首页 > 最新文献

Nature metabolism最新文献

英文 中文
Metabolic variation reflects dietary exposure in a multi-ethnic Asian population 代谢变异反映了多种族亚洲人群的饮食暴露。
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-09-17 DOI: 10.1038/s42255-025-01359-x
Dorrain Y. Low, Theresia H. Mina, Nilanjana Sadhu, Kari E. Wong, Pritesh Rajesh Jain, Rinkoo Dalan, Hong Kiat Ng, Wubin Xie, Benjamin Lam, Darwin Tay, Xiaoyan Wang, Yik Weng Yew, James D. Best, Rangaprasad Sarangarajan, Paul Elliott, Elio Riboli, Jimmy Lee, Eng Sing Lee, Joanne Ngeow, Patricia A. Sheridan, Xue Li Guan, Gregory A. Michelotti, Marie Loh, John C. Chambers
Understanding how diet shapes metabolism across diverse populations is essential to improving nutrition and health. Biomarkers reflecting diet are explored largely in European and American populations, but the food metabolome is highly complex and varies across region and culture. We assessed 1,055 plasma metabolites and 169 foods/beverages in 8,391 multi-ethnic Asian individuals and carried out diet–metabolite association analyses. Using machine learning, we developed multi-biomarker panels and composite scores for key foods, beverages and overall diet quality. Here we show these biomarker panels can be used to objectively assess dietary intakes in the Asian multi-ethnic population and can explain variances in intake prediction models better than single biomarkers. The identified diet–metabolite relationships are reproducible over time and improve prediction of clinical outcomes (insulin resistance, diabetes, body mass index, carotid intima-media thickness and hypertension), compared to self-reports. Our findings show insights into multi-ethnic diet-related metabolic variations and an opportunity to link exposure to population health outcomes. In a large multi-ethnic Asian cohort, associations between over 1,000 plasma metabolites and specific foods and beverages are made. These diet–metabolite relationships were used to accurately predict clinical phenotypes such as diabetes and hypertension.
了解饮食如何影响不同人群的新陈代谢对于改善营养和健康至关重要。反映饮食的生物标志物主要在欧洲和美国人群中进行了探索,但食物代谢组非常复杂,并且因地区和文化而异。我们评估了8391名多种族亚洲人的1055种血浆代谢物和169种食物/饮料,并进行了饮食-代谢物关联分析。利用机器学习,我们开发了多生物标志物面板和关键食品、饮料和整体饮食质量的综合评分。本研究表明,这些生物标志物面板可用于客观评估亚洲多种族人群的饮食摄入量,并且可以比单一生物标志物更好地解释摄入预测模型的差异。与自我报告相比,已确定的饮食-代谢物关系随着时间的推移是可重复的,并且可以改善临床结果(胰岛素抵抗、糖尿病、体重指数、颈动脉内膜-中膜厚度和高血压)的预测。我们的研究结果揭示了多种族饮食相关的代谢变化,并有机会将暴露与人口健康结果联系起来。
{"title":"Metabolic variation reflects dietary exposure in a multi-ethnic Asian population","authors":"Dorrain Y. Low, Theresia H. Mina, Nilanjana Sadhu, Kari E. Wong, Pritesh Rajesh Jain, Rinkoo Dalan, Hong Kiat Ng, Wubin Xie, Benjamin Lam, Darwin Tay, Xiaoyan Wang, Yik Weng Yew, James D. Best, Rangaprasad Sarangarajan, Paul Elliott, Elio Riboli, Jimmy Lee, Eng Sing Lee, Joanne Ngeow, Patricia A. Sheridan, Xue Li Guan, Gregory A. Michelotti, Marie Loh, John C. Chambers","doi":"10.1038/s42255-025-01359-x","DOIUrl":"10.1038/s42255-025-01359-x","url":null,"abstract":"Understanding how diet shapes metabolism across diverse populations is essential to improving nutrition and health. Biomarkers reflecting diet are explored largely in European and American populations, but the food metabolome is highly complex and varies across region and culture. We assessed 1,055 plasma metabolites and 169 foods/beverages in 8,391 multi-ethnic Asian individuals and carried out diet–metabolite association analyses. Using machine learning, we developed multi-biomarker panels and composite scores for key foods, beverages and overall diet quality. Here we show these biomarker panels can be used to objectively assess dietary intakes in the Asian multi-ethnic population and can explain variances in intake prediction models better than single biomarkers. The identified diet–metabolite relationships are reproducible over time and improve prediction of clinical outcomes (insulin resistance, diabetes, body mass index, carotid intima-media thickness and hypertension), compared to self-reports. Our findings show insights into multi-ethnic diet-related metabolic variations and an opportunity to link exposure to population health outcomes. In a large multi-ethnic Asian cohort, associations between over 1,000 plasma metabolites and specific foods and beverages are made. These diet–metabolite relationships were used to accurately predict clinical phenotypes such as diabetes and hypertension.