首页 > 最新文献

Nature Methods最新文献

英文 中文
Quality control for single-cell analysis of high-plex tissue profiles using CyLinter. 使用 CyLinter 对高复合组织图谱进行单细胞分析的质量控制。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-30 DOI: 10.1038/s41592-024-02328-0
Gregory J Baker, Edward Novikov, Ziyuan Zhao, Tuulia Vallius, Janae A Davis, Jia-Ren Lin, Jeremy L Muhlich, Elizabeth A Mittendorf, Sandro Santagata, Jennifer L Guerriero, Peter K Sorger

Tumors are complex assemblies of cellular and acellular structures patterned on spatial scales from microns to centimeters. Study of these assemblies has advanced dramatically with the introduction of high-plex spatial profiling. Image-based profiling methods reveal the intensities and spatial distributions of 20-100 proteins at subcellular resolution in 103-107 cells per specimen. Despite extensive work on methods for extracting single-cell data from these images, all tissue images contain artifacts such as folds, debris, antibody aggregates, optical aberrations and image processing errors that arise from imperfections in specimen preparation, data acquisition, image assembly and feature extraction. Here we show that these artifacts dramatically impact single-cell data analysis, obscuring meaningful biological interpretation. We describe an interactive quality control software tool, CyLinter, that identifies and removes data associated with imaging artifacts. CyLinter greatly improves single-cell analysis, especially for archival specimens sectioned many years before data collection, such as those from clinical trials.

肿瘤是细胞和无细胞结构的复杂组合,其空间尺度从微米到厘米不等。随着高倍空间谱分析技术的引入,对这些组合的研究取得了显著进展。基于图像的分析方法能以亚细胞分辨率揭示每个样本 103-107 个细胞中 20-100 种蛋白质的强度和空间分布。尽管在从这些图像中提取单细胞数据的方法方面做了大量工作,但所有组织图像都含有伪影,如褶皱、碎屑、抗体聚集、光学畸变和图像处理误差,这些都是由于标本制备、数据采集、图像组装和特征提取过程中的不完善而造成的。在这里,我们展示了这些伪影对单细胞数据分析的巨大影响,它们遮蔽了有意义的生物学解释。我们介绍了一种交互式质量控制软件工具 CyLinter,它能识别并移除与成像伪影相关的数据。CyLinter 能极大地改进单细胞分析,尤其是对数据采集前多年切片的档案标本,如临床试验中的标本。
{"title":"Quality control for single-cell analysis of high-plex tissue profiles using CyLinter.","authors":"Gregory J Baker, Edward Novikov, Ziyuan Zhao, Tuulia Vallius, Janae A Davis, Jia-Ren Lin, Jeremy L Muhlich, Elizabeth A Mittendorf, Sandro Santagata, Jennifer L Guerriero, Peter K Sorger","doi":"10.1038/s41592-024-02328-0","DOIUrl":"10.1038/s41592-024-02328-0","url":null,"abstract":"<p><p>Tumors are complex assemblies of cellular and acellular structures patterned on spatial scales from microns to centimeters. Study of these assemblies has advanced dramatically with the introduction of high-plex spatial profiling. Image-based profiling methods reveal the intensities and spatial distributions of 20-100 proteins at subcellular resolution in 10<sup>3</sup>-10<sup>7</sup> cells per specimen. Despite extensive work on methods for extracting single-cell data from these images, all tissue images contain artifacts such as folds, debris, antibody aggregates, optical aberrations and image processing errors that arise from imperfections in specimen preparation, data acquisition, image assembly and feature extraction. Here we show that these artifacts dramatically impact single-cell data analysis, obscuring meaningful biological interpretation. We describe an interactive quality control software tool, CyLinter, that identifies and removes data associated with imaging artifacts. CyLinter greatly improves single-cell analysis, especially for archival specimens sectioned many years before data collection, such as those from clinical trials.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inferring allele-specific copy number aberrations and tumor phylogeography from spatially resolved transcriptomics. 从空间解析转录组学推断等位基因特异性拷贝数畸变和肿瘤系统地理学
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-30 DOI: 10.1038/s41592-024-02438-9
Cong Ma, Metin Balaban, Jingxian Liu, Siqi Chen, Michael J Wilson, Christopher H Sun, Li Ding, Benjamin J Raphael

Analyzing somatic evolution within a tumor over time and across space is a key challenge in cancer research. Spatially resolved transcriptomics (SRT) measures gene expression at thousands of spatial locations in a tumor, but does not directly reveal genomic aberrations. We introduce CalicoST, an algorithm to simultaneously infer allele-specific copy number aberrations (CNAs) and reconstruct spatial tumor evolution, or phylogeography, from SRT data. CalicoST identifies important classes of CNAs-including copy-neutral loss of heterozygosity and mirrored subclonal CNAs-that are invisible to total copy number analysis. Using nine patients' data from the Human Tumor Atlas Network, CalicoST achieves an average accuracy of 86%, approximately 21% higher than existing methods. CalicoST reconstructs a tumor phylogeography in three-dimensional space for two patients with multiple adjacent slices. CalicoST analysis of multiple SRT slices from a cancerous prostate organ reveals mirrored subclonal CNAs on the two sides of the prostate, forming a bifurcating phylogeography in both genetic and physical space.

