Pub Date : 2025-12-03DOI: 10.1038/s42254-025-00910-9
Rebekah Higgitt
Over its 350 years of history, the establishment and evolution of the Royal Observatory, Greenwich, reflects the history of scientific institutions in Britain.
在其350年的历史中,格林威治皇家天文台的建立和演变反映了英国科学机构的历史。
{"title":"The Royal Observatory, Greenwich, and government-funded science","authors":"Rebekah Higgitt","doi":"10.1038/s42254-025-00910-9","DOIUrl":"10.1038/s42254-025-00910-9","url":null,"abstract":"Over its 350 years of history, the establishment and evolution of the Royal Observatory, Greenwich, reflects the history of scientific institutions in Britain.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"8 1","pages":"5-6"},"PeriodicalIF":39.5,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145916061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-03DOI: 10.1038/s42254-025-00903-8
Omokhuwele Umoru
Omokhuwele Umoru explains how generative adversarial networks can help to predict the phases of high-entropy alloys.
Omokhuwele Umoru解释了生成对抗网络如何帮助预测高熵合金的相。
{"title":"Predicting high-entropy alloy phases with machine learning","authors":"Omokhuwele Umoru","doi":"10.1038/s42254-025-00903-8","DOIUrl":"10.1038/s42254-025-00903-8","url":null,"abstract":"Omokhuwele Umoru explains how generative adversarial networks can help to predict the phases of high-entropy alloys.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"8 2","pages":"68-68"},"PeriodicalIF":39.5,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146148337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-02DOI: 10.1038/s42254-025-00904-7
As we close our seventh volume, we reflect on some of the highlights of the year.
在我们结束第七卷时,我们回顾了今年的一些亮点。
{"title":"2025 at Nature Reviews Physics","authors":"","doi":"10.1038/s42254-025-00904-7","DOIUrl":"10.1038/s42254-025-00904-7","url":null,"abstract":"As we close our seventh volume, we reflect on some of the highlights of the year.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 12","pages":"671-671"},"PeriodicalIF":39.5,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42254-025-00904-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145652862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-02DOI: 10.1038/s42254-025-00893-7
Dominik Kraus, Thomas R. Preston, Ulf Zastrau
‘If you can measure it, it is not warm dense matter, and if you can compute it, it is not warm dense matter’ is a tongue-in-cheek aphorism for the peculiar state of matter between condensed matter and hot plasma. It is present in the interior of large planets, in small stars and transiently in inertial confinement fusion concepts. Owing to substantial developments in theoretical methods, computational capabilities and new experimental infrastructures, this definition has now become outdated. Hard X-ray free-electron lasers (XFELs) have proven an especially useful tool to advance the understanding of warm dense matter by allowing precision measurements that can benchmark atomistic simulations and macroscopic models with high resolution in space and time. In this Review, we provide an overview of experimental techniques and summarize the past decade of XFEL research on warm dense matter, which has been dominated by proof-of-principle experiments. Looking forward, we provide an outline of ongoing and expected facility developments in the context of prominent science goals, ranging from astrophysics to new high-performance materials and fusion energy. Warm dense matter — the peculiar state between condensed matter and hot plasma — can be studied with exceptional detail at X-ray free-electron laser facilities. This Review summarizes pioneering experiments and discusses the perspectives for the near and mid-term future.
{"title":"Warm dense matter studies with X-ray free-electron lasers","authors":"Dominik Kraus, Thomas R. Preston, Ulf Zastrau","doi":"10.1038/s42254-025-00893-7","DOIUrl":"10.1038/s42254-025-00893-7","url":null,"abstract":"‘If you can measure it, it is not warm dense matter, and if you can compute it, it is not warm dense matter’ is a tongue-in-cheek aphorism for the peculiar state of matter between condensed matter and hot plasma. It is present in the interior of large planets, in small stars and transiently in inertial confinement fusion concepts. Owing to substantial developments in theoretical methods, computational capabilities and new experimental infrastructures, this definition has now become outdated. Hard X-ray free-electron lasers (XFELs) have proven an especially useful tool to advance the understanding of warm dense matter by allowing precision measurements that can benchmark atomistic simulations and macroscopic models with high resolution in space and time. In this Review, we provide an overview of experimental techniques and summarize the past decade of XFEL research on warm dense matter, which has been dominated by proof-of-principle experiments. Looking forward, we provide an outline of ongoing and expected facility developments in the context of prominent science goals, ranging from astrophysics to new high-performance materials and fusion energy. Warm dense matter — the peculiar state between condensed matter and hot plasma — can be studied with exceptional detail at X-ray free-electron laser facilities. This Review summarizes pioneering experiments and discusses the perspectives for the near and mid-term future.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"8 1","pages":"27-39"},"PeriodicalIF":39.5,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145916063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-28DOI: 10.1038/s42254-025-00907-4
Yanchen Wu
{"title":"Shorebird feeding reveals a new liquid transport mechanism","authors":"Yanchen Wu","doi":"10.1038/s42254-025-00907-4","DOIUrl":"10.1038/s42254-025-00907-4","url":null,"abstract":"","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"8 2","pages":"69-69"},"PeriodicalIF":39.5,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146148338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-19DOI: 10.1038/s42254-025-00902-9
Nina Meinzer
A paper in Optica shows how sound can be used to determine properties of an optical pulse.
《光学》杂志上的一篇论文展示了如何利用声音来确定光脉冲的特性。
{"title":"The sound of ionization","authors":"Nina Meinzer","doi":"10.1038/s42254-025-00902-9","DOIUrl":"10.1038/s42254-025-00902-9","url":null,"abstract":"A paper in Optica shows how sound can be used to determine properties of an optical pulse.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 12","pages":"680-680"},"PeriodicalIF":39.5,"publicationDate":"2025-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145652864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-19DOI: 10.1038/s42254-025-00905-6
May Chiao
{"title":"A changing of the guard for dark energy?","authors":"May Chiao","doi":"10.1038/s42254-025-00905-6","DOIUrl":"10.1038/s42254-025-00905-6","url":null,"abstract":"","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 12","pages":"681-681"},"PeriodicalIF":39.5,"publicationDate":"2025-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145652865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ratchet effect helps explain how a carnivorous plant predates","authors":"Zoe Budrikis","doi":"10.1038/s42254-025-00900-x","DOIUrl":"10.1038/s42254-025-00900-x","url":null,"abstract":"A paper in PNAS shows how ideas from the physics of active matter can help explain the workings of a rare carnivorous plant.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 12","pages":"679-679"},"PeriodicalIF":39.5,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145652860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-18DOI: 10.1038/s42254-025-00899-1
Ankita Anirban
An article in Physical Review Letters reports evidence that Cooper pairs exist in an anomalous metallic state.
《物理评论快报》上的一篇文章报道了库珀对以异常金属态存在的证据。
{"title":"Cooper pairs in a metallic state","authors":"Ankita Anirban","doi":"10.1038/s42254-025-00899-1","DOIUrl":"10.1038/s42254-025-00899-1","url":null,"abstract":"An article in Physical Review Letters reports evidence that Cooper pairs exist in an anomalous metallic state.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 12","pages":"678-678"},"PeriodicalIF":39.5,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145652859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}