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 9","pages":"1939-1954"},"PeriodicalIF":20.8,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145081276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BDH2-driven lysosome-to-mitochondria iron transfer shapes ferroptosis vulnerability of the melanoma cell states bdh2驱动的溶酶体到线粒体的铁转移塑造了黑色素瘤细胞状态的铁下垂脆弱性
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-09-16 DOI: 10.1038/s42255-025-01352-4
Francesca Rizzollo, Abril Escamilla-Ayala, Nicola Fattorelli, Natalia Barbara Lysiak, Sanket More, Pablo Hernández Varas, Lucia Barazzuol, Chris Van den Haute, Joris Van Asselberghs, David Nittner, Jonathan Coene, Vivek Venkataramani, Bernhard Michalke, Christine Gaillet, Tatiana Cañeque, Irwin Davidson, Steven H. L. Verhelst, Peter Vangheluwe, Tito Calì, Jean-Christophe Marine, Raphaël Rodriguez, Julie Bonnereau, Patrizia Agostinis
Iron sustains cancer cell plasticity, yet it also sensitizes the mesenchymal, drug-tolerant phenotype to ferroptosis. This posits that iron compartmentalization must be tightly regulated. However, the molecular machinery governing organelle Fe(II) compartmentalization remains elusive. Here, we show that BDH2 is a key effector of inter-organelle Fe(II) redistribution and ferroptosis vulnerability during melanoma transition from a melanocytic (MEL) to a mesenchymal-like (MES) phenotype. In MEL cells, BDH2 localizes at the mitochondria–lysosome contacts (MLCs) to generate the siderophore 2,5-dihydroxybenzoic acid (2,5-DHBA), which ferries iron into the mitochondria. Fe(II) transfer by BDH2 supports mitochondrial bioenergetics, which is required to maintain lysosomal acidification and MLC formation. Loss of BDH2 alters lysosomal pH and MLC tethering dynamics, causing lysosomal iron sequestration, which primes MES cells for ferroptosis. Rescuing BDH2 expression, or supplementing 2,5-DHBA, rectifies lysosomal pH and MLCs, protecting MES cells from ferroptosis and enhancing their ability to metastasize. Thus, we unveil a BDH2-dependent mechanism that orchestrates inter-organelle Fe(II) transfer, linking metabolic regulation of lysosomal pH to the ferroptosis vulnerability of the mesenchymal, drug-tolerant cancer cells. Rizzollo et al. show that BDH2 participates in iron distribution between cellular compartments, which sets the threshold for the ferroptosis vulnerability of the melanoma cell phenotypes, ultimately affecting their metastatic capacity
铁维持癌细胞的可塑性,但它也使间质耐药表型对铁凋亡敏感。这表明铁的区隔化必须严格控制。然而,控制细胞器Fe(II)区隔化的分子机制仍然难以捉摸。本研究表明,在黑色素瘤从黑色素细胞(MEL)表型向间质样(MES)表型转变过程中,BDH2是细胞器间铁(II)再分配和铁凋亡易感性的关键效应因子。在MEL细胞中,BDH2定位于线粒体-溶酶体接触(MLCs)产生铁载体2,5-二羟基苯甲酸(2,5- dhba),将铁转运到线粒体中。BDH2的铁(II)转移支持线粒体生物能量,这是维持溶酶体酸化和MLC形成所必需的。BDH2的缺失改变了溶酶体pH值和MLC拴系动力学,导致溶酶体铁隔离,这为MES细胞的铁凋亡提供了条件。挽救BDH2表达,或补充2,5- dhba,纠正溶酶体pH和MLCs,保护MES细胞免于铁凋亡并增强其转移能力。因此,我们揭示了一个依赖bdh2的机制,该机制协调细胞器间铁(II)转移,将溶酶体pH的代谢调节与间质耐药癌细胞的铁凋亡脆弱性联系起来。
