首页 > 最新文献

Nature Reviews Physics最新文献

英文 中文
Challenges and opportunities in quantum optimization
IF 44.8 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-10-28 DOI: 10.1038/s42254-024-00770-9
Amira Abbas, Andris Ambainis, Brandon Augustino, Andreas Bärtschi, Harry Buhrman, Carleton Coffrin, Giorgio Cortiana, Vedran Dunjko, Daniel J. Egger, Bruce G. Elmegreen, Nicola Franco, Filippo Fratini, Bryce Fuller, Julien Gacon, Constantin Gonciulea, Sander Gribling, Swati Gupta, Stuart Hadfield, Raoul Heese, Gerhard Kircher, Thomas Kleinert, Thorsten Koch, Georgios Korpas, Steve Lenk, Jakub Marecek, Vanio Markov, Guglielmo Mazzola, Stefano Mensa, Naeimeh Mohseni, Giacomo Nannicini, Corey O’Meara, Elena Peña Tapia, Sebastian Pokutta, Manuel Proissl, Patrick Rebentrost, Emre Sahin, Benjamin C. B. Symons, Sabine Tornow, Víctor Valls, Stefan Woerner, Mira L. Wolf-Bauwens, Jon Yard, Sheir Yarkoni, Dirk Zechiel, Sergiy Zhuk, Christa Zoufal
Quantum computers have demonstrable ability to solve problems at a scale beyond brute-force classical simulation. Interest in quantum algorithms has developed in many areas, particularly in relation to mathematical optimization — a broad field with links to computer science and physics. In this Review, we aim to give an overview of quantum optimization. Provably exact, provably approximate and heuristic settings are first explained using computational complexity theory, and we highlight where quantum advantage is possible in each context. Then, we outline the core building blocks for quantum optimization algorithms, define prominent problem classes and identify key open questions that should be addressed to advance the field. We underscore the importance of benchmarking by proposing clear metrics alongside suitable optimization problems, for appropriate comparisons with classical optimization techniques, and discuss next steps to accelerate progress towards quantum advantage in optimization. This Review discusses quantum optimization, focusing on the potential of exact, approximate and heuristic methods, core algorithmic building blocks, problem classes and benchmarking metrics. The challenges for quantum optimization are considered, and next steps are suggested for progress towards achieving quantum advantage.
{"title":"Challenges and opportunities in quantum optimization","authors":"Amira Abbas, Andris Ambainis, Brandon Augustino, Andreas Bärtschi, Harry Buhrman, Carleton Coffrin, Giorgio Cortiana, Vedran Dunjko, Daniel J. Egger, Bruce G. Elmegreen, Nicola Franco, Filippo Fratini, Bryce Fuller, Julien Gacon, Constantin Gonciulea, Sander Gribling, Swati Gupta, Stuart Hadfield, Raoul Heese, Gerhard Kircher, Thomas Kleinert, Thorsten Koch, Georgios Korpas, Steve Lenk, Jakub Marecek, Vanio Markov, Guglielmo Mazzola, Stefano Mensa, Naeimeh Mohseni, Giacomo Nannicini, Corey O’Meara, Elena Peña Tapia, Sebastian Pokutta, Manuel Proissl, Patrick Rebentrost, Emre Sahin, Benjamin C. B. Symons, Sabine Tornow, Víctor Valls, Stefan Woerner, Mira L. Wolf-Bauwens, Jon Yard, Sheir Yarkoni, Dirk Zechiel, Sergiy Zhuk, Christa Zoufal","doi":"10.1038/s42254-024-00770-9","DOIUrl":"10.1038/s42254-024-00770-9","url":null,"abstract":"Quantum computers have demonstrable ability to solve problems at a scale beyond brute-force classical simulation. Interest in quantum algorithms has developed in many areas, particularly in relation to mathematical optimization — a broad field with links to computer science and physics. In this Review, we aim to give an overview of quantum optimization. Provably exact, provably approximate and heuristic settings are first explained using computational complexity theory, and we highlight where quantum advantage is possible in each context. Then, we outline the core building blocks for quantum optimization algorithms, define prominent problem classes and identify key open questions that should be addressed to advance the field. We underscore the importance of benchmarking by proposing clear metrics alongside suitable optimization problems, for appropriate comparisons with classical optimization techniques, and discuss next steps to accelerate progress towards quantum advantage in optimization. This Review discusses quantum optimization, focusing on the potential of exact, approximate and heuristic methods, core algorithmic building blocks, problem classes and benchmarking metrics. The challenges for quantum optimization are considered, and next steps are suggested for progress towards achieving quantum advantage.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 12","pages":"718-735"},"PeriodicalIF":44.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142762934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable heat harvesting via thermal nonlinearity
