首页 > 最新文献

Nature Methods最新文献

英文 中文
Studying tension with DNA origami 用 DNA 折纸研究张力
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-10 DOI: 10.1038/s41592-024-02419-y
Nina Vogt
DNA origami tension sensors can provide insights into mechanotransduction in a physiological environment.
DNA 折纸张力传感器可以让人们深入了解生理环境中的机械传导。
{"title":"Studying tension with DNA origami","authors":"Nina Vogt","doi":"10.1038/s41592-024-02419-y","DOIUrl":"10.1038/s41592-024-02419-y","url":null,"abstract":"DNA origami tension sensors can provide insights into mechanotransduction in a physiological environment.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":null,"pages":null},"PeriodicalIF":36.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wobble base improves precision in RNA editing 摇摆碱基提高了 RNA 编辑的精确度
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-10 DOI: 10.1038/s41592-024-02420-5
Lei Tang
{"title":"Wobble base improves precision in RNA editing","authors":"Lei Tang","doi":"10.1038/s41592-024-02420-5","DOIUrl":"10.1038/s41592-024-02420-5","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":null,"pages":null},"PeriodicalIF":36.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioimaging for all 全民生物成像
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-10 DOI: 10.1038/s41592-024-02397-1
Caroline Seydel
The global imaging community is pursuing innovative approaches to achieve more equitable access to instruments and expertise.
全球成像界正在寻求创新方法,以实现更公平地获取仪器和专业知识。
{"title":"Bioimaging for all","authors":"Caroline Seydel","doi":"10.1038/s41592-024-02397-1","DOIUrl":"10.1038/s41592-024-02397-1","url":null,"abstract":"The global imaging community is pursuing innovative approaches to achieve more equitable access to instruments and expertise.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":null,"pages":null},"PeriodicalIF":36.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41592-024-02397-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MiLoPYP: self-supervised molecular pattern mining and particle localization in situ MiLoPYP:自监督分子模式挖掘和粒子原位定位
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-09 DOI: 10.1038/s41592-024-02403-6
Qinwen Huang, Ye Zhou, Alberto Bartesaghi
Cryo-electron tomography allows the routine visualization of cellular landscapes in three dimensions at nanometer-range resolutions. When combined with single-particle tomography, it is possible to obtain near-atomic resolution structures of frequently occurring macromolecules within their native environment. Two outstanding challenges associated with cryo-electron tomography/single-particle tomography are the automatic identification and localization of proteins, tasks that are hindered by the molecular crowding inside cells, imaging distortions characteristic of cryo-electron tomography tomograms and the sheer size of tomographic datasets. Current methods suffer from low accuracy, demand extensive and time-consuming manual labeling or are limited to the detection of specific types of proteins. Here, we present MiLoPYP, a two-step dataset-specific contrastive learning-based framework that enables fast molecular pattern mining followed by accurate protein localization. MiLoPYP’s ability to effectively detect and localize a wide range of targets including globular and tubular complexes as well as large membrane proteins, will contribute to streamline and broaden the applicability of high-resolution workflows for in situ structure determination. MiLoPYP is a two-step, dataset-specific contrastive learning-based method for fast and accurate detection and localization of a diverse range of target structures in cryo-electron tomography data, enabling improved in situ structural biology.