{"title":"BDH2-driven lysosome-to-mitochondria iron transfer shapes ferroptosis vulnerability of the melanoma cell states","authors":"Francesca Rizzollo, Abril Escamilla-Ayala, Nicola Fattorelli, Natalia Barbara Lysiak, Sanket More, Pablo Hernández Varas, Lucia Barazzuol, Chris Van den Haute, Joris Van Asselberghs, David Nittner, Jonathan Coene, Vivek Venkataramani, Bernhard Michalke, Christine Gaillet, Tatiana Cañeque, Irwin Davidson, Steven H. L. Verhelst, Peter Vangheluwe, Tito Calì, Jean-Christophe Marine, Raphaël Rodriguez, Julie Bonnereau, Patrizia Agostinis","doi":"10.1038/s42255-025-01352-4","DOIUrl":"10.1038/s42255-025-01352-4","url":null,"abstract":"Iron sustains cancer cell plasticity, yet it also sensitizes the mesenchymal, drug-tolerant phenotype to ferroptosis. This posits that iron compartmentalization must be tightly regulated. However, the molecular machinery governing organelle Fe(II) compartmentalization remains elusive. Here, we show that BDH2 is a key effector of inter-organelle Fe(II) redistribution and ferroptosis vulnerability during melanoma transition from a melanocytic (MEL) to a mesenchymal-like (MES) phenotype. In MEL cells, BDH2 localizes at the mitochondria–lysosome contacts (MLCs) to generate the siderophore 2,5-dihydroxybenzoic acid (2,5-DHBA), which ferries iron into the mitochondria. Fe(II) transfer by BDH2 supports mitochondrial bioenergetics, which is required to maintain lysosomal acidification and MLC formation. Loss of BDH2 alters lysosomal pH and MLC tethering dynamics, causing lysosomal iron sequestration, which primes MES cells for ferroptosis. Rescuing BDH2 expression, or supplementing 2,5-DHBA, rectifies lysosomal pH and MLCs, protecting MES cells from ferroptosis and enhancing their ability to metastasize. Thus, we unveil a BDH2-dependent mechanism that orchestrates inter-organelle Fe(II) transfer, linking metabolic regulation of lysosomal pH to the ferroptosis vulnerability of the mesenchymal, drug-tolerant cancer cells. Rizzollo et al. show that BDH2 participates in iron distribution between cellular compartments, which sets the threshold for the ferroptosis vulnerability of the melanoma cell phenotypes, ultimately affecting their metastatic capacity","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 9","pages":"1851-1870"},"PeriodicalIF":20.8,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01352-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145067695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lac-Phe induces hypophagia by inhibiting AgRP neurons in mice Lac-Phe通过抑制AgRP神经元诱导小鼠吞咽
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-09-16 DOI: 10.1038/s42255-025-01377-9
Hailan Liu, Veronica L. Li, Qingzhuo Liu, Yao Liu, Cunjin Su, Hueyxian Wong, Na Yin, Hesong Liu, Xing Fang, Kristine M. McDermott, Hueyzhong Wong, Meng Yu, Longlong Tu, Jonathan C. Bean, Yongxiang Li, Mengjie Wang, Yue Deng, Yuhan Shi, Olivia Z. Ginnard, Yuxue Yang, Junying Han, Megan E. Burt, Sanika V. Jossy, Chunmei Wang, Yongjie Yang, Benjamin R. Arenkiel, Dong Kong, Yang He, Jonathan Z. Long, Yong Xu
N-Lactoyl-phenylalanine (Lac-Phe) is a lactate-derived circulating metabolite that reduces feeding and obesity, but the molecular mechanisms that underlie the metabolic benefits of Lac-Phe remain unknown. Here we show that Lac-Phe directly inhibits hypothalamic neurons that express Agouti-related protein (AgRP), resulting in an indirect activation of anorexigenic neurons in the paraventricular nucleus of the hypothalamus (PVH). Both AgRP inhibition and PVH activation are required to mediate Lac-Phe-induced hypophagia. Lac-Phe-mediated inhibition of AgRP neurons occurs through activation of the ATP-sensitive potassium (KATP) channel, whereas inhibition of the KATP channel blunts the effects of Lac-Phe to suppress feeding. Together, these results reveal the molecular and neurobiological mechanisms by which Lac-Phe mediates metabolic improvements and suggest this exercise-induced metabolite might have therapeutic benefits in various human diseases. This study reveals neuronal targets of Lac-Phe in the hypothalamus that mediate its suppression of food intake.
