首页 > 最新文献

Nature Methods最新文献

英文 中文
Trans-RNAs to program translation initiation 反式rna到程序翻译起始
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-01-12 DOI: 10.1038/s41592-025-02998-4
Aparna Anantharaman
{"title":"Trans-RNAs to program translation initiation","authors":"Aparna Anantharaman","doi":"10.1038/s41592-025-02998-4","DOIUrl":"10.1038/s41592-025-02998-4","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"23 1","pages":"9-9"},"PeriodicalIF":32.1,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145950799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell exploration in natural language 自然语言中的单细胞探索
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-01-12 DOI: 10.1038/s41592-025-03000-x
Lin Tang
{"title":"Single-cell exploration in natural language","authors":"Lin Tang","doi":"10.1038/s41592-025-03000-x","DOIUrl":"10.1038/s41592-025-03000-x","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"23 1","pages":"10-10"},"PeriodicalIF":32.1,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145950809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Year in review 2025 2025年回顾
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-01-12 DOI: 10.1038/s41592-025-02997-5
We highlight some of the Nature Methods team’s favorite papers published in 2025, reflecting on some trends and new technology developments.
我们重点介绍了《自然方法》团队在2025年发表的一些最受欢迎的论文,反映了一些趋势和新技术的发展。
{"title":"Year in review 2025","authors":"","doi":"10.1038/s41592-025-02997-5","DOIUrl":"10.1038/s41592-025-02997-5","url":null,"abstract":"We highlight some of the Nature Methods team’s favorite papers published in 2025, reflecting on some trends and new technology developments.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"23 1","pages":"1-1"},"PeriodicalIF":32.1,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41592-025-02997-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145950808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational generation of high-content digital organs at single-cell resolution. 单细胞分辨率下高含量数字器官的计算生成。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-01-06 DOI: 10.1038/s41592-025-02996-6
{"title":"Computational generation of high-content digital organs at single-cell resolution.","authors":"","doi":"10.1038/s41592-025-02996-6","DOIUrl":"https://doi.org/10.1038/s41592-025-02996-6","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":32.1,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145912401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What nanobodies can do for you 纳米体能为你做什么。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-01-05 DOI: 10.1038/s41592-025-02991-x
Vivien Marx
Since the chance discovery of nanobodies in the late 1980s, their uses and applications have kept growing. Researchers are now exploring new ways to harness nanobody versatility.
自从20世纪80年代末偶然发现纳米体以来,它们的用途和应用一直在增长。研究人员正在探索利用纳米体多功能性的新方法。
{"title":"What nanobodies can do for you","authors":"Vivien Marx","doi":"10.1038/s41592-025-02991-x","DOIUrl":"10.1038/s41592-025-02991-x","url":null,"abstract":"Since the chance discovery of nanobodies in the late 1980s, their uses and applications have kept growing. Researchers are now exploring new ways to harness nanobody versatility.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"23 1","pages":"11-15"},"PeriodicalIF":32.1,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145906264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conference daycare 会议上托儿所。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-01-05 DOI: 10.1038/s41592-025-02990-y
Vivien Marx
Not all conferences offer childcare, but when they do, these scientists, who are also mothers, rejoice. The toys are pretty good, too.
并不是所有的会议都提供托儿服务,但当会议提供托儿服务时,这些同样身为母亲的科学家们会感到高兴。玩具也很不错。
{"title":"Conference daycare","authors":"Vivien Marx","doi":"10.1038/s41592-025-02990-y","DOIUrl":"10.1038/s41592-025-02990-y","url":null,"abstract":"Not all conferences offer childcare, but when they do, these scientists, who are also mothers, rejoice. The toys are pretty good, too.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"23 1","pages":"2-2"},"PeriodicalIF":32.1,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145906203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The missing data for intelligent scientific instruments. 智能科学仪器的缺失数据。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-31 DOI: 10.1038/s41592-025-02995-7
Henry Pinkard, Nils Norlin
{"title":"The missing data for intelligent scientific instruments.","authors":"Henry Pinkard, Nils Norlin","doi":"10.1038/s41592-025-02995-7","DOIUrl":"https://doi.org/10.1038/s41592-025-02995-7","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":32.1,"publicationDate":"2025-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145878879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pertpy: an end-to-end framework for perturbation analysis. Pertpy:微扰分析的端到端框架。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-31 DOI: 10.1038/s41592-025-02909-7
Lukas Heumos, Yuge Ji, Lilly May, Tessa D Green, Stefan Peidli, Xinyue Zhang, Xichen Wu, Johannes Ostner, Antonia Schumacher, Karin Hrovatin, Michaela Müller, Faye Chong, Gregor Sturm, Alejandro Tejada, Emma Dann, Mingze Dong, Gonçalo Pinto, Mojtaba Bahrami, Ilan Gold, Sergei Rybakov, Altana Namsaraeva, Amir Ali Moinfar, Zihe Zheng, Eljas Roellin, Isra Mekki, Chris Sander, Mohammad Lotfollahi, Herbert B Schiller, Fabian J Theis