分析肿瘤内随时间和跨空间的体细胞进化是癌症研究中的一项关键挑战。空间分辨转录组学(SRT)可测量肿瘤内数千个空间位置的基因表达,但不能直接揭示基因组畸变。我们介绍了 CalicoST,这是一种同时推断等位基因特异性拷贝数畸变(CNA)和从 SRT 数据重建肿瘤空间进化或系统地理学的算法。CalicoST 能识别重要类别的 CNA,包括拷贝中性杂合性缺失和镜像亚克隆 CNA,而这些在总拷贝数分析中是不可见的。CalicoST 利用人类肿瘤图谱网络(Human Tumor Atlas Network)中九名患者的数据,实现了 86% 的平均准确率,比现有方法高出约 21%。CalicoST 利用多个相邻切片在三维空间中重建了两名患者的肿瘤系统地理学。CalicoST 对癌症前列腺器官的多个 SRT 切片进行分析,发现前列腺两侧存在镜像亚克隆 CNA,从而在遗传和物理空间形成了一个分叉的系统地理学。
{"title":"Inferring allele-specific copy number aberrations and tumor phylogeography from spatially resolved transcriptomics.","authors":"Cong Ma, Metin Balaban, Jingxian Liu, Siqi Chen, Michael J Wilson, Christopher H Sun, Li Ding, Benjamin J Raphael","doi":"10.1038/s41592-024-02438-9","DOIUrl":"10.1038/s41592-024-02438-9","url":null,"abstract":"<p><p>Analyzing somatic evolution within a tumor over time and across space is a key challenge in cancer research. Spatially resolved transcriptomics (SRT) measures gene expression at thousands of spatial locations in a tumor, but does not directly reveal genomic aberrations. We introduce CalicoST, an algorithm to simultaneously infer allele-specific copy number aberrations (CNAs) and reconstruct spatial tumor evolution, or phylogeography, from SRT data. CalicoST identifies important classes of CNAs-including copy-neutral loss of heterozygosity and mirrored subclonal CNAs-that are invisible to total copy number analysis. Using nine patients' data from the Human Tumor Atlas Network, CalicoST achieves an average accuracy of 86%, approximately 21% higher than existing methods. CalicoST reconstructs a tumor phylogeography in three-dimensional space for two patients with multiple adjacent slices. CalicoST analysis of multiple SRT slices from a cancerous prostate organ reveals mirrored subclonal CNAs on the two sides of the prostate, forming a bifurcating phylogeography in both genetic and physical space.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CryoSTAR: leveraging structural priors and constraints for cryo-EM heterogeneous reconstruction. CryoSTAR:利用结构先验和约束进行低温电子显微镜异质重建。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-29 DOI: 10.1038/s41592-024-02486-1
Yilai Li, Yi Zhou, Jing Yuan, Fei Ye, Quanquan Gu

Resolving conformational heterogeneity in cryogenic electron microscopy datasets remains an important challenge in structural biology. Previous methods have often been restricted to working exclusively on volumetric densities, neglecting the potential of incorporating any preexisting structural knowledge as prior or constraints. Here we present cryoSTAR, which harnesses atomic model information as structural regularization to elucidate such heterogeneity. Our method uniquely outputs both coarse-grained models and density maps, showcasing the molecular conformational changes at different levels. Validated against four diverse experimental datasets, spanning large complexes, a membrane protein and a small single-chain protein, our results consistently demonstrate an efficient and effective solution to conformational heterogeneity with minimal human bias. By integrating atomic model insights with cryogenic electron microscopy data, cryoSTAR represents a meaningful step forward, paving the way for a deeper understanding of dynamic biological processes.