n -乳酸基苯丙氨酸(Lac-Phe)是一种乳酸衍生的循环代谢物,可减少摄食和肥胖,但Lac-Phe代谢益处的分子机制尚不清楚。本研究表明,Lac-Phe直接抑制表达agouti相关蛋白(AgRP)的下丘脑神经元,导致下丘脑室旁核(PVH)厌氧性神经元的间接激活。AgRP抑制和PVH激活都需要介导lac - phe诱导的吞咽。Lac-Phe介导的AgRP神经元的抑制是通过激活atp敏感钾(KATP)通道发生的,而KATP通道的抑制则减弱了Lac-Phe抑制进食的作用。总之,这些结果揭示了Lac-Phe介导代谢改善的分子和神经生物学机制,并表明这种运动诱导的代谢物可能对各种人类疾病有治疗作用。
{"title":"Lac-Phe induces hypophagia by inhibiting AgRP neurons in mice","authors":"Hailan Liu, Veronica L. Li, Qingzhuo Liu, Yao Liu, Cunjin Su, Hueyxian Wong, Na Yin, Hesong Liu, Xing Fang, Kristine M. McDermott, Hueyzhong Wong, Meng Yu, Longlong Tu, Jonathan C. Bean, Yongxiang Li, Mengjie Wang, Yue Deng, Yuhan Shi, Olivia Z. Ginnard, Yuxue Yang, Junying Han, Megan E. Burt, Sanika V. Jossy, Chunmei Wang, Yongjie Yang, Benjamin R. Arenkiel, Dong Kong, Yang He, Jonathan Z. Long, Yong Xu","doi":"10.1038/s42255-025-01377-9","DOIUrl":"10.1038/s42255-025-01377-9","url":null,"abstract":"N-Lactoyl-phenylalanine (Lac-Phe) is a lactate-derived circulating metabolite that reduces feeding and obesity, but the molecular mechanisms that underlie the metabolic benefits of Lac-Phe remain unknown. Here we show that Lac-Phe directly inhibits hypothalamic neurons that express Agouti-related protein (AgRP), resulting in an indirect activation of anorexigenic neurons in the paraventricular nucleus of the hypothalamus (PVH). Both AgRP inhibition and PVH activation are required to mediate Lac-Phe-induced hypophagia. Lac-Phe-mediated inhibition of AgRP neurons occurs through activation of the ATP-sensitive potassium (KATP) channel, whereas inhibition of the KATP channel blunts the effects of Lac-Phe to suppress feeding. Together, these results reveal the molecular and neurobiological mechanisms by which Lac-Phe mediates metabolic improvements and suggest this exercise-induced metabolite might have therapeutic benefits in various human diseases. This study reveals neuronal targets of Lac-Phe in the hypothalamus that mediate its suppression of food intake.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 10","pages":"2004-2017"},"PeriodicalIF":20.8,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145067694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small but mighty: inulin promotes small intestinal bacterial fructose feeding 小而有力:菊粉促进小肠细菌的果糖摄食
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-09-15 DOI: 10.1038/s42255-025-01374-y
Hallie R. Wachsmuth, Frank A. Duca
Although the gut microbiome contributes to the development of metabolic disease, beneficially altering the gut microbiome via increased fibre intake improves metabolic outcomes in rodents and humans. A new study by Jung et al. describes a novel mechanism by which the prebiotic fibre, inulin, can prevent and reverse hepatic steatosis via adaptations in the small intestinal microbiome.
