02472-7","DOIUrl":"10.1038/s41592-024-02472-7","url":null,"abstract":"The understanding of the human brain is one of the main scientific challenges of the twenty-first century. In the early 2000s, the French Atomic Energy Commission launched a program to conceive and build a human magnetic resonance imaging scanner operating at 11.7 T. We have now acquired human brain images in vivo at such a magnetic field. We deployed parallel transmission tools to mitigate the radiofrequency field inhomogeneity problem and tame the specific absorption rate. The safety of human imaging at such high field strength was demonstrated using physiological, vestibular, behavioral and genotoxicity measurements on the imaged volunteers. Our technology yields T2 and T2*-weighted images reaching mesoscale resolutions within short acquisition times and with a high signal and contrast-to-noise ratio. In a technological tour de force, a whole-body 11.7-T MRI scanner has been developed. Here images of the human brain are presented while safety for the imaged human volunteers has been ascertained.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"21 11","pages":"2013-2016"},"PeriodicalIF":36.1,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41592-024-02472-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BioNumPy: array programming for biology. BioNumPy:生物学数组编程。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-17 DOI: 10.1038/s41592-024-02483-4
Knut Dagestad Rand, Ivar Grytten, Milena Pavlović, Chakravarthi Kanduri, Geir Kjetil Sandve
{"title":"BioNumPy: array programming for biology.","authors":"Knut Dagestad Rand, Ivar Grytten, Milena Pavlović, Chakravarthi Kanduri, Geir Kjetil Sandve","doi":"10.1038/s41592-024-02483-4","DOIUrl":"https://doi.org/10.1038/s41592-024-02483-4","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Image processing tools for petabyte-scale light sheet microscopy data. 百万亿字节级光片显微镜数据的图像处理工具。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-17 DOI: 10.1038/s41592-024-02475-4
Xiongtao Ruan, Matthew Mueller, Gaoxiang Liu, Frederik Görlitz, Tian-Ming Fu, Daniel E Milkie, Joshua L Lillvis, Alexander Kuhn, Johnny Gan Chong, Jason Li Hong, Chu Yi Aaron Herr, Wilmene Hercule, Marc Nienhaus, Alison N Killilea, Eric Betzig, Srigokul Upadhyayula

Light sheet microscopy is a powerful technique for high-speed three-dimensional imaging of subcellular dynamics and large biological specimens. However, it often generates datasets ranging from hundreds of gigabytes to petabytes in size for a single experiment. Conventional computational tools process such images far slower than the time to acquire them and often fail outright due to memory limitations. To address these challenges, we present PetaKit5D, a scalable software solution for efficient petabyte-scale light sheet image processing. This software incorporates a suite of commonly used processing tools that are optimized for memory and performance. Notable advancements include rapid image readers and writers, fast and memory-efficient geometric transformations, high-performance Richardson-Lucy deconvolution and scalable Zarr-based stitching. These features outperform state-of-the-art methods by over one order of magnitude, enabling the processing of petabyte-scale image data at the full teravoxel rates of modern imaging cameras. The software opens new avenues for biological discoveries through large-scale imaging experiments.

光片显微镜是对亚细胞动态和大型生物标本进行高速三维成像的强大技术。然而,单次实验所产生的数据集往往从数百千兆字节到数百兆字节不等。传统的计算工具处理这些图像的速度远远慢于获取图像的时间,而且经常由于内存限制而完全失败。为了应对这些挑战,我们推出了 PetaKit5D,这是一种可扩展的软件解决方案,用于高效处理 PB 级光片图像。该软件集成了一套常用的处理工具,并对内存和性能进行了优化。显著的进步包括快速图像读写器、快速且内存效率高的几何变换、高性能理查森-卢西去卷积和可扩展的基于 Zarr 的拼接。这些功能比最先进的方法高出一个数量级以上,能够以现代成像相机的全太象素速率处理 PB 级图像数据。该软件通过大规模成像实验为生物发现开辟了新途径。
{"title":"Image processing tools for petabyte-scale light sheet microscopy data.","authors":"Xiongtao Ruan, Matthew Mueller, Gaoxiang Liu, Frederik Görlitz, Tian-Ming Fu, Daniel E Milkie, Joshua L Lillvis, Alexander Kuhn, Johnny Gan Chong, Jason Li Hong, Chu Yi Aaron Herr, Wilmene Hercule, Marc Nienhaus, Alison N Killilea, Eric Betzig, Srigokul Upadhyayula","doi":"10.1038/s41592-024-02475-4","DOIUrl":"https://doi.org/10.1038/s41592-024-02475-4","url":null,"abstract":"<p><p>Light sheet microscopy is a powerful technique for high-speed three-dimensional imaging of subcellular dynamics and large biological specimens. However, it often generates datasets ranging from hundreds of gigabytes to petabytes in size for a single experiment. Conventional computational tools process such images far slower than the time to acquire them and often fail outright due to memory limitations. To address these challenges, we present PetaKit5D, a scalable software solution for efficient petabyte-scale light sheet image processing. This software incorporates a suite of commonly used processing tools that are optimized for memory and performance. Notable advancements include rapid image readers and writers, fast and memory-efficient geometric transformations, high-performance Richardson-Lucy deconvolution and scalable Zarr-based stitching. These features outperform state-of-the-art methods by over one order of magnitude, enabling the processing of petabyte-scale image data at the full teravoxel rates of modern imaging cameras. The software opens new avenues for biological discoveries through large-scale imaging experiments.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scientists who marry scientists 科学家与科学家结婚。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-15 DOI: 10.1038/s41592-024-02490-5
Vivien Marx
When spouses are both scientists, they mix the typical research career decisions with some marriage-related ones.
当配偶双方都是科学家时,他们在做出典型的研究职业决定的同时,也会做出一些与婚姻有关的决定。
{"title":"Scientists who marry scientists","authors":"Vivien Marx","doi":"10.1038/s41592-024-02490-5","DOIUrl":"10.1038/s41592-024-02490-5","url":null,"abstract":"When spouses are both scientists, they mix the typical research career decisions with some marriage-related ones.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"21 11","pages":"1962-1963"},"PeriodicalIF":36.1,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Methods
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1