首页 > 最新文献

Nature Methods最新文献

英文 中文
A genome-wide atlas of human cell morphology.
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-01-27 DOI: 10.1038/s41592-024-02537-7
Meraj Ramezani, Erin Weisbart, Julia Bauman, Avtar Singh, John Yong, Maria Lozada, Gregory P Way, Sanam L Kavari, Celeste Diaz, Eddy Leardini, Gunjan Jetley, Jenlu Pagnotta, Marzieh Haghighi, Thiago M Batista, Joaquín Pérez-Schindler, Melina Claussnitzer, Shantanu Singh, Beth A Cimini, Paul C Blainey, Anne E Carpenter, Calvin H Jan, James T Neal

A key challenge of the modern genomics era is developing empirical data-driven representations of gene function. Here we present the first unbiased morphology-based genome-wide perturbation atlas in human cells, containing three genome-wide genotype-phenotype maps comprising CRISPR-Cas9-based knockouts of >20,000 genes in >30 million cells. Our optical pooled cell profiling platform (PERISCOPE) combines a destainable high-dimensional phenotyping panel (based on Cell Painting) with optical sequencing of molecular barcodes and a scalable open-source analysis pipeline to facilitate massively parallel screening of pooled perturbation libraries. This perturbation atlas comprises high-dimensional phenotypic profiles of individual cells with sufficient resolution to cluster thousands of human genes, reconstruct known pathways and protein-protein interaction networks, interrogate subcellular processes and identify culture media-specific responses. Using this atlas, we identify the poorly characterized disease-associated TMEM251/LYSET as a Golgi-resident transmembrane protein essential for mannose-6-phosphate-dependent trafficking of lysosomal enzymes. In sum, this perturbation atlas and screening platform represents a rich and accessible resource for connecting genes to cellular functions at scale.

{"title":"A genome-wide atlas of human cell morphology.","authors":"Meraj Ramezani, Erin Weisbart, Julia Bauman, Avtar Singh, John Yong, Maria Lozada, Gregory P Way, Sanam L Kavari, Celeste Diaz, Eddy Leardini, Gunjan Jetley, Jenlu Pagnotta, Marzieh Haghighi, Thiago M Batista, Joaquín Pérez-Schindler, Melina Claussnitzer, Shantanu Singh, Beth A Cimini, Paul C Blainey, Anne E Carpenter, Calvin H Jan, James T Neal","doi":"10.1038/s41592-024-02537-7","DOIUrl":"10.1038/s41592-024-02537-7","url":null,"abstract":"<p><p>A key challenge of the modern genomics era is developing empirical data-driven representations of gene function. Here we present the first unbiased morphology-based genome-wide perturbation atlas in human cells, containing three genome-wide genotype-phenotype maps comprising CRISPR-Cas9-based knockouts of >20,000 genes in >30 million cells. Our optical pooled cell profiling platform (PERISCOPE) combines a destainable high-dimensional phenotyping panel (based on Cell Painting) with optical sequencing of molecular barcodes and a scalable open-source analysis pipeline to facilitate massively parallel screening of pooled perturbation libraries. This perturbation atlas comprises high-dimensional phenotypic profiles of individual cells with sufficient resolution to cluster thousands of human genes, reconstruct known pathways and protein-protein interaction networks, interrogate subcellular processes and identify culture media-specific responses. Using this atlas, we identify the poorly characterized disease-associated TMEM251/LYSET as a Golgi-resident transmembrane protein essential for mannose-6-phosphate-dependent trafficking of lysosomal enzymes. In sum, this perturbation atlas and screening platform represents a rich and accessible resource for connecting genes to cellular functions at scale.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143052499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplexed spatial mapping of chromatin features, transcriptome and proteins in tissues.
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-01-27 DOI: 10.1038/s41592-024-02576-0
Pengfei Guo, Liran Mao, Yufan Chen, Chin Nien Lee, Angelysia Cardilla, Mingyao Li, Marek Bartosovic, Yanxiang Deng