IF 44.8 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-10-21 DOI: 10.1038/s42254-024-00771-8
Yi Zhou, Tianpeng Ding, Guoqiang Xu, Shuihua Yang, Cheng-Wei Qiu, Jiaqing He, Ghim Wei Ho
Converting the pervasive low-grade environmental waste heat of approximately 200 EJ globally per year (equivalent to 27 Gt of CO2 emission) into electricity promises energy sustainability and would contribute to carbon neutrality. Heat harvesting technologies capture this waste heat through thermodynamic heat engines across various working media. Conventional heat harvesting approaches have primarily focused on limited incremental improvements in thermophysical output. However, advances in thermal nonlinearity and material anisotropy offer substantial gains but are often overlooked. In this Perspective, we delve into the role of intrinsic thermal nonlinearity with multiscale physical understanding to transform heat or thermal energy harvesting technologies from linear to nonlinear processes. This Perspective surveys the role of thermal nonlinearity in figures of merit through a multiscale physical understanding to advance heat harvesting technologies beyond linear processes, focusing on ‘nonlinear heat harvesting’, which potentially contributes to sustainable energy transition and decarbonization goals.
{"title":"Sustainable heat harvesting via thermal nonlinearity","authors":"Yi Zhou, Tianpeng Ding, Guoqiang Xu, Shuihua Yang, Cheng-Wei Qiu, Jiaqing He, Ghim Wei Ho","doi":"10.1038/s42254-024-00771-8","DOIUrl":"10.1038/s42254-024-00771-8","url":null,"abstract":"Converting the pervasive low-grade environmental waste heat of approximately 200 EJ globally per year (equivalent to 27 Gt of CO2 emission) into electricity promises energy sustainability and would contribute to carbon neutrality. Heat harvesting technologies capture this waste heat through thermodynamic heat engines across various working media. Conventional heat harvesting approaches have primarily focused on limited incremental improvements in thermophysical output. However, advances in thermal nonlinearity and material anisotropy offer substantial gains but are often overlooked. In this Perspective, we delve into the role of intrinsic thermal nonlinearity with multiscale physical understanding to transform heat or thermal energy harvesting technologies from linear to nonlinear processes. This Perspective surveys the role of thermal nonlinearity in figures of merit through a multiscale physical understanding to advance heat harvesting technologies beyond linear processes, focusing on ‘nonlinear heat harvesting’, which potentially contributes to sustainable energy transition and decarbonization goals.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 12","pages":"769-783"},"PeriodicalIF":44.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142762961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The AI revolution is always just out of reach 人工智能革命总是遥不可及
IF 44.8 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-10-16 DOI: 10.1038/s42254-024-00777-2
James Sumner
Claims that artificial intelligence will usher in a new scientific and social era have been attracting funding for decades, but the changes they’ve achieved have not been as advertised. Historian James Sumner considers the limits of science’s ability to plan a revolution.
数十年来,人工智能将开创一个新的科学和社会时代的说法一直在吸引资金,但它们所带来的变化却并不像宣传的那样。历史学家詹姆斯-萨姆纳(James Sumner)认为,科学策划一场革命的能力是有限的。
{"title":"The AI revolution is always just out of reach","authors":"James Sumner","doi":"10.1038/s42254-024-00777-2","DOIUrl":"10.1038/s42254-024-00777-2","url":null,"abstract":"Claims that artificial intelligence will usher in a new scientific and social era have been attracting funding for decades, but the changes they’ve achieved have not been as advertised. Historian James Sumner considers the limits of science’s ability to plan a revolution.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 11","pages":"644-645"},"PeriodicalIF":44.8,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The promise and peril of sociotechnical visions of the future 未来社会技术愿景的前景与危险
IF 44.8 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-10-09 DOI: 10.1038/s42254-024-00774-5
Benjamin K. Sovacool
Sociotechnical visions of the future can motivate researchers to create a better world, but as social scientist Benjamin K. Sovacool argues, they can also blind the scientific community to potential downsides.
