Pub Date : 2024-09-05DOI: 10.1038/s42254-024-00761-w
Zoe Budrikis
A paper in Royal Society Open Science presents an Ising-like model to describe changes in land use.
英国皇家学会《开放科学》上的一篇论文提出了一个类似 Ising 的模型来描述土地利用的变化。
{"title":"A model for changing land use","authors":"Zoe Budrikis","doi":"10.1038/s42254-024-00761-w","DOIUrl":"10.1038/s42254-024-00761-w","url":null,"abstract":"A paper in Royal Society Open Science presents an Ising-like model to describe changes in land use.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 9","pages":"534-534"},"PeriodicalIF":44.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1038/s42254-024-00759-4
This month, we say farewell to our founding Chief Editor, Iulia Georgescu and greet our new Chief Editor, Nina Meinzer. We also thank our first Advisory Board members (2023–2024) and welcome our next Advisory Board.
本月,我们向创刊主编 Iulia Georgescu 告别,并迎接新任主编 Nina Meinzer。我们还要感谢首届顾问委员会成员(2023-2024 年),并欢迎下一届顾问委员会成员。
{"title":"Farewells and hellos at Nature Reviews Physics","authors":"","doi":"10.1038/s42254-024-00759-4","DOIUrl":"10.1038/s42254-024-00759-4","url":null,"abstract":"This month, we say farewell to our founding Chief Editor, Iulia Georgescu and greet our new Chief Editor, Nina Meinzer. We also thank our first Advisory Board members (2023–2024) and welcome our next Advisory Board.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 9","pages":"525-525"},"PeriodicalIF":44.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42254-024-00759-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1038/s42254-024-00760-x
Zoe Budrikis
In 1924, Ernst Ising thought he showed a simple model for ferromagnetism couldn''t work. 100 years later, that model, now named for him, is used across all of physics.
{"title":"100 years of the Ising model","authors":"Zoe Budrikis","doi":"10.1038/s42254-024-00760-x","DOIUrl":"10.1038/s42254-024-00760-x","url":null,"abstract":"In 1924, Ernst Ising thought he showed a simple model for ferromagnetism couldn''t work. 100 years later, that model, now named for him, is used across all of physics.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 9","pages":"530-530"},"PeriodicalIF":44.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1038/s42254-024-00753-w
Zoe Budrikis
A model of voters, based on the Ising model, gives an explanation for why elections are often so close.
基于伊辛模型的选民模型解释了为什么选举往往如此接近。
{"title":"Ising-like model predicts close elections","authors":"Zoe Budrikis","doi":"10.1038/s42254-024-00753-w","DOIUrl":"10.1038/s42254-024-00753-w","url":null,"abstract":"A model of voters, based on the Ising model, gives an explanation for why elections are often so close.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 9","pages":"531-531"},"PeriodicalIF":44.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A fully connected Ising machine using standard technology","authors":"Zoe Budrikis","doi":"10.1038/s42254-024-00757-6","DOIUrl":"10.1038/s42254-024-00757-6","url":null,"abstract":"A paper in Nature Electronics reports a proof-of-concept Ising machine with all-to-all connectivity.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 9","pages":"533-533"},"PeriodicalIF":44.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1038/s42254-024-00755-8
Zoe Budrikis
An article in Nature Communications uses an Ising-like model to determine the interactions between monomers in a component of the cyanobacterial circadian clock.
{"title":"Measuring interactions in a circadian clock","authors":"Zoe Budrikis","doi":"10.1038/s42254-024-00755-8","DOIUrl":"10.1038/s42254-024-00755-8","url":null,"abstract":"An article in Nature Communications uses an Ising-like model to determine the interactions between monomers in a component of the cyanobacterial circadian clock.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 9","pages":"532-532"},"PeriodicalIF":44.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1038/s42254-024-00749-6
Yanting Cheng, Hui Zhai
Rydberg atom arrays have emerged as a novel platform exhibiting rich quantum many-body physics and offering promise for universal quantum computation. The Rydberg blockade effect plays an essential role in establishing many-body correlations in this system. Over the past 2 or 3 years, Rydberg arrays have been used to realize exotic ground states such as spin liquids, quantum many-body scar states violating quantum thermalization, and a confinement–deconfinement transition through quantum dynamics. In this Perspective, we use lattice gauge theory as a universal theoretical framework to describe the Rydberg blockade effect and the recent exciting developments in this system from equilibrium phases to quantum dynamics. Analysing Rydberg atom arrays through this theoretical framework can reveal their connection with other strongly correlated systems, such as the Fermi–Hubbard model and the lattice gauge model, which can inspire the discovery of new phenomena in this platform. The Rydberg atomic array is an emerging quantum many-body physics platform, exhibiting rich physical phenomena, such as quantum spin liquids and quantum scar states. This Perspective analyses the latest progress in this system through a unified theoretical framework — lattice gauge theory — providing new insights for quantum simulation.