解决低温电子显微镜数据集中的构象异质性仍然是结构生物学领域的一项重要挑战。以往的方法往往局限于只考虑体积密度,而忽视了将已有的结构知识作为先验知识或约束条件的可能性。在这里,我们提出了 cryoSTAR,它利用原子模型信息作为结构正则化来阐明这种异质性。我们的方法能同时输出粗粒度模型和密度图,展示不同层次的分子构象变化。我们的研究结果通过四个不同的实验数据集(包括大型复合物、膜蛋白和小型单链蛋白)进行了验证,结果一致表明,我们的方法是一种高效且有效的构象异质性解决方案,能将人为偏差降到最低。通过将原子模型见解与低温电子显微镜数据相结合,cryoSTAR 代表着向前迈出的重要一步,为深入了解动态生物过程铺平了道路。
{"title":"CryoSTAR: leveraging structural priors and constraints for cryo-EM heterogeneous reconstruction.","authors":"Yilai Li, Yi Zhou, Jing Yuan, Fei Ye, Quanquan Gu","doi":"10.1038/s41592-024-02486-1","DOIUrl":"https://doi.org/10.1038/s41592-024-02486-1","url":null,"abstract":"<p><p>Resolving conformational heterogeneity in cryogenic electron microscopy datasets remains an important challenge in structural biology. Previous methods have often been restricted to working exclusively on volumetric densities, neglecting the potential of incorporating any preexisting structural knowledge as prior or constraints. Here we present cryoSTAR, which harnesses atomic model information as structural regularization to elucidate such heterogeneity. Our method uniquely outputs both coarse-grained models and density maps, showcasing the molecular conformational changes at different levels. Validated against four diverse experimental datasets, spanning large complexes, a membrane protein and a small single-chain protein, our results consistently demonstrate an efficient and effective solution to conformational heterogeneity with minimal human bias. By integrating atomic model insights with cryogenic electron microscopy data, cryoSTAR represents a meaningful step forward, paving the way for a deeper understanding of dynamic biological processes.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiomic characterization of RNA microenvironments by oligonucleotide-mediated proximity-interactome mapping 通过寡核苷酸介导的近端-交互组图谱对 RNA 微环境进行多组表征。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-28 DOI: 10.1038/s41592-024-02457-6
Ashley F. Tsue, Evan E. Kania, Diana Q. Lei, Rose Fields, Christopher D. McGann, Daphnée M. Marciniak, Elliot A. Hershberg, Xinxian Deng, Maryanne Kihiu, Shao-En Ong, Christine M. Disteche, Sita Kugel, Brian J. Beliveau, Devin K. Schweppe, David M. Shechner
RNA molecules form complex networks of molecular interactions that are central to their function and to cellular architecture. But these interaction networks are difficult to probe in situ. Here, we introduce Oligonucleotide-mediated proximity-interactome MAPping (O-MAP), a method for elucidating the biomolecules near an RNA of interest, within its native context. O-MAP uses RNA-fluorescence in situ hybridization-like oligonucleotide probes to deliver proximity-biotinylating enzymes to a target RNA in situ, enabling nearby molecules to be enriched by streptavidin pulldown. This induces exceptionally precise biotinylation that can be easily optimized and ported to new targets or sample types. Using the noncoding RNAs 47S, 7SK and Xist as models, we develop O-MAP workflows for discovering RNA-proximal proteins, transcripts and genomic loci, yielding a multiomic characterization of these RNAs’ subcellular compartments and new regulatory interactions. O-MAP requires no genetic manipulation, uses exclusively off-the-shelf parts and requires orders of magnitude fewer cells than established methods, making it accessible to most laboratories. Oligonucleotide-mediated proximity-interactome MAPping (O-MAP) enables precise multiomic characterization of biomolecular interaction networks at target RNAs. Distinct O-MAP workflows reveal RNA-adjacent proteins, transcripts and genomic loci.