Advances in single-cell technology have enabled the measurement of cell-resolved molecular states across a variety of cell lines and tissues under a plethora of genetic, chemical, environmental or disease perturbations. Current methods focus on differential comparison or are specific to a particular task in a multi-condition setting with purely statistical perspectives. The quickly growing number, size and complexity of such studies require a scalable analysis framework that takes existing biological context into account. Here we present pertpy, a Python-based modular framework for the analysis of large-scale single-cell perturbation experiments. Pertpy provides access to harmonized perturbation datasets and metadata databases along with numerous fast and user-friendly implementations of both established and novel methods, such as automatic metadata annotation or perturbation distances, to efficiently analyze perturbation data. As part of the scverse ecosystem, pertpy interoperates with existing single-cell analysis libraries and is designed to be easily extended.

单细胞技术的进步使得在大量遗传、化学、环境或疾病扰动下测量各种细胞系和组织的细胞分辨分子状态成为可能。目前的方法侧重于差异比较,或者是在纯统计角度的多条件设置中特定于特定任务。此类研究的数量、规模和复杂性的迅速增长,需要一个可扩展的分析框架,将现有的生物学背景考虑在内。在这里,我们提出了pertpy,一个基于python的模块化框架,用于分析大规模单细胞摄动实验。Pertpy提供了对协调扰动数据集和元数据数据库的访问,以及许多快速和用户友好的实现,既建立了新的方法,如自动元数据注释或扰动距离,以有效地分析扰动数据。作为scverse生态系统的一部分,perpy可以与现有的单细胞分析库进行互操作,并且易于扩展。
{"title":"Pertpy: an end-to-end framework for perturbation analysis.","authors":"Lukas Heumos, Yuge Ji, Lilly May, Tessa D Green, Stefan Peidli, Xinyue Zhang, Xichen Wu, Johannes Ostner, Antonia Schumacher, Karin Hrovatin, Michaela Müller, Faye Chong, Gregor Sturm, Alejandro Tejada, Emma Dann, Mingze Dong, Gonçalo Pinto, Mojtaba Bahrami, Ilan Gold, Sergei Rybakov, Altana Namsaraeva, Amir Ali Moinfar, Zihe Zheng, Eljas Roellin, Isra Mekki, Chris Sander, Mohammad Lotfollahi, Herbert B Schiller, Fabian J Theis","doi":"10.1038/s41592-025-02909-7","DOIUrl":"https://doi.org/10.1038/s41592-025-02909-7","url":null,"abstract":"<p><p>Advances in single-cell technology have enabled the measurement of cell-resolved molecular states across a variety of cell lines and tissues under a plethora of genetic, chemical, environmental or disease perturbations. Current methods focus on differential comparison or are specific to a particular task in a multi-condition setting with purely statistical perspectives. The quickly growing number, size and complexity of such studies require a scalable analysis framework that takes existing biological context into account. Here we present pertpy, a Python-based modular framework for the analysis of large-scale single-cell perturbation experiments. Pertpy provides access to harmonized perturbation datasets and metadata databases along with numerous fast and user-friendly implementations of both established and novel methods, such as automatic metadata annotation or perturbation distances, to efficiently analyze perturbation data. As part of the scverse ecosystem, pertpy interoperates with existing single-cell analysis libraries and is designed to be easily extended.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":32.1,"publicationDate":"2025-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145878839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bridging the dimensional gap from planar spatial transcriptomics to 3D cell atlases. 弥合从平面空间转录组学到三维细胞图谱的空间差距。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-31 DOI: 10.1038/s41592-025-02969-9
Senlin Lin, Zhikang Wang, Yan Cui, Qi Zou, Chuangyi Han, Rui Yan, Zhidong Yang, Wei Zhang, Rui Gao, Jiangning Song, Michael Q Zhang, Hanchuan Peng, Jintai Yu, Jianfeng Feng, Yi Zhao, Zhiyuan Yuan

