首页 > 最新文献

Nature Methods最新文献

英文 中文
Optimal transport for single-cell genomics
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-03-12 DOI: 10.1038/s41592-025-02639-w
Lin Tang
{"title":"Optimal transport for single-cell genomics","authors":"Lin Tang","doi":"10.1038/s41592-025-02639-w","DOIUrl":"10.1038/s41592-025-02639-w","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 3","pages":"452-452"},"PeriodicalIF":36.1,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strolling down rats’ memory lane
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-03-12 DOI: 10.1038/s41592-025-02641-2
Nina Vogt
{"title":"Strolling down rats’ memory lane","authors":"Nina Vogt","doi":"10.1038/s41592-025-02641-2","DOIUrl":"10.1038/s41592-025-02641-2","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 3","pages":"453-453"},"PeriodicalIF":36.1,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spotiphy enables single-cell spatial whole transcriptomics across an entire section.
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-03-12 DOI: 10.1038/s41592-025-02622-5
Jiyuan Yang, Ziqian Zheng, Yun Jiao, Kaiwen Yu, Sheetal Bhatara, Xu Yang, Sivaraman Natarajan, Jiahui Zhang, Qingfei Pan, John Easton, Koon-Kiu Yan, Junmin Peng, Kaibo Liu, Jiyang Yu

Spatial transcriptomics (ST) has advanced our understanding of tissue regionalization by enabling the visualization of gene expression within whole-tissue sections, but current approaches remain plagued by the challenge of achieving single-cell resolution without sacrificing whole-genome coverage. Here we present Spotiphy (spot imager with pseudo-single-cell-resolution histology), a computational toolkit that transforms sequencing-based ST data into single-cell-resolved whole-transcriptome images. Spotiphy delivers the most precise cellular proportions in extensive benchmarking evaluations. Spotiphy-derived inferred single-cell profiles reveal astrocyte and disease-associated microglia regional specifications in Alzheimer's disease and healthy mouse brains. Spotiphy identifies multiple spatial domains and alterations in tumor-tumor microenvironment interactions in human breast ST data. Spotiphy bridges the information gap and enables visualization of cell localization and transcriptomic profiles throughout entire sections, offering highly informative outputs and an innovative spatial analysis pipeline for exploring complex biological systems.

{"title":"Spotiphy enables single-cell spatial whole transcriptomics across an entire section.","authors":"Jiyuan Yang, Ziqian Zheng, Yun Jiao, Kaiwen Yu, Sheetal Bhatara, Xu Yang, Sivaraman Natarajan, Jiahui Zhang, Qingfei Pan, John Easton, Koon-Kiu Yan, Junmin Peng, Kaibo Liu, Jiyang Yu","doi":"10.1038/s41592-025-02622-5","DOIUrl":"https://doi.org/10.1038/s41592-025-02622-5","url":null,"abstract":"<p><p>Spatial transcriptomics (ST) has advanced our understanding of tissue regionalization by enabling the visualization of gene expression within whole-tissue sections, but current approaches remain plagued by the challenge of achieving single-cell resolution without sacrificing whole-genome coverage. Here we present Spotiphy (spot imager with pseudo-single-cell-resolution histology), a computational toolkit that transforms sequencing-based ST data into single-cell-resolved whole-transcriptome images. Spotiphy delivers the most precise cellular proportions in extensive benchmarking evaluations. Spotiphy-derived inferred single-cell profiles reveal astrocyte and disease-associated microglia regional specifications in Alzheimer's disease and healthy mouse brains. Spotiphy identifies multiple spatial domains and alterations in tumor-tumor microenvironment interactions in human breast ST data. Spotiphy bridges the information gap and enables visualization of cell localization and transcriptomic profiles throughout entire sections, offering highly informative outputs and an innovative spatial analysis pipeline for exploring complex biological systems.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143616100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical space exploration with quantum computing
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-03-12 DOI: 10.1038/s41592-025-02638-x
Arunima Singh
{"title":"Chemical space exploration with quantum computing","authors":"Arunima Singh","doi":"10.1038/s41592-025-02638-x","DOIUrl":"10.1038/s41592-025-02638-x","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 3","pages":"452-452"},"PeriodicalIF":36.1,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural biology at the plasma membrane
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-03-12 DOI: 10.1038/s41592-025-02640-3
Rita Strack
{"title":"Structural biology at the plasma membrane","authors":"Rita Strack","doi":"10.1038/s41592-025-02640-3","DOIUrl":"10.1038/s41592-025-02640-3","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 3","pages":"453-453"},"PeriodicalIF":36.1,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A look back at embryo models
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-03-12 DOI: 10.1038/s41592-025-02642-1
In 2023, Nature Methods chose methods to model development as our Method of the Year. Here, we catch up on what has happened in this field since.
{"title":"A look back at embryo models","authors":"","doi":"10.1038/s41592-025-02642-1","DOIUrl":"10.1038/s41592-025-02642-1","url":null,"abstract":"In 2023, Nature Methods chose methods to model development as our Method of the Year. Here, we catch up on what has happened in this field since.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 3","pages":"449-450"},"PeriodicalIF":36.1,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41592-025-02642-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DREDge: robust motion correction for high-density extracellular recordings across species.
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-03-06 DOI: 10.1038/s41592-025-02614-5
Charlie Windolf, Han Yu, Angelique C Paulk, Domokos Meszéna, William Muñoz, Julien Boussard, Richard Hardstone, Irene Caprara, Mohsen Jamali, Yoav Kfir, Duo Xu, Jason E Chung, Kristin K Sellers, Zhiwen Ye, Jordan Shaker, Anna Lebedeva, R T Raghavan, Eric Trautmann, Max Melin, João Couto, Samuel Garcia, Brian Coughlin, Margot Elmaleh, David Christianson, Jeremy D W Greenlee, Csaba Horváth, Richárd Fiáth, István Ulbert, Michael A Long, J Anthony Movshon, Michael N Shadlen, Mark M Churchland, Anne K Churchland, Nicholas A Steinmetz, Edward F Chang, Jeffrey S Schweitzer, Ziv M Williams, Sydney S Cash, Liam Paninski, Erdem Varol