RNA 分子形成复杂的分子相互作用网络,对其功能和细胞结构至关重要。但这些相互作用网络很难进行原位探测。在这里,我们介绍了寡核苷酸介导的邻近相互作用组 MAPping(O-MAP),这是一种在 RNA 的原生环境中阐明其附近生物分子的方法。O-MAP 使用类似于 RNA 荧光原位杂交的寡核苷酸探针,在原位向目标 RNA 运送邻近生物素化酶,从而通过链霉亲和素下拉富集附近的分子。这种方法能诱导异常精确的生物素化,易于优化并可移植到新的靶标或样本类型。以非编码 RNA 47S、7SK 和 Xist 为模型,我们开发了 O-MAP 工作流程,用于发现 RNA 近端蛋白、转录本和基因组位点,从而对这些 RNA 的亚细胞区和新的调控相互作用进行多组表征。O-MAP 不需要基因操作,只使用现成的部件,所需的细胞数量比现有方法少很多,因此大多数实验室都能使用。
{"title":"Multiomic characterization of RNA microenvironments by oligonucleotide-mediated proximity-interactome mapping","authors":"Ashley F. Tsue,&nbsp;Evan E. Kania,&nbsp;Diana Q. Lei,&nbsp;Rose Fields,&nbsp;Christopher D. McGann,&nbsp;Daphnée M. Marciniak,&nbsp;Elliot A. Hershberg,&nbsp;Xinxian Deng,&nbsp;Maryanne Kihiu,&nbsp;Shao-En Ong,&nbsp;Christine M. Disteche,&nbsp;Sita Kugel,&nbsp;Brian J. Beliveau,&nbsp;Devin K. Schweppe,&nbsp;David M. Shechner","doi":"10.1038/s41592-024-02457-6","DOIUrl":"10.1038/s41592-024-02457-6","url":null,"abstract":"RNA molecules form complex networks of molecular interactions that are central to their function and to cellular architecture. But these interaction networks are difficult to probe in situ. Here, we introduce Oligonucleotide-mediated proximity-interactome MAPping (O-MAP), a method for elucidating the biomolecules near an RNA of interest, within its native context. O-MAP uses RNA-fluorescence in situ hybridization-like oligonucleotide probes to deliver proximity-biotinylating enzymes to a target RNA in situ, enabling nearby molecules to be enriched by streptavidin pulldown. This induces exceptionally precise biotinylation that can be easily optimized and ported to new targets or sample types. Using the noncoding RNAs 47S, 7SK and Xist as models, we develop O-MAP workflows for discovering RNA-proximal proteins, transcripts and genomic loci, yielding a multiomic characterization of these RNAs’ subcellular compartments and new regulatory interactions. O-MAP requires no genetic manipulation, uses exclusively off-the-shelf parts and requires orders of magnitude fewer cells than established methods, making it accessible to most laboratories. Oligonucleotide-mediated proximity-interactome MAPping (O-MAP) enables precise multiomic characterization of biomolecular interaction networks at target RNAs. Distinct O-MAP workflows reveal RNA-adjacent proteins, transcripts and genomic loci.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"21 11","pages":"2058-2071"},"PeriodicalIF":36.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SCUBA-D: a freshly trained diffusion model generates high-quality protein structures SCUBA-D:新训练的扩散模型生成高质量的蛋白质结构。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-28 DOI: 10.1038/s41592-024-02465-6
The accuracy of SCUBA-D, a protein backbone structure diffusion model trained independently and orthogonally to existing protein structure prediction networks, is confirmed by the X-ray structures of 16 designed proteins and a protein complex, and by experimental validation of designed heme-binding proteins and Ras-binding proteins.