The phenotypic and functional states of cells are modulated by a complex interactive molecular hierarchy of multiple omics layers, involving the genome, epigenome, transcriptome, proteome and metabolome. Spatial omics approaches have enabled the study of these layers in tissue context but are often limited to one or two modalities, offering an incomplete view of cellular identity. Here we present spatial-Mux-seq, a multimodal spatial technology that allows simultaneous profiling of five different modalities: two histone modifications, chromatin accessibility, whole transcriptome and a panel of proteins at tissue scale and cellular level in a spatially resolved manner. We applied this technology to mouse embryos and mouse brains, generating detailed multimodal tissue maps that identified more cell types and states compared to unimodal data. This analysis uncovered spatiotemporal relationships among histone modifications, chromatin accessibility, gene expression and protein levels during neuron differentiation, and revealed a radial glia niche with spatially dynamic epigenetic signals. Collectively, the spatial multi-omics approach heralds a new era for characterizing tissue and cellular heterogeneity that single-modality studies alone could not reveal.

{"title":"Multiplexed spatial mapping of chromatin features, transcriptome and proteins in tissues.","authors":"Pengfei Guo, Liran Mao, Yufan Chen, Chin Nien Lee, Angelysia Cardilla, Mingyao Li, Marek Bartosovic, Yanxiang Deng","doi":"10.1038/s41592-024-02576-0","DOIUrl":"10.1038/s41592-024-02576-0","url":null,"abstract":"<p><p>The phenotypic and functional states of cells are modulated by a complex interactive molecular hierarchy of multiple omics layers, involving the genome, epigenome, transcriptome, proteome and metabolome. Spatial omics approaches have enabled the study of these layers in tissue context but are often limited to one or two modalities, offering an incomplete view of cellular identity. Here we present spatial-Mux-seq, a multimodal spatial technology that allows simultaneous profiling of five different modalities: two histone modifications, chromatin accessibility, whole transcriptome and a panel of proteins at tissue scale and cellular level in a spatially resolved manner. We applied this technology to mouse embryos and mouse brains, generating detailed multimodal tissue maps that identified more cell types and states compared to unimodal data. This analysis uncovered spatiotemporal relationships among histone modifications, chromatin accessibility, gene expression and protein levels during neuron differentiation, and revealed a radial glia niche with spatially dynamic epigenetic signals. Collectively, the spatial multi-omics approach heralds a new era for characterizing tissue and cellular heterogeneity that single-modality studies alone could not reveal.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143052616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The next generation of in situ multi-omics.
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-01-27 DOI: 10.1038/s41592-024-02571-5
Maren Salla, Klara Penkert, Leif S Ludwig
{"title":"The next generation of in situ multi-omics.","authors":"Maren Salla, Klara Penkert, Leif S Ludwig","doi":"10.1038/s41592-024-02571-5","DOIUrl":"https://doi.org/10.1038/s41592-024-02571-5","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143052607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: A comprehensive human embryo reference tool using single-cell RNA-sequencing data.
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-01-24 DOI: 10.1038/s41592-025-02601-w
Cheng Zhao, Alvaro Plaza Reyes, John Paul Schell, Jere Weltner, Nicolás M Ortega, Yi Zheng, Åsa K Björklund, Laura Baqué-Vidal, Joonas Sokka, Ras Trokovic, Brian Cox, Janet Rossant, Jianping Fu, Sophie Petropoulos, Fredrik Lanner
{"title":"Author Correction: A comprehensive human embryo reference tool using single-cell RNA-sequencing data.","authors":"Cheng Zhao, Alvaro Plaza Reyes, John Paul Schell, Jere Weltner, Nicolás M Ortega, Yi Zheng, Åsa K Björklund, Laura Baqué-Vidal, Joonas Sokka, Ras Trokovic, Brian Cox, Janet Rossant, Jianping Fu, Sophie Petropoulos, Fredrik Lanner","doi":"10.1038/s41592-025-02601-w","DOIUrl":"https://doi.org/10.1038/s41592-025-02601-w","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143039460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Resolving tissue complexity by multimodal spatial omics modeling with MISO.
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-01-24 DOI: 10.1038/s41592-025-02600-x
Kyle Coleman, Amelia Schroeder, Melanie Loth, Daiwei Zhang, Jeong Hwan Park, Ji-Youn Sung, Niklas Blank, Alexis J Cowan, Xuyu Qian, Jianfeng Chen, Jiahui Jiang, Hanying Yan, Laith Z Samarah, Jean R Clemenceau, Inyeop Jang, Minji Kim, Isabel Barnfather, Joshua D Rabinowitz, Yanxiang Deng, Edward B Lee, Alexander Lazar, Jianjun Gao, Emma E Furth, Tae Hyun Hwang, Linghua Wang, Christoph A Thaiss, Jian Hu, Mingyao Li