虽然肠道微生物群有助于代谢性疾病的发展,但通过增加纤维摄入量有益地改变肠道微生物群可以改善啮齿动物和人类的代谢结果。Jung等人的一项新研究描述了一种新的机制,通过这种机制,益生元纤维菊粉可以通过在小肠微生物群中的适应性来预防和逆转肝脂肪变性。
{"title":"Small but mighty: inulin promotes small intestinal bacterial fructose feeding","authors":"Hallie R. Wachsmuth, Frank A. Duca","doi":"10.1038/s42255-025-01374-y","DOIUrl":"10.1038/s42255-025-01374-y","url":null,"abstract":"Although the gut microbiome contributes to the development of metabolic disease, beneficially altering the gut microbiome via increased fibre intake improves metabolic outcomes in rodents and humans. A new study by Jung et al. describes a novel mechanism by which the prebiotic fibre, inulin, can prevent and reverse hepatic steatosis via adaptations in the small intestinal microbiome.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 9","pages":"1720-1722"},"PeriodicalIF":20.8,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145059252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dietary fibre-adapted gut microbiome clears dietary fructose and reverses hepatic steatosis 膳食纤维适应肠道微生物群清除膳食果糖并逆转肝脂肪变性
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-09-15 DOI: 10.1038/s42255-025-01356-0
Sunhee Jung, Hosung Bae, Won-Suk Song, Yujin Chun, Johnny Le, Yasmine Alam, Amandine Verlande, Sung Kook Chun, Joohwan Kim, Miranda E. Kelly, Miranda L. Lopez, Sang Hee Park, Daniel Onofre, Jongwon Baek, Ki-Hong Jang, Varvara I. Rubtsova, Alexis Anica, Selma Masri, Gina Lee, Cholsoon Jang
Excessive consumption of the simple sugar fructose, which induces excessive hepatic lipogenesis and gut dysbiosis, is a risk factor for cardiometabolic diseases. Here we show in male mice that the gut microbiome, when adapted to dietary fibre inulin, catabolizes dietary fructose and mitigates or reverses insulin resistance, hepatic steatosis and fibrosis. Specifically, inulin supplementation, without affecting the host’s small intestinal fructose catabolism, promotes the small intestinal microbiome to break down incoming fructose, thereby decreasing hepatic lipogenesis and fructose spillover to the colonic microbiome. Inulin also activates hepatic de novo serine synthesis and cystine uptake, augmenting glutathione production and protecting the liver from fructose-induced lipid peroxidation. These multi-modal effects of inulin are transmittable by the gut microbiome, where Bacteroides acidifaciens acts as a key player. Thus, the gut microbiome, adapted to use inulin (a fructose polymer), efficiently catabolizes dietary monomeric fructose, thereby protecting the host. These findings provide a mechanism for how fibre can facilitate the gut microbiome to mitigate the host’s exposure to harmful nutrients and disease progression. The dietary fibre inulin is shown to promote fructose catabolism by the small intestinal microbiome, thereby mitigating fructose-induced hepatic lipogenesis and steatosis.
过量摄入单糖果糖会导致肝脏脂肪生成过多和肠道生态失调,是心脏代谢疾病的危险因素。在这里,我们在雄性小鼠中发现,当肠道微生物群适应膳食纤维菊粉时,可以分解膳食果糖,减轻或逆转胰岛素抵抗、肝脂肪变性和纤维化。具体来说,菊粉的补充在不影响宿主小肠果糖分解代谢的情况下,促进小肠微生物群分解传入的果糖,从而减少肝脏脂肪生成和果糖向结肠微生物群的溢出。菊粉还激活肝脏从头合成丝氨酸和胱氨酸摄取,增加谷胱甘肽的产生,保护肝脏免受果糖诱导的脂质过氧化。菊粉的这些多模式效应可通过肠道微生物群传播,其中酸化拟杆菌起着关键作用。因此,肠道微生物群,适应使用菊粉(一种果糖聚合物),有效地分解膳食单体果糖,从而保护宿主。这些发现为纤维如何促进肠道微生物群减轻宿主对有害营养物质的暴露和疾病进展提供了一种机制。
{"title":"Dietary fibre-adapted gut microbiome clears dietary fructose and reverses hepatic steatosis","authors":"Sunhee Jung, Hosung Bae, Won-Suk Song, Yujin Chun, Johnny Le, Yasmine Alam, Amandine Verlande, Sung Kook Chun, Joohwan Kim, Miranda E. Kelly, Miranda L. Lopez, Sang Hee Park, Daniel Onofre, Jongwon Baek, Ki-Hong Jang, Varvara I. Rubtsova, Alexis Anica, Selma Masri, Gina Lee, Cholsoon Jang","doi":"10.1038/s42255-025-01356-0","DOIUrl":"10.1038/s42255-025-01356-0","url":null,"abstract":"Excessive consumption of the simple sugar fructose, which induces excessive hepatic lipogenesis and gut dysbiosis, is a risk factor for cardiometabolic diseases. Here we show in male mice that the gut microbiome, when adapted to dietary fibre inulin, catabolizes dietary fructose and mitigates or reverses insulin resistance, hepatic steatosis and fibrosis. Specifically, inulin supplementation, without affecting the host’s small intestinal fructose catabolism, promotes the small intestinal microbiome to break down incoming fructose, thereby decreasing hepatic lipogenesis and fructose spillover to the colonic microbiome. Inulin also activates hepatic de novo serine synthesis and cystine uptake, augmenting glutathione production and protecting the liver from fructose-induced lipid peroxidation. These multi-modal effects of inulin are transmittable by the gut microbiome, where Bacteroides acidifaciens acts as a key player. Thus, the gut microbiome, adapted to use inulin (a fructose polymer), efficiently catabolizes dietary monomeric fructose, thereby protecting the host. These findings provide a mechanism for how fibre can facilitate the gut microbiome to mitigate the host’s exposure to harmful nutrients and disease progression. The dietary fibre inulin is shown to promote fructose catabolism by the small intestinal microbiome, thereby mitigating fructose-induced hepatic lipogenesis and steatosis.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 9","pages":"1801-1818"},"PeriodicalIF":20.8,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01356-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145059253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nutritional advice on social media: clicks over credibility 社交媒体上的营养建议:点击量大于可信度
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-09-12 DOI: 10.1038/s42255-025-01385-9
Social media has become a go-to source for nutritional advice, and a space in which influencers compete with, and often drown out, evidence-based guidance. The scientific community should counter this viral spread of misinformation by making trustworthy information more accessible.