冷冻电层析成像技术能以纳米级分辨率对细胞的三维结构进行常规可视化。与单粒子层析成像技术相结合,可以获得在原生环境中经常出现的大分子的近原子分辨率结构。低温电子层析成像/单粒子层析成像技术面临的两大挑战是蛋白质的自动识别和定位,而细胞内的分子拥挤、低温电子层析成像层析图特有的成像失真以及层析成像数据集的庞大规模阻碍了这项任务的完成。目前的方法准确率低,需要大量耗时的人工标记,或仅限于检测特定类型的蛋白质。在这里,我们提出了 MiLoPYP,这是一种基于对比学习的两步式数据集特定框架,可实现快速的分子模式挖掘和精确的蛋白质定位。MiLoPYP 能够有效地检测和定位包括球状和管状复合物以及大型膜蛋白在内的多种目标,这将有助于简化和拓宽原位结构测定的高分辨率工作流程。
{"title":"MiLoPYP: self-supervised molecular pattern mining and particle localization in situ","authors":"Qinwen Huang, Ye Zhou, Alberto Bartesaghi","doi":"10.1038/s41592-024-02403-6","DOIUrl":"10.1038/s41592-024-02403-6","url":null,"abstract":"Cryo-electron tomography allows the routine visualization of cellular landscapes in three dimensions at nanometer-range resolutions. When combined with single-particle tomography, it is possible to obtain near-atomic resolution structures of frequently occurring macromolecules within their native environment. Two outstanding challenges associated with cryo-electron tomography/single-particle tomography are the automatic identification and localization of proteins, tasks that are hindered by the molecular crowding inside cells, imaging distortions characteristic of cryo-electron tomography tomograms and the sheer size of tomographic datasets. Current methods suffer from low accuracy, demand extensive and time-consuming manual labeling or are limited to the detection of specific types of proteins. Here, we present MiLoPYP, a two-step dataset-specific contrastive learning-based framework that enables fast molecular pattern mining followed by accurate protein localization. MiLoPYP’s ability to effectively detect and localize a wide range of targets including globular and tubular complexes as well as large membrane proteins, will contribute to streamline and broaden the applicability of high-resolution workflows for in situ structure determination. MiLoPYP is a two-step, dataset-specific contrastive learning-based method for fast and accurate detection and localization of a diverse range of target structures in cryo-electron tomography data, enabling improved in situ structural biology.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":null,"pages":null},"PeriodicalIF":36.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41592-024-02403-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous multicolor fluorescence imaging using PSF splitting 利用 PSF 分光技术同时进行多色荧光成像。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-06 DOI: 10.1038/s41592-024-02383-7
Robin Van den Eynde, Fabian Hertel, Sergey Abakumov, Bartosz Krajnik, Siewert Hugelier, Alexander Auer, Joschka Hellmeier, Thomas Schlichthaerle, Rachel M. Grattan, Diane S. Lidke, Ralf Jungmann, Marcel Leutenegger, Wim Vandenberg, Peter Dedecker
We present a way to encode more information in fluorescence imaging by splitting the original point spread function (PSF), which offers broadband operation and compatibility with other PSF engineering modalities and existing analysis tools. We demonstrate the approach using the ‘Circulator’, an add-on that encodes the fluorophore emission band into the PSF, enabling simultaneous multicolor super-resolution and single-molecule microscopy using essentially the full field of view. Point spread function (PSF) splitting with the ‘Circulator’, which encodes the fluorophore emission band into the PSF, improves the information content of fluorescence microscopy and enables improved super-resolution imaging and single-particle tracking.
我们提出了一种通过分割原始点扩散函数(PSF)在荧光成像中编码更多信息的方法,这种方法可提供宽带操作,并与其他 PSF 工程模式和现有分析工具兼容。我们使用 "Circulator "演示了这种方法,它是一种将荧光团发射带编码到 PSF 中的附加装置,可同时使用全视场进行多色超分辨率和单分子显微镜观察。
{"title":"Simultaneous multicolor fluorescence imaging using PSF splitting","authors":"Robin Van den Eynde, Fabian Hertel, Sergey Abakumov, Bartosz Krajnik, Siewert Hugelier, Alexander Auer, Joschka Hellmeier, Thomas Schlichthaerle, Rachel M. Grattan, Diane S. Lidke, Ralf Jungmann, Marcel Leutenegger, Wim Vandenberg, Peter Dedecker","doi":"10.1038/s41592-024-02383-7","DOIUrl":"10.1038/s41592-024-02383-7","url":null,"abstract":"We present a way to encode more information in fluorescence imaging by splitting the original point spread function (PSF), which offers broadband operation and compatibility with other PSF engineering modalities and existing analysis tools. We demonstrate the approach using the ‘Circulator’, an add-on that encodes the fluorophore emission band into the PSF, enabling simultaneous multicolor super-resolution and single-molecule microscopy using essentially the full field of view. Point spread function (PSF) splitting with the ‘Circulator’, which encodes the fluorophore emission band into the PSF, improves the information content of fluorescence microscopy and enables improved super-resolution imaging and single-particle tracking.