Spatial transcriptomics (ST) has revolutionized our understanding of tissue architecture, yet constructing comprehensive three-dimensional (3D) cell atlases remains challenging due to technical limitations and high cost. Current approaches typically capture only sparsely sampled two-dimensional sections, leaving substantial gaps that limit our understanding of continuous organ organization. Here, we present SpatialZ, a computational framework that bridges these gaps by generating virtual slices between experimentally measured sections, enabling the construction of dense 3D cell atlases from planar ST data. SpatialZ is designed to operate at single-cell resolution and function independently of gene coverage limitations inherent to specific spatial technologies. Comprehensive validation demonstrates that SpatialZ accurately preserves cell identities, gene expression patterns and spatial relationships. Leveraging the BRAIN Initiative Cell Census Network data, we constructed a 3D hemisphere atlas comprising over 38 million cells. This dense atlas enables new capabilities, including in silico sectioning at arbitrary angles, explorations of gene expression across both 3D volumes and surfaces, 3D mapping of query tissue sections, and discovery of 3D spatial molecular architectures through new synthesized views. To demonstrate its extensibility beyond transcriptomics, we applied SpatialZ to imaging mass cytometry data from human breast cancer, successfully deciphering 3D spatial gradients within the tumor microenvironment. Our approach generates cell atlases that provide previously unattainable 3D resolution of spatial molecular landscapes.

空间转录组学(ST)已经彻底改变了我们对组织结构的理解,但由于技术限制和高成本,构建全面的三维(3D)细胞图谱仍然具有挑战性。目前的方法通常只捕获稀疏采样的二维切片,留下大量空白,限制了我们对连续器官组织的理解。在这里,我们提出了SpatialZ,这是一个计算框架,通过在实验测量的部分之间生成虚拟切片来弥合这些差距,从而能够从平面ST数据构建密集的3D细胞图谱。SpatialZ旨在以单细胞分辨率运行,并且独立于特定空间技术固有的基因覆盖限制。综合验证表明,SpatialZ准确地保留了细胞身份、基因表达模式和空间关系。利用BRAIN倡议细胞普查网络数据,我们构建了一个包含3800多万个细胞的三维半球图谱。这种密集的图谱提供了新的功能,包括任意角度的计算机切片,在3D体积和表面上探索基因表达,查询组织切片的3D映射,以及通过新的合成视图发现3D空间分子结构。为了证明其在转录组学之外的可扩展性,我们将SpatialZ应用于人类乳腺癌的成像细胞数据,成功地破译了肿瘤微环境中的3D空间梯度。我们的方法生成细胞图谱,提供以前无法实现的空间分子景观的3D分辨率。
{"title":"Bridging the dimensional gap from planar spatial transcriptomics to 3D cell atlases.","authors":"Senlin Lin, Zhikang Wang, Yan Cui, Qi Zou, Chuangyi Han, Rui Yan, Zhidong Yang, Wei Zhang, Rui Gao, Jiangning Song, Michael Q Zhang, Hanchuan Peng, Jintai Yu, Jianfeng Feng, Yi Zhao, Zhiyuan Yuan","doi":"10.1038/s41592-025-02969-9","DOIUrl":"10.1038/s41592-025-02969-9","url":null,"abstract":"<p><p>Spatial transcriptomics (ST) has revolutionized our understanding of tissue architecture, yet constructing comprehensive three-dimensional (3D) cell atlases remains challenging due to technical limitations and high cost. Current approaches typically capture only sparsely sampled two-dimensional sections, leaving substantial gaps that limit our understanding of continuous organ organization. Here, we present SpatialZ, a computational framework that bridges these gaps by generating virtual slices between experimentally measured sections, enabling the construction of dense 3D cell atlases from planar ST data. SpatialZ is designed to operate at single-cell resolution and function independently of gene coverage limitations inherent to specific spatial technologies. Comprehensive validation demonstrates that SpatialZ accurately preserves cell identities, gene expression patterns and spatial relationships. Leveraging the BRAIN Initiative Cell Census Network data, we constructed a 3D hemisphere atlas comprising over 38 million cells. This dense atlas enables new capabilities, including in silico sectioning at arbitrary angles, explorations of gene expression across both 3D volumes and surfaces, 3D mapping of query tissue sections, and discovery of 3D spatial molecular architectures through new synthesized views. To demonstrate its extensibility beyond transcriptomics, we applied SpatialZ to imaging mass cytometry data from human breast cancer, successfully deciphering 3D spatial gradients within the tumor microenvironment. Our approach generates cell atlases that provide previously unattainable 3D resolution of spatial molecular landscapes.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":32.1,"publicationDate":"2025-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145878825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI-empowered super-resolution microscopy: a revolution in nanoscale cellular imaging. 人工智能支持的超分辨率显微镜:纳米级细胞成像的革命。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-31 DOI: 10.1038/s41592-025-02871-4
Sen Li, Xiangjie Meng, Bo Zhou, Wenfeng Tian, Liangyi Chen, Yang Zhang