对未来的社会技术愿景可以激励研究人员创造一个更美好的世界,但正如社会科学家本杰明-K-索瓦库尔(Benjamin K. Sovacool)所言,这些愿景也会让科学界看不到潜在的弊端。
{"title":"The promise and peril of sociotechnical visions of the future","authors":"Benjamin K. Sovacool","doi":"10.1038/s42254-024-00774-5","DOIUrl":"10.1038/s42254-024-00774-5","url":null,"abstract":"Sociotechnical visions of the future can motivate researchers to create a better world, but as social scientist Benjamin K. Sovacool argues, they can also blind the scientific community to potential downsides.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 11","pages":"642-643"},"PeriodicalIF":44.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Publisher Correction: Rydberg states of alkali atoms in atomic vapour as SI-traceable field probes and communications receivers 出版商更正:原子蒸气中碱原子的里德伯态作为可追溯 SI 的场探测器和通信接收器
IF 44.8 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-10-08 DOI: 10.1038/s42254-024-00778-1
Noah Schlossberger, Nikunjkumar Prajapati, Samuel Berweger, Andrew P. Rotunno, Alexandra B. Artusio-Glimpse, Matthew T. Simons, Abrar A. Sheikh, Eric B. Norrgard, Stephen P. Eckel, Christopher L. Holloway
{"title":"Publisher Correction: Rydberg states of alkali atoms in atomic vapour as SI-traceable field probes and communications receivers","authors":"Noah Schlossberger, Nikunjkumar Prajapati, Samuel Berweger, Andrew P. Rotunno, Alexandra B. Artusio-Glimpse, Matthew T. Simons, Abrar A. Sheikh, Eric B. Norrgard, Stephen P. Eckel, Christopher L. Holloway","doi":"10.1038/s42254-024-00778-1","DOIUrl":"10.1038/s42254-024-00778-1","url":null,"abstract":"","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 11","pages":"705-705"},"PeriodicalIF":44.8,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42254-024-00778-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum phenomena in attosecond science 阿秒科学中的量子现象
IF 44.8 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-10-07 DOI: 10.1038/s42254-024-00769-2
Lidice Cruz-Rodriguez, Diptesh Dey, Antonia Freibert, Philipp Stammer
The ability to manipulate and observe phenomena on attosecond timescales has yielded groundbreaking insights into electron dynamics and the behaviour of matter exposed to intense light fields. The interdisciplinary field of attosecond science connects various research areas, including quantum optics, quantum chemistry and quantum information science. However, the intrinsic quantum effects in attosecond science have been largely ignored. In this Perspective, we discuss the latest theoretical and experimental advances in exploring and understanding quantum phenomena within attosecond science. We focus on distinguishing genuinely quantum observations from classical phenomena in the context of high-harmonic generation and above-threshold ionization. Additionally, we illuminate the often overlooked yet important role of entanglement in attosecond processes, elucidating its influence on experimental outcomes. Attosecond science is a versatile discipline for studying ultrafast dynamics in matter on the microscopic scale. This Perspective explores the theoretical and experimental developments in this field focusing on distinguishing genuinely quantum observations from classical phenomena.
在阿秒时间尺度上操纵和观察现象的能力,使人们对电子动力学和暴露在强光场下的物质行为有了突破性的认识。阿秒科学这一跨学科领域连接着多个研究领域,包括量子光学、量子化学和量子信息科学。然而,阿秒科学中的内在量子效应在很大程度上被忽视了。在本《视角》中,我们将讨论在探索和理解阿秒科学中的量子现象方面取得的最新理论和实验进展。我们的重点是在高次谐波产生和阈值以上电离的背景下,将真正的量子观测与经典现象区分开来。此外,我们还阐明了纠缠在阿秒过程中经常被忽视但却非常重要的作用,阐明了它对实验结果的影响。阿秒科学是一门在微观尺度上研究物质超快动力学的多功能学科。本视角探讨了这一领域的理论和实验发展,重点是区分真正的量子观测和经典现象。
{"title":"Quantum phenomena in attosecond science","authors":"Lidice Cruz-Rodriguez, Diptesh Dey, Antonia Freibert, Philipp Stammer","doi":"10.1038/s42254-024-00769-2","DOIUrl":"10.1038/s42254-024-00769-2","url":null,"abstract":"The ability to manipulate and observe phenomena on attosecond timescales has yielded groundbreaking insights into electron dynamics and the behaviour of matter exposed to intense light fields. The interdisciplinary field of attosecond science connects various research areas, including quantum optics, quantum chemistry and quantum information science. However, the intrinsic quantum effects in attosecond science have been largely ignored. In this Perspective, we discuss the latest theoretical and experimental advances in exploring and understanding quantum phenomena within attosecond science. We focus on distinguishing genuinely quantum observations from classical phenomena in the context of high-harmonic generation and above-threshold ionization. Additionally, we illuminate the often overlooked yet important role of entanglement in attosecond processes, elucidating its influence on experimental outcomes. Attosecond science is a versatile discipline for studying ultrafast dynamics in matter on the microscopic scale. This Perspective explores the theoretical and experimental developments in this field focusing on distinguishing genuinely quantum observations from classical phenomena.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 11","pages":"691-704"},"PeriodicalIF":44.8,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physics and the empirical gap of trustworthy AI 物理学与可信人工智能的经验差距
IF 44.8 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-10-07 DOI: 10.1038/s42254-024-00772-7
Savannah Thais
Understanding what cutting-edge AI models are doing ‘under the hood’ requires not just theoretical research but also well-controlled computational experiments. Savannah Thais explains why physics datasets may be the testing ground that AI developers need and how physicists can play a critical role in developing trustworthy AI.