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":null,"pages":null},"PeriodicalIF":36.1,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Collaborative augmented reconstruction of 3D neuron morphology in mouse and human brains 小鼠和人类大脑中三维神经元形态的协作增强重建。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-04 DOI: 10.1038/s41592-024-02401-8
Lingli Zhang, Lei Huang, Zexin Yuan, Yuning Hang, Ying Zeng, Kaixiang Li, Lijun Wang, Haoyu Zeng, Xin Chen, Hairuo Zhang, Jiaqi Xi, Danni Chen, Ziqin Gao, Longxin Le, Jie Chen, Wen Ye, Lijuan Liu, Yimin Wang, Hanchuan Peng
Digital reconstruction of the intricate 3D morphology of individual neurons from microscopic images is a crucial challenge in both individual laboratories and large-scale projects focusing on cell types and brain anatomy. This task often fails in both conventional manual reconstruction and state-of-the-art artificial intelligence (AI)-based automatic reconstruction algorithms. It is also challenging to organize multiple neuroanatomists to generate and cross-validate biologically relevant and mutually agreed upon reconstructions in large-scale data production. Based on collaborative group intelligence augmented by AI, we developed a collaborative augmented reconstruction (CAR) platform for neuron reconstruction at scale. This platform allows for immersive interaction and efficient collaborative editing of neuron anatomy using a variety of devices, such as desktop workstations, virtual reality headsets and mobile phones, enabling users to contribute anytime and anywhere and to take advantage of several AI-based automation tools. We tested CAR’s applicability for challenging mouse and human neurons toward scaled and faithful data production. Collaborative augmented reconstruction (CAR) is a platform for large-scale reconstruction of neurons and other cells from multi-dimensional imaging datasets. It can be accessed from a variety of devices simultaneously for efficient and accurate reconstruction.
从显微图像中对单个神经元复杂的三维形态进行数字重建,是个人实验室和以细胞类型和大脑解剖为重点的大型项目所面临的重要挑战。无论是传统的手动重建还是基于人工智能(AI)的最新自动重建算法,这项任务都经常失败。在大规模数据生产过程中,组织多名神经解剖学家生成并交叉验证与生物相关且相互认可的重建结果也是一项挑战。基于人工智能增强的协作群体智能,我们开发了一个用于大规模神经元重建的协作增强重建(CAR)平台。该平台允许使用台式工作站、虚拟现实头盔和手机等多种设备对神经元解剖结构进行沉浸式交互和高效协作编辑,使用户能够随时随地作出贡献,并利用多种基于人工智能的自动化工具。我们测试了 CAR 在挑战小鼠和人类神经元方面的适用性,以实现规模化和忠实的数据生产。
{"title":"Collaborative augmented reconstruction of 3D neuron morphology in mouse and human brains","authors":"Lingli Zhang, Lei Huang, Zexin Yuan, Yuning Hang, Ying Zeng, Kaixiang Li, Lijun Wang, Haoyu Zeng, Xin Chen, Hairuo Zhang, Jiaqi Xi, Danni Chen, Ziqin Gao, Longxin Le, Jie Chen, Wen Ye, Lijuan Liu, Yimin Wang, Hanchuan Peng","doi":"10.1038/s41592-024-02401-8","DOIUrl":"10.1038/s41592-024-02401-8","url":null,"abstract":"Digital reconstruction of the intricate 3D morphology of individual neurons from microscopic images is a crucial challenge in both individual laboratories and large-scale projects focusing on cell types and brain anatomy. This task often fails in both conventional manual reconstruction and state-of-the-art artificial intelligence (AI)-based automatic reconstruction algorithms. It is also challenging to organize multiple neuroanatomists to generate and cross-validate biologically relevant and mutually agreed upon reconstructions in large-scale data production. Based on collaborative group intelligence augmented by AI, we developed a collaborative augmented reconstruction (CAR) platform for neuron reconstruction at scale. This platform allows for immersive interaction and efficient collaborative editing of neuron anatomy using a variety of devices, such as desktop workstations, virtual reality headsets and mobile phones, enabling users to contribute anytime and anywhere and to take advantage of several AI-based automation tools. We tested CAR’s applicability for challenging mouse and human neurons toward scaled and faithful data production. Collaborative augmented reconstruction (CAR) is a platform for large-scale reconstruction of neurons and other cells from multi-dimensional imaging datasets. It can be accessed from a variety of devices simultaneously for efficient and accurate reconstruction.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":null,"pages":null},"PeriodicalIF":36.1,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41592-024-02401-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping cellular interactions from spatially resolved transcriptomics data 从空间解析的转录组学数据中绘制细胞相互作用图。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-03 DOI: 10.1038/s41592-024-02408-1