社交媒体已经成为营养建议的首选来源,也是一个有影响力的人与循证指导竞争、甚至常常被淹没的空间。科学界应该通过使可信的信息更容易获得来对抗这种错误信息的病毒式传播。
{"title":"Nutritional advice on social media: clicks over credibility","authors":"","doi":"10.1038/s42255-025-01385-9","DOIUrl":"10.1038/s42255-025-01385-9","url":null,"abstract":"Social media has become a go-to source for nutritional advice, and a space in which influencers compete with, and often drown out, evidence-based guidance. The scientific community should counter this viral spread of misinformation by making trustworthy information more accessible.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 9","pages":"1715-1715"},"PeriodicalIF":20.8,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01385-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145035108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Redox-dependent pathways in the pro-thermogenic effects of cysteine restriction 半胱氨酸限制的促热作用中的氧化还原依赖途径
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-09-12 DOI: 10.1038/s42255-025-01384-w
Daniele Lettieri-Barbato, Katia Aquilano
{"title":"Redox-dependent pathways in the pro-thermogenic effects of cysteine restriction","authors":"Daniele Lettieri-Barbato, Katia Aquilano","doi":"10.1038/s42255-025-01384-w","DOIUrl":"10.1038/s42255-025-01384-w","url":null,"abstract":"","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 10","pages":"1958-1959"},"PeriodicalIF":20.8,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145035107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harmonizing human plasma metabolite annotation with Plasma Benchmark 与血浆基准相协调的人血浆代谢物注释
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-09-11 DOI: 10.1038/s42255-025-01376-w
Ville Koistinen, Topi Meuronen, Pekka Keski-Rahkonen, Reza Salek, Otto Savolainen, Hany Ahmed, Carl Brunius, Rikard Landberg, Marko Lehtonen, Seppo Auriola, Augustin Scalbert, Kati Hanhineva
{"title":"Harmonizing human plasma metabolite annotation with Plasma Benchmark","authors":"Ville Koistinen, Topi Meuronen, Pekka Keski-Rahkonen, Reza Salek, Otto Savolainen, Hany Ahmed, Carl Brunius, Rikard Landberg, Marko Lehtonen, Seppo Auriola, Augustin Scalbert, Kati Hanhineva","doi":"10.1038/s42255-025-01376-w","DOIUrl":"10.1038/s42255-025-01376-w","url":null,"abstract":"","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 10","pages":"1955-1957"},"PeriodicalIF":20.8,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145031906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vivo itaconate tracing reveals degradation pathway and turnover kinetics 体内衣康酸示踪揭示了降解途径和转化动力学
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-09-10 DOI: 10.1038/s42255-025-01363-1
Hanna F. Willenbockel, Alexander T. Williams, Alfredo Lucas, Mack B. Reynolds, Emeline Joulia, Maureen L. Ruchhoeft, Birte Dowerg, Pedro Cabrales, Christian M. Metallo, Thekla Cordes
Itaconate is an immunomodulatory metabolite that alters mitochondrial metabolism and immune cell function. This organic acid is endogenously synthesized by tricarboxylic acid (TCA) metabolism downstream of TLR signalling. Itaconate-based treatment strategies are under investigation to mitigate numerous inflammatory conditions. However, little is known about the turnover rate of itaconate in circulation, the kinetics of its degradation and the broader consequences on metabolism. By combining mass spectrometry and in vivo 13C itaconate tracing in male mice, we demonstrate that itaconate is rapidly eliminated from plasma, excreted via urine and fuels TCA cycle metabolism specifically in the liver and kidneys. Our results further reveal that itaconate is converted into acetyl-CoA, mesaconate and citramalate. Itaconate administration also influences branched-chain amino acid metabolism and succinate levels, indicating a functional impact on succinate dehydrogenase and methylmalonyl-CoA mutase activity in male rats and mice. Our findings uncover a previously unknown aspect of itaconate metabolism, highlighting its rapid catabolism in vivo that contrasts findings in cultured cells. In this study, Willenbockel et al. trace circulating itaconate in vivo to gain insight into its fate and systemic metabolism.