SCUBA-D是一个独立训练的蛋白质骨架结构扩散模型,与现有的蛋白质结构预测网络正交,16个设计蛋白质和一个蛋白质复合物的X射线结构以及设计血红素结合蛋白和Ras结合蛋白的实验验证证实了SCUBA-D的准确性。
{"title":"SCUBA-D: a freshly trained diffusion model generates high-quality protein structures","authors":"","doi":"10.1038/s41592-024-02465-6","DOIUrl":"10.1038/s41592-024-02465-6","url":null,"abstract":"The accuracy of SCUBA-D, a protein backbone structure diffusion model trained independently and orthogonally to existing protein structure prediction networks, is confirmed by the X-ray structures of 16 designed proteins and a protein complex, and by experimental validation of designed heme-binding proteins and Ras-binding proteins.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"21 11","pages":"1990-1991"},"PeriodicalIF":36.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cryo-electron microscopy in color. 彩色冷冻电镜。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-24 DOI: 10.1038/s41592-024-02427-y
Henning Stahlberg
{"title":"Cryo-electron microscopy in color.","authors":"Henning Stahlberg","doi":"10.1038/s41592-024-02427-y","DOIUrl":"https://doi.org/10.1038/s41592-024-02427-y","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elemental mapping in single-particle reconstructions by reconstructed electron energy-loss analysis. 通过重建电子能量损失分析绘制单粒子重建中的元素图谱。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-24 DOI: 10.1038/s41592-024-02482-5
Olivia Pfeil-Gardiner, Higor Vinícius Dias Rosa, Dietmar Riedel, Yu Seby Chen, Dominique Lörks, Pirmin Kükelhan, Martin Linck, Heiko Müller, Filip Van Petegem, Bonnie J Murphy

For macromolecular structures determined by cryogenic electron microscopy, no technique currently exists for mapping elements to defined locations, leading to errors in the assignment of metals and other ions, cofactors, substrates, inhibitors and lipids that play essential roles in activity and regulation. Elemental mapping in the electron microscope is well established for dose-tolerant samples but is challenging for biological samples, especially in a cryo-preserved state. Here we combine electron energy-loss spectroscopy with single-particle image processing to allow elemental mapping in cryo-preserved macromolecular complexes. Proof-of-principle data show that our method, reconstructed electron energy-loss (REEL) analysis, allows a three-dimensional reconstruction of electron energy-loss spectroscopy data, such that a high total electron dose is accumulated across many copies of a complex. Working with two test samples, we demonstrate that we can reliably localize abundant elements. We discuss the current limitations of the method and potential future developments.

对于通过低温电子显微镜确定的大分子结构,目前还没有将元素映射到确定位置的技术,这导致在分配金属和其他离子、辅助因子、底物、抑制剂和脂质时出现误差,而这些元素在活动和调节中起着至关重要的作用。在电子显微镜下绘制元素图谱对于剂量耐受性样品来说已经非常成熟,但对于生物样品,尤其是低温保存状态的生物样品来说,则具有挑战性。在这里,我们将电子能量损失光谱与单粒子图像处理相结合,实现了低温保存的大分子复合物的元素图谱绘制。原理验证数据表明,我们的重建电子能量损失(REEL)分析方法可以对电子能量损失光谱数据进行三维重建,从而在复合物的多个副本中累积高电子总剂量。通过两个测试样本,我们证明了我们可以可靠地定位丰富的元素。我们讨论了该方法目前的局限性和未来的潜在发展。
{"title":"Elemental mapping in single-particle reconstructions by reconstructed electron energy-loss analysis.","authors":"Olivia Pfeil-Gardiner, Higor Vinícius Dias Rosa, Dietmar Riedel, Yu Seby Chen, Dominique Lörks, Pirmin Kükelhan, Martin Linck, Heiko Müller, Filip Van Petegem, Bonnie J Murphy","doi":"10.1038/s41592-024-02482-5","DOIUrl":"https://doi.org/10.1038/s41592-024-02482-5","url":null,"abstract":"<p><p>For macromolecular structures determined by cryogenic electron microscopy, no technique currently exists for mapping elements to defined locations, leading to errors in the assignment of metals and other ions, cofactors, substrates, inhibitors and lipids that play essential roles in activity and regulation. Elemental mapping in the electron microscope is well established for dose-tolerant samples but is challenging for biological samples, especially in a cryo-preserved state. Here we combine electron energy-loss spectroscopy with single-particle image processing to allow elemental mapping in cryo-preserved macromolecular complexes. Proof-of-principle data show that our method, reconstructed electron energy-loss (REEL) analysis, allows a three-dimensional reconstruction of electron energy-loss spectroscopy data, such that a high total electron dose is accumulated across many copies of a complex. Working with two test samples, we demonstrate that we can reliably localize abundant elements. We discuss the current limitations of the method and potential future developments.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of different sample preparation approaches on proteoform identification by top-down proteomics. 不同样品制备方法对自上而下蛋白质组学蛋白质形式鉴定的影响
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-22 DOI: 10.1038/s41592-024-02481-6
Philipp T Kaulich, Kyowon Jeong, Oliver Kohlbacher, Andreas Tholey

Top-down proteomics using mass spectrometry facilitates the identification of intact proteoforms, that is, all molecular forms of proteins. Multiple past advances have lead to the development of numerous sample preparation workflows. Here we systematically investigated the influence of different sample preparation steps on proteoform and protein identifications, including cell lysis, reduction and alkylation, proteoform enrichment, purification and fractionation. We found that all steps in sample preparation influence the subset of proteoforms identified (for example, their number, confidence, physicochemical properties and artificially generated modifications). The various sample preparation strategies resulted in complementary identifications, substantially increasing the proteome coverage. Overall, we identified 13,975 proteoforms from 2,720 proteins of human Caco-2 cells. The results presented can serve as suggestions for designing and adapting top-down proteomics sample preparation strategies to particular research questions. Moreover, we expect that the sampling bias and modifications identified at the intact protein level will also be useful in improving bottom-up proteomics approaches.