{"title":"Author Correction: Resolving tissue complexity by multimodal spatial omics modeling with MISO.","authors":"Kyle Coleman, Amelia Schroeder, Melanie Loth, Daiwei Zhang, Jeong Hwan Park, Ji-Youn Sung, Niklas Blank, Alexis J Cowan, Xuyu Qian, Jianfeng Chen, Jiahui Jiang, Hanying Yan, Laith Z Samarah, Jean R Clemenceau, Inyeop Jang, Minji Kim, Isabel Barnfather, Joshua D Rabinowitz, Yanxiang Deng, Edward B Lee, Alexander Lazar, Jianjun Gao, Emma E Furth, Tae Hyun Hwang, Linghua Wang, Christoph A Thaiss, Jian Hu, Mingyao Li","doi":"10.1038/s41592-025-02600-x","DOIUrl":"https://doi.org/10.1038/s41592-025-02600-x","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143039462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precision control of cellular functions with a temperature-sensitive protein.
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-01-23 DOI: 10.1038/s41592-024-02573-3
{"title":"Precision control of cellular functions with a temperature-sensitive protein.","authors":"","doi":"10.1038/s41592-024-02573-3","DOIUrl":"10.1038/s41592-024-02573-3","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143029222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping the topography of spatial gene expression with interpretable deep learning
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-01-23 DOI: 10.1038/s41592-024-02503-3
Uthsav Chitra, Brian J. Arnold, Hirak Sarkar, Kohei Sanno, Cong Ma, Sereno Lopez-Darwin, Benjamin J. Raphael
Spatially resolved transcriptomics technologies provide high-throughput measurements of gene expression in a tissue slice, but the sparsity of these data complicates analysis of spatial gene expression patterns. We address this issue by deriving a topographic map of a tissue slice—analogous to a map of elevation in a landscape—using a quantity called the isodepth. Contours of constant isodepths enclose domains with distinct cell type composition, while gradients of the isodepth indicate spatial directions of maximum change in expression. We develop GASTON (gradient analysis of spatial transcriptomics organization with neural networks), an unsupervised and interpretable deep learning algorithm that simultaneously learns the isodepth, spatial gradients and piecewise linear expression functions that model both continuous gradients and discontinuous variation in gene expression. We show that GASTON accurately identifies spatial domains and marker genes across several tissues, gradients of neuronal differentiation and firing in the brain, and gradients of metabolism and immune activity in the tumor microenvironment. Gene expression topography analysis by GASTON portrays domain organization and spatial gradients of gene expression and cell type composition using spatially resolved transcriptomics data.
{"title":"Mapping the topography of spatial gene expression with interpretable deep learning","authors":"Uthsav Chitra,&nbsp;Brian J. Arnold,&nbsp;Hirak Sarkar,&nbsp;Kohei Sanno,&nbsp;Cong Ma,&nbsp;Sereno Lopez-Darwin,&nbsp;Benjamin J. Raphael","doi":"10.1038/s41592-024-02503-3","DOIUrl":"10.1038/s41592-024-02503-3","url":null,"abstract":"Spatially resolved transcriptomics technologies provide high-throughput measurements of gene expression in a tissue slice, but the sparsity of these data complicates analysis of spatial gene expression patterns. We address this issue by deriving a topographic map of a tissue slice—analogous to a map of elevation in a landscape—using a quantity called the isodepth. Contours of constant isodepths enclose domains with distinct cell type composition, while gradients of the isodepth indicate spatial directions of maximum change in expression. We develop GASTON (gradient analysis of spatial transcriptomics organization with neural networks), an unsupervised and interpretable deep learning algorithm that simultaneously learns the isodepth, spatial gradients and piecewise linear expression functions that model both continuous gradients and discontinuous variation in gene expression. We show that GASTON accurately identifies spatial domains and marker genes across several tissues, gradients of neuronal differentiation and firing in the brain, and gradients of metabolism and immune activity in the tumor microenvironment. Gene expression topography analysis by GASTON portrays domain organization and spatial gradients of gene expression and cell type composition using spatially resolved transcriptomics data.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 2","pages":"298-309"},"PeriodicalIF":36.1,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143029207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A temperature-inducible protein module for control of mammalian cell fate.
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-01-23 DOI: 10.1038/s41592-024-02572-4
William Benman, Zikang Huang, Pavan Iyengar, Delaney Wilde, Thomas R Mumford, Lukasz J Bugaj