High-density microelectrode arrays have opened new possibilities for systems neuroscience, but brain motion relative to the array poses challenges for downstream analyses. We introduce DREDge (Decentralized Registration of Electrophysiology Data), a robust algorithm for the registration of noisy, nonstationary extracellular electrophysiology recordings. In addition to estimating motion from action potential data, DREDge enables automated, high-temporal-resolution motion tracking in local field potential data. In human intraoperative recordings, DREDge's local field potential-based tracking reliably recovered evoked potentials and single-unit spike sorting. In recordings of deep probe insertions in nonhuman primates, DREDge tracked motion across centimeters of tissue and several brain regions while mapping single-unit electrophysiological features. DREDge reliably improved motion correction in acute mouse recordings, especially in those made with a recent ultrahigh-density probe. Applying DREDge to recordings from chronic implantations in mice yielded stable motion tracking despite changes in neural activity between experimental sessions. These advances enable automated, scalable registration of electrophysiological data across species, probes and drift types, providing a foundation for downstream analyses of these rich datasets.

{"title":"DREDge: robust motion correction for high-density extracellular recordings across species.","authors":"Charlie Windolf, Han Yu, Angelique C Paulk, Domokos Meszéna, William Muñoz, Julien Boussard, Richard Hardstone, Irene Caprara, Mohsen Jamali, Yoav Kfir, Duo Xu, Jason E Chung, Kristin K Sellers, Zhiwen Ye, Jordan Shaker, Anna Lebedeva, R T Raghavan, Eric Trautmann, Max Melin, João Couto, Samuel Garcia, Brian Coughlin, Margot Elmaleh, David Christianson, Jeremy D W Greenlee, Csaba Horváth, Richárd Fiáth, István Ulbert, Michael A Long, J Anthony Movshon, Michael N Shadlen, Mark M Churchland, Anne K Churchland, Nicholas A Steinmetz, Edward F Chang, Jeffrey S Schweitzer, Ziv M Williams, Sydney S Cash, Liam Paninski, Erdem Varol","doi":"10.1038/s41592-025-02614-5","DOIUrl":"10.1038/s41592-025-02614-5","url":null,"abstract":"<p><p>High-density microelectrode arrays have opened new possibilities for systems neuroscience, but brain motion relative to the array poses challenges for downstream analyses. We introduce DREDge (Decentralized Registration of Electrophysiology Data), a robust algorithm for the registration of noisy, nonstationary extracellular electrophysiology recordings. In addition to estimating motion from action potential data, DREDge enables automated, high-temporal-resolution motion tracking in local field potential data. In human intraoperative recordings, DREDge's local field potential-based tracking reliably recovered evoked potentials and single-unit spike sorting. In recordings of deep probe insertions in nonhuman primates, DREDge tracked motion across centimeters of tissue and several brain regions while mapping single-unit electrophysiological features. DREDge reliably improved motion correction in acute mouse recordings, especially in those made with a recent ultrahigh-density probe. Applying DREDge to recordings from chronic implantations in mice yielded stable motion tracking despite changes in neural activity between experimental sessions. These advances enable automated, scalable registration of electrophysiological data across species, probes and drift types, providing a foundation for downstream analyses of these rich datasets.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143573331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Resolving tissue complexity by multimodal spatial omics modeling with MISO.
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-03-06 DOI: 10.1038/s41592-025-02645-y
Kyle Coleman, Amelia Schroeder, Melanie Loth, Daiwei Zhang, Jeong Hwan Park, Ji-Youn Sung, Niklas Blank, Alexis J Cowan, Xuyu Qian, Jianfeng Chen, Jiahui Jiang, Hanying Yan, Laith Z Samarah, Jean R Clemenceau, Inyeop Jang, Minji Kim, Isabel Barnfather, Joshua D Rabinowitz, Yanxiang Deng, Edward B Lee, Alexander Lazar, Jianjun Gao, Emma E Furth, Tae Hyun Hwang, Linghua Wang, Christoph A Thaiss, Jian Hu, Mingyao Li
{"title":"Author Correction: Resolving tissue complexity by multimodal spatial omics modeling with MISO.","authors":"Kyle Coleman, Amelia Schroeder, Melanie Loth, Daiwei Zhang, Jeong Hwan Park, Ji-Youn Sung, Niklas Blank, Alexis J Cowan, Xuyu Qian, Jianfeng Chen, Jiahui Jiang, Hanying Yan, Laith Z Samarah, Jean R Clemenceau, Inyeop Jang, Minji Kim, Isabel Barnfather, Joshua D Rabinowitz, Yanxiang Deng, Edward B Lee, Alexander Lazar, Jianjun Gao, Emma E Furth, Tae Hyun Hwang, Linghua Wang, Christoph A Thaiss, Jian Hu, Mingyao Li","doi":"10.1038/s41592-025-02645-y","DOIUrl":"10.1038/s41592-025-02645-y","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143573327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell2fate infers RNA velocity modules to improve cell fate prediction.
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-03-03 DOI: 10.1038/s41592-025-02608-3
Alexander Aivazidis, Fani Memi, Vitalii Kleshchevnikov, Sezgin Er, Brian Clarke, Oliver Stegle, Omer Ali Bayraktar