采用质谱技术的自上而下蛋白质组学有助于鉴定完整的蛋白质形态,即蛋白质的所有分子形式。过去取得的多项进展推动了众多样品制备工作流程的发展。在此,我们系统地研究了不同样品制备步骤对蛋白形式和蛋白质鉴定的影响,包括细胞裂解、还原和烷基化、蛋白形式富集、纯化和分馏。我们发现,样品制备的所有步骤都会影响蛋白质形式鉴定的子集(例如,其数量、可信度、理化性质和人工生成的修饰)。不同的样品制备策略产生了互补的鉴定结果,大大提高了蛋白质组的覆盖率。总之,我们从人类 Caco-2 细胞的 2,720 种蛋白质中鉴定出了 13,975 种蛋白质形式。这些结果可作为设计和调整自上而下蛋白质组学样品制备策略以解决特定研究问题的建议。此外,我们预计在完整蛋白质水平上发现的取样偏差和修饰也将有助于改进自下而上的蛋白质组学方法。
{"title":"Influence of different sample preparation approaches on proteoform identification by top-down proteomics.","authors":"Philipp T Kaulich, Kyowon Jeong, Oliver Kohlbacher, Andreas Tholey","doi":"10.1038/s41592-024-02481-6","DOIUrl":"https://doi.org/10.1038/s41592-024-02481-6","url":null,"abstract":"<p><p>Top-down proteomics using mass spectrometry facilitates the identification of intact proteoforms, that is, all molecular forms of proteins. Multiple past advances have lead to the development of numerous sample preparation workflows. Here we systematically investigated the influence of different sample preparation steps on proteoform and protein identifications, including cell lysis, reduction and alkylation, proteoform enrichment, purification and fractionation. We found that all steps in sample preparation influence the subset of proteoforms identified (for example, their number, confidence, physicochemical properties and artificially generated modifications). The various sample preparation strategies resulted in complementary identifications, substantially increasing the proteome coverage. Overall, we identified 13,975 proteoforms from 2,720 proteins of human Caco-2 cells. The results presented can serve as suggestions for designing and adapting top-down proteomics sample preparation strategies to particular research questions. Moreover, we expect that the sampling bias and modifications identified at the intact protein level will also be useful in improving bottom-up proteomics approaches.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differentiating visceral sensory ganglion organoids from induced pluripotent stem cells 从诱导多能干细胞分化出内脏感觉神经节器官组织。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-22 DOI: 10.1038/s41592-024-02455-8
Kyusik Ahn, Hwee-Seon Park, Sieun Choi, Hojeong Lee, Hyunjung Choi, Seok Beom Hong, Jihui Han, Jong Won Han, Jinchul Ahn, Jaehoon Song, Kyunghyuk Park, Bukyung Cha, Minseop Kim, Hui-Wen Liu, Hyeonggyu Song, Sang Jeong Kim, Seok Chung, Jong-Il Kim, Inhee Mook-Jung
The ability to generate visceral sensory neurons (VSN) from induced pluripotent stem (iPS) cells may help to gain insights into how the gut–nerve–brain axis is involved in neurological disorders. We established a protocol to differentiate human iPS-cell-derived visceral sensory ganglion organoids (VSGOs). VSGOs exhibit canonical VSN markers, and single-cell RNA sequencing revealed heterogenous molecular signatures and developmental trajectories of VSGOs aligned with native VSN. We integrated VSGOs with human colon organoids on a microfluidic device and applied this axis-on-a-chip model to Alzheimer’s disease. Our results suggest that VSN could be a potential mediator for propagating gut-derived amyloid and tau to the brain in an APOE4- and LRP1-dependent manner. Furthermore, our approach was extended to include patient-derived iPS cells, which demonstrated a strong correlation with clinical data. A protocol for differentiating visceral sensory ganglion organoids from induced pluripotent stem cells allows the establishment of an in vitro model for the gut–visceral nerve–brain axis and study of the propagation of pathogenic proteins involved in Alzheimer’s disease along the vagus nerve.