Inducible protein switches are currently limited for use in tissues and organisms because common inducers cannot be controlled with precision in space and time in optically dense settings. Here, we introduce a protein that can be reversibly toggled with a small change in temperature, a stimulus that is both penetrant and dynamic. This protein, called Melt (Membrane localization using temperature) oligomerizes and translocates to the plasma membrane when temperature is lowered. We generated a library of Melt variants with switching temperatures ranging from 30 °C to 40 °C, including two that operate at and above 37 °C. Melt was a highly modular actuator of cell function, permitting thermal control over diverse processes including signaling, proteolysis, nuclear shuttling, cytoskeletal rearrangements and cell death. Finally, Melt permitted thermal control of cell death in a mouse model of human cancer. Melt represents a versatile thermogenetic module for straightforward, non-invasive and spatiotemporally defined control of mammalian cells with broad potential for biotechnology and biomedicine.

{"title":"A temperature-inducible protein module for control of mammalian cell fate.","authors":"William Benman, Zikang Huang, Pavan Iyengar, Delaney Wilde, Thomas R Mumford, Lukasz J Bugaj","doi":"10.1038/s41592-024-02572-4","DOIUrl":"10.1038/s41592-024-02572-4","url":null,"abstract":"<p><p>Inducible protein switches are currently limited for use in tissues and organisms because common inducers cannot be controlled with precision in space and time in optically dense settings. Here, we introduce a protein that can be reversibly toggled with a small change in temperature, a stimulus that is both penetrant and dynamic. This protein, called Melt (Membrane localization using temperature) oligomerizes and translocates to the plasma membrane when temperature is lowered. We generated a library of Melt variants with switching temperatures ranging from 30 °C to 40 °C, including two that operate at and above 37 °C. Melt was a highly modular actuator of cell function, permitting thermal control over diverse processes including signaling, proteolysis, nuclear shuttling, cytoskeletal rearrangements and cell death. Finally, Melt permitted thermal control of cell death in a mouse model of human cancer. Melt represents a versatile thermogenetic module for straightforward, non-invasive and spatiotemporally defined control of mammalian cells with broad potential for biotechnology and biomedicine.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143029206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Arkitekt: streaming analysis and real-time workflows for microscopy. 作者更正:Arkitekt:流式分析和实时工作流程的显微镜。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-01-21 DOI: 10.1038/s41592-025-02597-3
Johannes Roos, Stéphane Bancelin, Tom Delaire, Alexander Wilhelmi, Florian Levet, Maren Engelhardt, Virgile Viasnoff, Rémi Galland, U Valentin Nägerl, Jean-Baptiste Sibarita
{"title":"Author Correction: Arkitekt: streaming analysis and real-time workflows for microscopy.","authors":"Johannes Roos, Stéphane Bancelin, Tom Delaire, Alexander Wilhelmi, Florian Levet, Maren Engelhardt, Virgile Viasnoff, Rémi Galland, U Valentin Nägerl, Jean-Baptiste Sibarita","doi":"10.1038/s41592-025-02597-3","DOIUrl":"https://doi.org/10.1038/s41592-025-02597-3","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143007827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
UDA-seq: universal droplet microfluidics-based combinatorial indexing for massive-scale multimodal single-cell sequencing. UDA-seq:用于大规模多模态单细胞测序的通用微流控组合索引。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-01-20 DOI: 10.1038/s41592-024-02586-y
Yun Li, Zheng Huang, Lubin Xu, Yanling Fan, Jun Ping, Guochao Li, Yanjie Chen, Chengwei Yu, Qifei Wang, Turun Song, Tao Lin, Mengmeng Liu, Yangqing Xu, Na Ai, Xini Meng, Qin Qiao, Hongbin Ji, Zhen Qin, Shuo Jin, Nan Jiang, Minxian Wang, Shaokun Shu, Feng Zhang, Weiqi Zhang, Guang-Hui Liu, Limeng Chen, Lan Jiang