RNA velocity exploits the temporal information contained in spliced and unspliced RNA counts to infer transcriptional dynamics. Existing velocity models often rely on coarse biophysical simplifications or numerical approximations to solve the underlying ordinary differential equations (ODEs), which can compromise accuracy in challenging settings, such as complex or weak transcription rate changes across cellular trajectories. Here we present cell2fate, a formulation of RNA velocity based on a linearization of the velocity ODE, which allows solving a biophysically more accurate model in a fully Bayesian fashion. As a result, cell2fate decomposes the RNA velocity solutions into modules, providing a biophysical connection between RNA velocity and statistical dimensionality reduction. We comprehensively benchmark cell2fate in real-world settings, demonstrating enhanced interpretability and power to reconstruct complex dynamics and weak dynamical signals in rare and mature cell types. Finally, we apply cell2fate to the developing human brain, where we spatially map RNA velocity modules onto the tissue architecture, connecting the spatial organization of tissues with temporal dynamics of transcription.

{"title":"Cell2fate infers RNA velocity modules to improve cell fate prediction.","authors":"Alexander Aivazidis, Fani Memi, Vitalii Kleshchevnikov, Sezgin Er, Brian Clarke, Oliver Stegle, Omer Ali Bayraktar","doi":"10.1038/s41592-025-02608-3","DOIUrl":"https://doi.org/10.1038/s41592-025-02608-3","url":null,"abstract":"<p><p>RNA velocity exploits the temporal information contained in spliced and unspliced RNA counts to infer transcriptional dynamics. Existing velocity models often rely on coarse biophysical simplifications or numerical approximations to solve the underlying ordinary differential equations (ODEs), which can compromise accuracy in challenging settings, such as complex or weak transcription rate changes across cellular trajectories. Here we present cell2fate, a formulation of RNA velocity based on a linearization of the velocity ODE, which allows solving a biophysically more accurate model in a fully Bayesian fashion. As a result, cell2fate decomposes the RNA velocity solutions into modules, providing a biophysical connection between RNA velocity and statistical dimensionality reduction. We comprehensively benchmark cell2fate in real-world settings, demonstrating enhanced interpretability and power to reconstruct complex dynamics and weak dynamical signals in rare and mature cell types. Finally, we apply cell2fate to the developing human brain, where we spatially map RNA velocity modules onto the tissue architecture, connecting the spatial organization of tissues with temporal dynamics of transcription.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143541276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Entering the era of deep single-cell proteomics 进入深度单细胞蛋白质组学时代。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-03-03 DOI: 10.1038/s41592-025-02620-7
Ludwig R. Sinn, Vadim Demichev
Advances in single-cell proteomics allow quantification of half of the expressed proteome in an individual cell.
{"title":"Entering the era of deep single-cell proteomics","authors":"Ludwig R. Sinn,&nbsp;Vadim Demichev","doi":"10.1038/s41592-025-02620-7","DOIUrl":"10.1038/s41592-025-02620-7","url":null,"abstract":"Advances in single-cell proteomics allow quantification of half of the expressed proteome in an individual cell.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 3","pages":"459-460"},"PeriodicalIF":36.1,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143541537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Methods
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1