从诱导多能干细胞(iPS)生成内脏感觉神经元(VSN)的能力可能有助于深入了解肠道-神经-大脑轴是如何参与神经系统疾病的。我们建立了一种分化源自人类iPS细胞的内脏感觉神经节器官组织(VSGOs)的方案。VSGOs表现出典型的VSN标记,单细胞RNA测序揭示了VSGOs与原生VSN一致的异源分子特征和发育轨迹。我们在微流控装置上整合了 VSGOs 与人类结肠器官组织,并将这种芯片轴模型应用于阿尔茨海默病。我们的研究结果表明,VSN 可能是一种潜在的介质,能以 APOE4 和 LRP1 依赖性方式将肠道衍生的淀粉样蛋白和 tau 传播到大脑。此外,我们的研究方法还扩展到了源自患者的 iPS 细胞,这些细胞与临床数据有很强的相关性。
{"title":"Differentiating visceral sensory ganglion organoids from induced pluripotent stem cells","authors":"Kyusik Ahn,&nbsp;Hwee-Seon Park,&nbsp;Sieun Choi,&nbsp;Hojeong Lee,&nbsp;Hyunjung Choi,&nbsp;Seok Beom Hong,&nbsp;Jihui Han,&nbsp;Jong Won Han,&nbsp;Jinchul Ahn,&nbsp;Jaehoon Song,&nbsp;Kyunghyuk Park,&nbsp;Bukyung Cha,&nbsp;Minseop Kim,&nbsp;Hui-Wen Liu,&nbsp;Hyeonggyu Song,&nbsp;Sang Jeong Kim,&nbsp;Seok Chung,&nbsp;Jong-Il Kim,&nbsp;Inhee Mook-Jung","doi":"10.1038/s41592-024-02455-8","DOIUrl":"10.1038/s41592-024-02455-8","url":null,"abstract":"The ability to generate visceral sensory neurons (VSN) from induced pluripotent stem (iPS) cells may help to gain insights into how the gut–nerve–brain axis is involved in neurological disorders. We established a protocol to differentiate human iPS-cell-derived visceral sensory ganglion organoids (VSGOs). VSGOs exhibit canonical VSN markers, and single-cell RNA sequencing revealed heterogenous molecular signatures and developmental trajectories of VSGOs aligned with native VSN. We integrated VSGOs with human colon organoids on a microfluidic device and applied this axis-on-a-chip model to Alzheimer’s disease. Our results suggest that VSN could be a potential mediator for propagating gut-derived amyloid and tau to the brain in an APOE4- and LRP1-dependent manner. Furthermore, our approach was extended to include patient-derived iPS cells, which demonstrated a strong correlation with clinical data. A protocol for differentiating visceral sensory ganglion organoids from induced pluripotent stem cells allows the establishment of an in vitro model for the gut–visceral nerve–brain axis and study of the propagation of pathogenic proteins involved in Alzheimer’s disease along the vagus nerve.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"21 11","pages":"2135-2146"},"PeriodicalIF":36.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A data portal for providing standardized annotations for cryo-electron tomography. 为低温电子断层扫描提供标准化注释的数据门户。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-21 DOI: 10.1038/s41592-024-02477-2
Utz Ermel, Anchi Cheng, Jun Xi Ni, Jessica Gadling, Manasa Venkatakrishnan, Kira Evans, Jeremy Asuncion, Andrew Sweet, Janeece Pourroy, Zun Shi Wang, Kandarp Khandwala, Benjamin Nelson, Dannielle McCarthy, Eric M Wang, Richa Agarwal, Bridget Carragher
{"title":"A data portal for providing standardized annotations for cryo-electron tomography.","authors":"Utz Ermel, Anchi Cheng, Jun Xi Ni, Jessica Gadling, Manasa Venkatakrishnan, Kira Evans, Jeremy Asuncion, Andrew Sweet, Janeece Pourroy, Zun Shi Wang, Kandarp Khandwala, Benjamin Nelson, Dannielle McCarthy, Eric M Wang, Richa Agarwal, Bridget Carragher","doi":"10.1038/s41592-024-02477-2","DOIUrl":"https://doi.org/10.1038/s41592-024-02477-2","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Methods
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1