要了解尖端人工智能模型在 "引擎盖 "下做了什么,不仅需要理论研究,还需要控制良好的计算实验。Savannah Thais 解释了为什么物理数据集可能是人工智能开发人员所需的试验场,以及物理学家如何在开发值得信赖的人工智能方面发挥关键作用。
{"title":"Physics and the empirical gap of trustworthy AI","authors":"Savannah Thais","doi":"10.1038/s42254-024-00772-7","DOIUrl":"10.1038/s42254-024-00772-7","url":null,"abstract":"Understanding what cutting-edge AI models are doing ‘under the hood’ requires not just theoretical research but also well-controlled computational experiments. Savannah Thais explains why physics datasets may be the testing ground that AI developers need and how physicists can play a critical role in developing trustworthy AI.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 11","pages":"640-641"},"PeriodicalIF":44.8,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nobel 1924: the physics of precision 1924年诺贝尔奖:精确物理学
IF 44.8 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-10-04 DOI: 10.1038/s42254-024-00752-x
Ghada Badawy
99 years ago, the 1924 Nobel Prize in Physics was awarded — one year late — to Karl Manne Siegbahn.
99 年前,1924 年诺贝尔物理学奖颁给了卡尔-曼恩-西格巴恩(Karl Manne Siegbahn)--晚了一年。
{"title":"Nobel 1924: the physics of precision","authors":"Ghada Badawy","doi":"10.1038/s42254-024-00752-x","DOIUrl":"10.1038/s42254-024-00752-x","url":null,"abstract":"99 years ago, the 1924 Nobel Prize in Physics was awarded — one year late — to Karl Manne Siegbahn.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 10","pages":"578-578"},"PeriodicalIF":44.8,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nobel 1944: resonance method for measuring nuclear magnetic moments 1944年诺贝尔奖:测量核磁矩的共振法
IF 44.8 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-10-04 DOI: 10.1038/s42254-024-00751-y
Chenyu Wang
80 years ago, the Nobel Prize in Physics was awarded to Isidor Isaac Rabi.
80 年前,诺贝尔物理学奖授予了伊西多尔-艾萨克-拉比。
{"title":"Nobel 1944: resonance method for measuring nuclear magnetic moments","authors":"Chenyu Wang","doi":"10.1038/s42254-024-00751-y","DOIUrl":"10.1038/s42254-024-00751-y","url":null,"abstract":"80 years ago, the Nobel Prize in Physics was awarded to Isidor Isaac Rabi.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 10","pages":"579-579"},"PeriodicalIF":44.8,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nobel 1964: masers and lasers 1964 年诺贝尔奖: masers 和激光器
IF 44.8 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-10-04 DOI: 10.1038/s42254-024-00767-4
Hannah Hatcher
60 years ago, the Nobel Prize in Physics was awarded to Charles Townes, Nicolay Basov and Aleksandr Prokhorov.
60 年前,诺贝尔物理学奖授予了查尔斯-汤斯、尼古拉-巴索夫和亚历山大-普罗霍罗夫。
{"title":"Nobel 1964: masers and lasers","authors":"Hannah Hatcher","doi":"10.1038/s42254-024-00767-4","DOIUrl":"10.1038/s42254-024-00767-4","url":null,"abstract":"60 years ago, the Nobel Prize in Physics was awarded to Charles Townes, Nicolay Basov and Aleksandr Prokhorov.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 10","pages":"580-580"},"PeriodicalIF":44.8,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Reviews Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1