James Zhu, Yunguan Wang, Woo Yong Chang, Alicia Malewska, Fabiana Napolitano, Jeffrey C. Gahan, Nisha Unni, Min Zhao, Rongqing Yuan, Fangjiang Wu, Lauren Yue, Lei Guo, Zhuo Zhao, Danny Z. Chen, Raquibul Hannan, Siyuan Zhang, Guanghua Xiao, Ping Mu, Ariella B. Hanker, Douglas Strand, Carlos L. Arteaga, Neil Desai, Xinlei Wang, Yang Xie, Tao Wang
Cell–cell communication (CCC) is essential to how life forms and functions. However, accurate, high-throughput mapping of how expression of all genes in one cell affects expression of all genes in another cell is made possible only recently through the introduction of spatially resolved transcriptomics (SRT) technologies, especially those that achieve single-cell resolution. Nevertheless, substantial challenges remain to analyze such highly complex data properly. Here, we introduce a multiple-instance learning framework, Spacia, to detect CCCs from data generated by SRTs, by uniquely exploiting their spatial modality. We highlight Spacia’s power to overcome fundamental limitations of popular analytical tools for inference of CCCs, including losing single-cell resolution, limited to ligand–receptor relationships and prior interaction databases, high false positive rates and, most importantly, the lack of consideration of the multiple-sender-to-one-receiver paradigm. We evaluated the fitness of Spacia for three commercialized single-cell resolution SRT technologies: MERSCOPE/Vizgen, CosMx/NanoString and Xenium/10x. Overall, Spacia represents a notable step in advancing quantitative theories of cellular communications. Spacia is a multiple-instance learning model for cell–cell communication (CCC) interference in single-cell resolution spatially resolved transcriptomics data. Spacia can map complex CCCs by modeling cell proximity and CCC-driven gene perturbation.
细胞-细胞通讯(CCC)对生命的形成和功能至关重要。然而,准确、高通量地绘制一个细胞中所有基因的表达如何影响另一个细胞中所有基因表达的图谱,直到最近才通过引入空间分辨转录组学(SRT)技术,特别是那些实现单细胞分辨的技术而成为可能。然而,要正确分析这种高度复杂的数据仍面临巨大挑战。在这里,我们引入了一个多实例学习框架 Spacia,通过独特地利用 SRT 的空间模式,从 SRT 生成的数据中检测 CCC。我们强调了 Spacia 在克服用于推断 CCC 的流行分析工具的基本局限性方面的能力,这些局限性包括失去单细胞分辨率、仅限于配体-受体关系和先前的相互作用数据库、假阳性率高,以及最重要的一点,即缺乏对多发送方到单接收方范例的考虑。我们评估了 Spacia 对三种商业化单细胞分辨率 SRT 技术的适用性:MERSCOPE/Vizgen、CosMx/NanoString 和 Xenium/10x。总之,Spacia 是推进蜂窝通信定量理论的重要一步。
{"title":"Mapping cellular interactions from spatially resolved transcriptomics data","authors":"James Zhu, Yunguan Wang, Woo Yong Chang, Alicia Malewska, Fabiana Napolitano, Jeffrey C. Gahan, Nisha Unni, Min Zhao, Rongqing Yuan, Fangjiang Wu, Lauren Yue, Lei Guo, Zhuo Zhao, Danny Z. Chen, Raquibul Hannan, Siyuan Zhang, Guanghua Xiao, Ping Mu, Ariella B. Hanker, Douglas Strand, Carlos L. Arteaga, Neil Desai, Xinlei Wang, Yang Xie, Tao Wang","doi":"10.1038/s41592-024-02408-1","DOIUrl":"10.1038/s41592-024-02408-1","url":null,"abstract":"Cell–cell communication (CCC) is essential to how life forms and functions. However, accurate, high-throughput mapping of how expression of all genes in one cell affects expression of all genes in another cell is made possible only recently through the introduction of spatially resolved transcriptomics (SRT) technologies, especially those that achieve single-cell resolution. Nevertheless, substantial challenges remain to analyze such highly complex data properly. Here, we introduce a multiple-instance learning framework, Spacia, to detect CCCs from data generated by SRTs, by uniquely exploiting their spatial modality. We highlight Spacia’s power to overcome fundamental limitations of popular analytical tools for inference of CCCs, including losing single-cell resolution, limited to ligand–receptor relationships and prior interaction databases, high false positive rates and, most importantly, the lack of consideration of the multiple-sender-to-one-receiver paradigm. We evaluated the fitness of Spacia for three commercialized single-cell resolution SRT technologies: MERSCOPE/Vizgen, CosMx/NanoString and Xenium/10x. Overall, Spacia represents a notable step in advancing quantitative theories of cellular communications. Spacia is a multiple-instance learning model for cell–cell communication (CCC) interference in single-cell resolution spatially resolved transcriptomics data. Spacia can map complex CCCs by modeling cell proximity and CCC-driven gene perturbation.