{"title":"Emergent U(1) lattice gauge theory in Rydberg atom arrays","authors":"Yanting Cheng, Hui Zhai","doi":"10.1038/s42254-024-00749-6","DOIUrl":"10.1038/s42254-024-00749-6","url":null,"abstract":"Rydberg atom arrays have emerged as a novel platform exhibiting rich quantum many-body physics and offering promise for universal quantum computation. The Rydberg blockade effect plays an essential role in establishing many-body correlations in this system. Over the past 2 or 3 years, Rydberg arrays have been used to realize exotic ground states such as spin liquids, quantum many-body scar states violating quantum thermalization, and a confinement–deconfinement transition through quantum dynamics. In this Perspective, we use lattice gauge theory as a universal theoretical framework to describe the Rydberg blockade effect and the recent exciting developments in this system from equilibrium phases to quantum dynamics. Analysing Rydberg atom arrays through this theoretical framework can reveal their connection with other strongly correlated systems, such as the Fermi–Hubbard model and the lattice gauge model, which can inspire the discovery of new phenomena in this platform. The Rydberg atomic array is an emerging quantum many-body physics platform, exhibiting rich physical phenomena, such as quantum spin liquids and quantum scar states. This Perspective analyses the latest progress in this system through a unified theoretical framework — lattice gauge theory — providing new insights for quantum simulation.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 9","pages":"566-576"},"PeriodicalIF":44.8,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1038/s42254-024-00750-z
Jack Dongarra, David Keyes
High-performance computational physics has been instrumental in advancing scientific research by regularly providing breakthroughs in speed, accuracy and modelling fidelity. This Perspective highlights the contributions of physicists to the development of high-performance computing infrastructure, algorithms and applications from the early days of computing to the exascale era. We recall the pioneering work of Fermi and von Neumann, who set directions and laid foundations for computational science and examine the ongoing impact of physicists in overcoming current challenges in high-performance computing, such as energy consumption and data storage. As we celebrate milestones such as exascale computing and generative artificial intelligence, it is inspiring to recognize the enduring influence of physicists in driving technological innovations and ensuring the future progress of computational science. This Perspective examines the pivotal role physicists have in the development and advancement of high-performance computing from its inception to the exascale era, highlighting key contributions and future challenges.
{"title":"The co-evolution of computational physics and high-performance computing","authors":"Jack Dongarra, David Keyes","doi":"10.1038/s42254-024-00750-z","DOIUrl":"10.1038/s42254-024-00750-z","url":null,"abstract":"High-performance computational physics has been instrumental in advancing scientific research by regularly providing breakthroughs in speed, accuracy and modelling fidelity. This Perspective highlights the contributions of physicists to the development of high-performance computing infrastructure, algorithms and applications from the early days of computing to the exascale era. We recall the pioneering work of Fermi and von Neumann, who set directions and laid foundations for computational science and examine the ongoing impact of physicists in overcoming current challenges in high-performance computing, such as energy consumption and data storage. As we celebrate milestones such as exascale computing and generative artificial intelligence, it is inspiring to recognize the enduring influence of physicists in driving technological innovations and ensuring the future progress of computational science. This Perspective examines the pivotal role physicists have in the development and advancement of high-performance computing from its inception to the exascale era, highlighting key contributions and future challenges.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 10","pages":"621-627"},"PeriodicalIF":44.8,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1038/s42254-024-00747-8
May Chiao
In 2021, physicist and writer, Carlo Rovelli, helped launch an open letter to the world’s politicians calling for a small proportion of military funding to address climate change, poverty and pandemics — the Global Peace Dividend. He discusses the pressing need for global cooperation on common interests.
{"title":"The difficult but necessary role of political engagement for scientists","authors":"May Chiao","doi":"10.1038/s42254-024-00747-8","DOIUrl":"10.1038/s42254-024-00747-8","url":null,"abstract":"In 2021, physicist and writer, Carlo Rovelli, helped launch an open letter to the world’s politicians calling for a small proportion of military funding to address climate change, poverty and pandemics — the Global Peace Dividend. He discusses the pressing need for global cooperation on common interests.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 9","pages":"528-529"},"PeriodicalIF":44.8,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.1038/s42254-024-00746-9
Heather Lewtas
With more public and private funding in fusion, the expectations in terms of spillover benefits are increasing, but these can only happen through enhanced cross-sector collaboration.
{"title":"In fusion, collaboration is both a necessity and an opportunity","authors":"Heather Lewtas","doi":"10.1038/s42254-024-00746-9","DOIUrl":"10.1038/s42254-024-00746-9","url":null,"abstract":"With more public and private funding in fusion, the expectations in terms of spillover benefits are increasing, but these can only happen through enhanced cross-sector collaboration.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 9","pages":"526-527"},"PeriodicalIF":44.8,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}