衣康酸是一种免疫调节代谢物,可改变线粒体代谢和免疫细胞功能。这种有机酸是由TLR信号下游的三羧酸(TCA)代谢内源性合成的。目前正在研究以伊他酸盐为基础的治疗策略,以减轻多种炎症。然而,人们对衣康酸在循环中的周转率、降解动力学及其对代谢的广泛影响知之甚少。通过结合质谱法和雄性小鼠体内13C衣康酸追踪,我们证明衣康酸可以迅速从血浆中消除,通过尿液排出,并促进TCA循环代谢,特别是在肝脏和肾脏中。我们的研究结果进一步表明衣康酸转化为乙酰辅酶a、美萨酸和柠檬酸酯。衣康酸也影响支链氨基酸代谢和琥珀酸水平,表明对雄性大鼠和小鼠琥珀酸脱氢酶和甲基丙二酰辅酶a变化酶活性的功能影响。我们的发现揭示了衣康酸代谢的一个以前未知的方面,突出了它在体内的快速分解代谢,这与培养细胞的发现形成了对比。
{"title":"In vivo itaconate tracing reveals degradation pathway and turnover kinetics","authors":"Hanna F. Willenbockel, Alexander T. Williams, Alfredo Lucas, Mack B. Reynolds, Emeline Joulia, Maureen L. Ruchhoeft, Birte Dowerg, Pedro Cabrales, Christian M. Metallo, Thekla Cordes","doi":"10.1038/s42255-025-01363-1","DOIUrl":"10.1038/s42255-025-01363-1","url":null,"abstract":"Itaconate is an immunomodulatory metabolite that alters mitochondrial metabolism and immune cell function. This organic acid is endogenously synthesized by tricarboxylic acid (TCA) metabolism downstream of TLR signalling. Itaconate-based treatment strategies are under investigation to mitigate numerous inflammatory conditions. However, little is known about the turnover rate of itaconate in circulation, the kinetics of its degradation and the broader consequences on metabolism. By combining mass spectrometry and in vivo 13C itaconate tracing in male mice, we demonstrate that itaconate is rapidly eliminated from plasma, excreted via urine and fuels TCA cycle metabolism specifically in the liver and kidneys. Our results further reveal that itaconate is converted into acetyl-CoA, mesaconate and citramalate. Itaconate administration also influences branched-chain amino acid metabolism and succinate levels, indicating a functional impact on succinate dehydrogenase and methylmalonyl-CoA mutase activity in male rats and mice. Our findings uncover a previously unknown aspect of itaconate metabolism, highlighting its rapid catabolism in vivo that contrasts findings in cultured cells. In this study, Willenbockel et al. trace circulating itaconate in vivo to gain insight into its fate and systemic metabolism.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 9","pages":"1781-1790"},"PeriodicalIF":20.8,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01363-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145025747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Common genetic variants modify disease risk and clinical presentation in monogenic diabetes 常见的基因变异改变单基因糖尿病的疾病风险和临床表现
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-09-09 DOI: 10.1038/s42255-025-01372-0
Jacques Murray Leech, Robin N. Beaumont, Ankit M. Arni, V. Kartik Chundru, Luke N. Sharp, Kevin Colclough, Andrew T. Hattersley, Michael N. Weedon, Kashyap A. Patel
Young-onset monogenic disorders often show variable penetrance, yet the underlying causes remain poorly understood. Uncovering these influences could reveal new biological mechanisms and enhance risk prediction for monogenic diseases. Here we show that polygenic background substantially shapes the clinical presentation of maturity-onset diabetes of the young (MODY), a common monogenic form of diabetes that typically presents in adolescence or early adulthood. We find strong enrichment of type 2 diabetes (T2D) polygenic risk, but not type 1 diabetes risk, in genetically confirmed MODY cases (n = 1,462). This T2D polygenic burden, primarily through beta-cell dysfunction pathways, is strongly associated with earlier age of diagnosis and increased diabetes severity. Common genetic variants collectively account for 24% (P < 0.0001) of the phenotypic variability. Using a large population cohort (n = 424,553), we demonstrate that T2D polygenic burden substantially modifies diabetes onset in individuals with pathogenic variants, with diabetes risk ranging from 11% to 81%. Finally, we show that individuals with MODY-like phenotypes (n = 300) without a causal variant have elevated polygenic burden for T2D and related traits, representing potential polygenic phenocopies. These findings reveal substantial influence of common genetic variation in shaping the clinical presentation of early-onset monogenic disorders. Incorporating these may improve risk estimates for individuals carrying pathogenic variants. In clinical and population-based cohorts, a strong contribution of polygenic risk for type 2 diabetes (T2D) significantly modifies the onset and phenotypic variability of maturity-onset diabetes of the young (MODY). This polygenic T2D burden may also account for MODY-like individuals without identified monogenic causes.