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":null,"pages":null},"PeriodicalIF":36.1,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The SplitsTree App: interactive analysis and visualization using phylogenetic trees and networks SplitsTree 应用程序:使用系统发生树和网络进行交互式分析和可视化。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-02 DOI: 10.1038/s41592-024-02406-3
Daniel H. Huson, David Bryant
{"title":"The SplitsTree App: interactive analysis and visualization using phylogenetic trees and networks","authors":"Daniel H. Huson, David Bryant","doi":"10.1038/s41592-024-02406-3","DOIUrl":"10.1038/s41592-024-02406-3","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":null,"pages":null},"PeriodicalIF":36.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell Painting Gallery: an open resource for image-based profiling 细胞绘画画廊:基于图像的剖析开放资源。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-02 DOI: 10.1038/s41592-024-02399-z
Erin Weisbart, Ankur Kumar, John Arevalo, Anne E. Carpenter, Beth A. Cimini, Shantanu Singh
{"title":"Cell Painting Gallery: an open resource for image-based profiling","authors":"Erin Weisbart, Ankur Kumar, John Arevalo, Anne E. Carpenter, Beth A. Cimini, Shantanu Singh","doi":"10.1038/s41592-024-02399-z","DOIUrl":"10.1038/s41592-024-02399-z","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":null,"pages":null},"PeriodicalIF":36.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integration of mass cytometry and mass spectrometry imaging for spatially resolved single-cell metabolic profiling 整合质谱和质谱成像技术,进行空间分辨单细胞代谢谱分析。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-29 DOI: 10.1038/s41592-024-02392-6
Joana B. Nunes, Marieke E. Ijsselsteijn, Tamim Abdelaal, Rick Ursem, Manon van der Ploeg, Martin Giera, Bart Everts, Ahmed Mahfouz, Bram Heijs, Noel F. C. C. de Miranda
The integration of spatial omics technologies can provide important insights into the biology of tissues. Here we combined mass spectrometry imaging-based metabolomics and imaging mass cytometry-based immunophenotyping on a single tissue section to reveal metabolic heterogeneity at single-cell resolution within tissues and its association with specific cell populations such as cancer cells or immune cells. This approach has the potential to greatly increase our understanding of tissue-level interplay between metabolic processes and their cellular components. The authors present a workflow integrating imaging mass cytometry and imaging mass spectrometry to deconvolute metabolic heterogeneity at the single-cell level.
空间 omics 技术的整合可以为组织生物学提供重要的见解。在这里,我们将基于质谱成像的代谢组学和基于成像质谱的免疫分型相结合,在单个组织切片上揭示了组织内单细胞分辨率的代谢异质性及其与特定细胞群(如癌细胞或免疫细胞)的关联。这种方法有可能大大提高我们对组织层面代谢过程及其细胞成分之间相互作用的了解。
{"title":"Integration of mass cytometry and mass spectrometry imaging for spatially resolved single-cell metabolic profiling","authors":"Joana B. Nunes, Marieke E. Ijsselsteijn, Tamim Abdelaal, Rick Ursem, Manon van der Ploeg, Martin Giera, Bart Everts, Ahmed Mahfouz, Bram Heijs, Noel F. C. C. de Miranda","doi":"10.1038/s41592-024-02392-6","DOIUrl":"10.1038/s41592-024-02392-6","url":null,"abstract":"The integration of spatial omics technologies can provide important insights into the biology of tissues. Here we combined mass spectrometry imaging-based metabolomics and imaging mass cytometry-based immunophenotyping on a single tissue section to reveal metabolic heterogeneity at single-cell resolution within tissues and its association with specific cell populations such as cancer cells or immune cells. This approach has the potential to greatly increase our understanding of tissue-level interplay between metabolic processes and their cellular components. The authors present a workflow integrating imaging mass cytometry and imaging mass spectrometry to deconvolute metabolic heterogeneity at the single-cell level.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":null,"pages":null},"PeriodicalIF":36.1,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41592-024-02392-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Methods
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1