The use of single-cell combinatorial indexing sequencing via droplet microfluidics presents an attractive approach for balancing cost, scalability, robustness and accessibility. However, existing methods often require tailored protocols for individual modalities, limiting their automation potential and clinical applicability. To address this, we introduce UDA-seq, a universal workflow that integrates a post-indexing step to enhance throughput and systematically adapt existing droplet-based single-cell multimodal methods. UDA-seq was benchmarked across various tissue and cell types, enabling several common multimodal analyses, including single-cell co-assay of RNA and VDJ, RNA and chromatin, and RNA and CRISPR perturbation. Notably, UDA-seq facilitated the efficient generation of over 100,000 high-quality single-cell datasets from three dozen frozen clinical biopsy specimens within a single-channel droplet microfluidics experiment. Downstream analysis demonstrated the robustness of this approach in identifying rare cell subpopulations associated with clinical phenotypes and exploring the vulnerability of cancer cells.

利用液滴微流体进行单细胞组合索引测序是一种平衡成本、可扩展性、鲁棒性和可及性的有吸引力的方法。然而,现有的方法往往需要为个体模式量身定制方案,限制了它们的自动化潜力和临床适用性。为了解决这个问题,我们引入了UDA-seq,这是一个通用的工作流程,集成了索引后步骤,以提高吞吐量,并系统地适应现有的基于液滴的单细胞多模态方法。UDA-seq在各种组织和细胞类型中进行基准测试,实现几种常见的多模态分析,包括RNA和VDJ, RNA和染色质以及RNA和CRISPR扰动的单细胞联合分析。值得注意的是,在单通道液滴微流体实验中,UDA-seq促进了从36个冷冻临床活检标本中高效生成超过100,000个高质量单细胞数据集。下游分析证明了该方法在识别与临床表型相关的罕见细胞亚群和探索癌细胞易感性方面的稳健性。
{"title":"UDA-seq: universal droplet microfluidics-based combinatorial indexing for massive-scale multimodal single-cell sequencing.","authors":"Yun Li, Zheng Huang, Lubin Xu, Yanling Fan, Jun Ping, Guochao Li, Yanjie Chen, Chengwei Yu, Qifei Wang, Turun Song, Tao Lin, Mengmeng Liu, Yangqing Xu, Na Ai, Xini Meng, Qin Qiao, Hongbin Ji, Zhen Qin, Shuo Jin, Nan Jiang, Minxian Wang, Shaokun Shu, Feng Zhang, Weiqi Zhang, Guang-Hui Liu, Limeng Chen, Lan Jiang","doi":"10.1038/s41592-024-02586-y","DOIUrl":"https://doi.org/10.1038/s41592-024-02586-y","url":null,"abstract":"<p><p>The use of single-cell combinatorial indexing sequencing via droplet microfluidics presents an attractive approach for balancing cost, scalability, robustness and accessibility. However, existing methods often require tailored protocols for individual modalities, limiting their automation potential and clinical applicability. To address this, we introduce UDA-seq, a universal workflow that integrates a post-indexing step to enhance throughput and systematically adapt existing droplet-based single-cell multimodal methods. UDA-seq was benchmarked across various tissue and cell types, enabling several common multimodal analyses, including single-cell co-assay of RNA and VDJ, RNA and chromatin, and RNA and CRISPR perturbation. Notably, UDA-seq facilitated the efficient generation of over 100,000 high-quality single-cell datasets from three dozen frozen clinical biopsy specimens within a single-channel droplet microfluidics experiment. Downstream analysis demonstrated the robustness of this approach in identifying rare cell subpopulations associated with clinical phenotypes and exploring the vulnerability of cancer cells.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Methods
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1