年轻发病的单基因疾病通常表现出不同的外显率,但潜在的原因仍然知之甚少。揭示这些影响可以揭示新的生物学机制,提高单基因疾病的风险预测。本研究表明,多基因背景在很大程度上决定了成熟型糖尿病(MODY)的临床表现,这是一种常见的单基因糖尿病,通常出现在青春期或成年早期。我们发现,在基因证实的MODY病例中,2型糖尿病(T2D)多基因风险显著增加,但1型糖尿病风险不明显(n = 1462)。这种T2D多基因负担,主要通过β细胞功能障碍途径,与早期诊断年龄和糖尿病严重程度增加密切相关。常见遗传变异合计占表型变异的24% (P < 0.0001)。通过一项大型人群队列研究(n = 424,553),研究人员证明,t2dm多基因负担显著改变了致病变异个体的糖尿病发病,其糖尿病风险范围为11%至81%。最后,我们发现,没有因果变异的mody样表型个体(n = 300)对T2D和相关性状的多基因负担升高,代表了潜在的多基因表型。这些发现揭示了共同遗传变异在塑造早发单基因疾病临床表现中的重要影响。将这些因素结合起来可以提高对携带致病变异个体的风险估计。
{"title":"Common genetic variants modify disease risk and clinical presentation in monogenic diabetes","authors":"Jacques Murray Leech,&nbsp;Robin N. Beaumont,&nbsp;Ankit M. Arni,&nbsp;V. Kartik Chundru,&nbsp;Luke N. Sharp,&nbsp;Kevin Colclough,&nbsp;Andrew T. Hattersley,&nbsp;Michael N. Weedon,&nbsp;Kashyap A. Patel","doi":"10.1038/s42255-025-01372-0","DOIUrl":"10.1038/s42255-025-01372-0","url":null,"abstract":"Young-onset monogenic disorders often show variable penetrance, yet the underlying causes remain poorly understood. Uncovering these influences could reveal new biological mechanisms and enhance risk prediction for monogenic diseases. Here we show that polygenic background substantially shapes the clinical presentation of maturity-onset diabetes of the young (MODY), a common monogenic form of diabetes that typically presents in adolescence or early adulthood. We find strong enrichment of type 2 diabetes (T2D) polygenic risk, but not type 1 diabetes risk, in genetically confirmed MODY cases (n = 1,462). This T2D polygenic burden, primarily through beta-cell dysfunction pathways, is strongly associated with earlier age of diagnosis and increased diabetes severity. Common genetic variants collectively account for 24% (P &lt; 0.0001) of the phenotypic variability. Using a large population cohort (n = 424,553), we demonstrate that T2D polygenic burden substantially modifies diabetes onset in individuals with pathogenic variants, with diabetes risk ranging from 11% to 81%. Finally, we show that individuals with MODY-like phenotypes (n = 300) without a causal variant have elevated polygenic burden for T2D and related traits, representing potential polygenic phenocopies. These findings reveal substantial influence of common genetic variation in shaping the clinical presentation of early-onset monogenic disorders. Incorporating these may improve risk estimates for individuals carrying pathogenic variants. In clinical and population-based cohorts, a strong contribution of polygenic risk for type 2 diabetes (T2D) significantly modifies the onset and phenotypic variability of maturity-onset diabetes of the young (MODY). This polygenic T2D burden may also account for MODY-like individuals without identified monogenic causes.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 9","pages":"1819-1829"},"PeriodicalIF":20.8,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01372-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145018067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1