Super-resolution microscopy (SRM) has revolutionized nanoscale cellular imaging, providing detailed insights into cellular architecture, organelle organization, molecular interactions and subcellular dynamics. Artificial intelligence (AI) has shown its transformative potential for improving SRM to advance our understanding of complex cellular structures and dynamics. This Review begins by offering a comprehensive overview of AI techniques in computer vision, focusing on their application to SRM. Additionally, this Review provides a thorough summary of publicly available code and datasets that can support the development and evaluation of AI-empowered SRM. Notably, many AI techniques in the domain of computer vision remain underexplored in SRM. The ongoing evolution of AI promises to unlock new potential in SRM, and the integration of cutting-edge AI technologies is poised to pioneer breakthroughs in nanoscale cellular imaging.

超分辨率显微镜(SRM)彻底改变了纳米级细胞成像,为细胞结构、细胞器组织、分子相互作用和亚细胞动力学提供了详细的见解。人工智能(AI)已经显示出其改进SRM的变革潜力,以促进我们对复杂细胞结构和动力学的理解。本文首先对计算机视觉中的人工智能技术进行了全面的概述,重点介绍了它们在SRM中的应用。此外,本综述还提供了公开可用代码和数据集的全面总结,这些代码和数据集可以支持人工智能SRM的开发和评估。值得注意的是,许多计算机视觉领域的人工智能技术在SRM中仍未得到充分的探索。人工智能的不断发展有望释放SRM的新潜力,尖端人工智能技术的整合有望在纳米级细胞成像方面取得突破。
{"title":"AI-empowered super-resolution microscopy: a revolution in nanoscale cellular imaging.","authors":"Sen Li, Xiangjie Meng, Bo Zhou, Wenfeng Tian, Liangyi Chen, Yang Zhang","doi":"10.1038/s41592-025-02871-4","DOIUrl":"10.1038/s41592-025-02871-4","url":null,"abstract":"<p><p>Super-resolution microscopy (SRM) has revolutionized nanoscale cellular imaging, providing detailed insights into cellular architecture, organelle organization, molecular interactions and subcellular dynamics. Artificial intelligence (AI) has shown its transformative potential for improving SRM to advance our understanding of complex cellular structures and dynamics. This Review begins by offering a comprehensive overview of AI techniques in computer vision, focusing on their application to SRM. Additionally, this Review provides a thorough summary of publicly available code and datasets that can support the development and evaluation of AI-empowered SRM. Notably, many AI techniques in the domain of computer vision remain underexplored in SRM. The ongoing evolution of AI promises to unlock new potential in SRM, and the integration of cutting-edge AI technologies is poised to pioneer breakthroughs in nanoscale cellular imaging.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":32.1,"publicationDate":"2025-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145878847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Methods
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1